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Protein glycosylation, particularly O-GlcNAcylation, is a critical post-translational
modification (PTM) that regulates cardiac and vascular functions by modulating
protein stability, localization, and interactions. Dysregulated glycosylation is
generally believed as a key driver in the pathogenesis of cardiovascular
diseases (CVDs), contributing to adverse cardiac remodeling, mitochondrial
dysfunction, metabolic dysregulation, and vascular inflammation. This review
highlights themechanistic roles of glycosylation in CVD progression, including its
regulation of cardiac remodeling, mitochondrial dysfunction, and vascular
inflammation. This study explored the dual role of O-GlcNAcylation in acute
protection and chronic injury, emphasizing its potential as a biomarker for early
diagnosis and risk stratification. Therapeutic strategies targeting glycosylation
pathways, particularly O-GlcNAc transferase (OGT), and O-GlcNAcase (OGA),
hold promise for addressing myocardial ischemia-reperfusion injury, diabetic
cardiomyopathy, and atherosclerosis. Advances in glycosylation profiling and
interdisciplinary collaboration are essential to overcome challenges such as
tissue specificity and off-target effects, advancing precision cardiovascular
medicine.
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Introduction

Cardiovascular disease (CVD) remains a prominent risk factor for human death and
disability worldwide. As depicted from data from 1999–2019, the number of people
suffering from CVD almost doubled, increasing from 271 million to 523 million, and
the mortality arising from 12.1 million to 18.6 million (Zhou et al., 2023; Beadle et al., 2015;
Park et al., 2016). Despite recent advances in deciphering the pathogenesis of CVD, it is still
insufficient to fully address and intervene in cardiovascular disorders. Therefore, the
identification of novel diagnostic methods and the generation of appropriate therapies
are urgently needed for the risk prediction of future CVD events. Among multiple research
insights, glycomics is a reliable approach for proposing innovative strategies and offering
novel treatment targets.

Protein post-translational modifications (PTMs) cause rapid alterations in protein
function, location, turnover and crosstalk, which greatly increase the variety of proteome
(Smith and White, 2014). Among these modifications, protein glycosylation makes up
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approximately 20%–50% of proteins glycosylated, making it one of
the most abundant protein modifications (Gajjala et al., 2015;
Stastna, 2024). In protein glycosylation, carbohydrates are linked
to certain amino acids. In mammals, nine different amino acids can
initially be attached to nine different monosaccharides (Chatham
and R, 2024). Carbohydrate structures are also composed of
monosaccharides and oligosaccharides, called glycans, which can
also be further modified by other protein modifications, such as
phosphorylation, acetylation, and sulfation, resulting in a more
diversified glycan structure (Lawler, 2016). These diverse
structures generate a large amount of structural variation that is
impossible with amino acids or nucleic acids alone (Biros et al.,
2015). Most glycans are located on the outer membrane of cells and
produce diverse macromolecules. Simple and highly dynamic
glycans can also be found throughout cells, where they act as
regulatory modules (Hoshi et al., 2024).

Protein glycosylation comprises O-linked glycans, N-linked
glycans, glycosaminoglycans, phosphorylated glycans and
glycosylphosphatidylinositol (GPI) attached to peptide backbones
and C-mannosylation to the tryptophan residues (Figure 1) (Hoshi
et al., 2024; Dashti et al., 2021). Among these, O-linked β-N-
acetylglucosamine glycosylation (O-GlcNAc, also named
O-GlcNAcylation), is widely distributed (Loaeza-Reyes et al.,
2021). Recently, O-GlcNAc has been increasingly associated with
the progression of cardiovascular disorders (Ngoh et al., 2010).
Despite the wide acknowledgment of the critical role of protein
glycosylation in the modulation of cellular function, our knowledge
of the effects of protein glycosylation variation on cardiovascular

manifestation is rather inadequate. Here, we completely outline
O-linked and N-linked protein glycosylation, as well as intracellular
O-GlcNAc protein modification, and discuss how these
modifications result in normal function cardiovascular system
and their roles in CVDs. Finally, we review the potential function
of protein glycosylation in the cardiac and vascular system,
highlighting the importance of these issues for future research.

Overview of protein glycosylation

Protein glycosylation is catalyzed by enzymes that covalently
attach glycans on the hydroxyl or other functional residues of
proteins and is quite different with glycation, which undertakes
the conjunction of carbohydrates to certain proteins independent of
enzymes (Birukov et al., 2022). Carbohydrates are typically attached
either to asparagine (Asn) residues by N linkages or serine (Ser) and
threonine (Thr) residues by O linkages in mammals. Other rare
forms, including tryptophan on mannose by C-linkage, phosphor
(P)-glycosylation and cysteine S-glycosylation, are not addressed in
detail in this review (Figure 1) (Majek et al., 2015). The endoplasmic
reticulum (ER) and Golgi compartments are the exclusive sites for
N-glycosylation and O-glycosylation, except for hyaluronan and
O-GlcNAc. In the process of N-glycosylation, a preassembled
14 sugar glycan forms dolichol and is transferred to Asn residues
in the Asn-X-Ser/Thr motif, mediated by oligosaccharyltransferase
complex (Figure 2). Subsequently, glycans are further processed,
producing three types of glycans, according to the processing extent:

FIGURE 1
Major types of glycosylation in humans. Protein glycosylation comprises O-linked glycans, N-linked glycans, glycosaminoglycans, phosphorylated
glycans and glycosylphosphatidylinositol (GPI) attached to peptide backbones and C-mannosylation to the tryptophan residues.
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‘high mannose’ (minimum processing), ‘hybrid’ and ‘complex’
(maximum processed) (Memarian et al., 2021). The ends of
N-glycans are attached to sialic acid, fucose and other
monosaccharides, which greatly enriches the variety of glycan
types and fulfills additional functional properties, such as protein
interactions, protein stabilization, and iron transportation. In
contrast, O-glycosylation begins by attaching a single sugar to Ser
or Thr residues, and then extensions and elongations of other
structures (Liu et al., 2024). To date, O-N-acetylgalactosamine
(GalNAc) are the most common O-glycoproteins, which attach
to Ser or Thr residues by 20 GalNAc transferases (GALNTs)
(Zhang et al., 2024). Similar to N-glycosylation, the ends of
O-glycosylation also engage in the attachment of fucose or sialic
acid (Figure 2) (Chernykh et al., 2024).

Proteoglycans belong to a unique group of O-glycosylated
proteins, which attach xylose to serine residues with the aid of

xylosyltransferase 1 (XYLT1) or XYLT2 (Figure 2) (Mongiat et al.,
2024). Proteoglycans are associated with the modulation of
extracellular matrix (ECM) and can be grouped into four
categrories on the basis of their location: extracellular, pericellular
intracellular, cell surface, and intracellular. Unlike other
glycoproteins, proteoglycans contain glycosaminoglycans in the
protein core, which is composed of a common tetrasaccharide
linker, Xyl-Gal-Gal-GlcA, forming linear polysaccharides
(Melrose, 2024). Afterwards, repeating disaccharide units are
sequentially incorporated, such as GlcNAc, GalNAc, glucuronic
acid (GlcA) and iduronic acid (Alcaide-Ruggiero et al., 2023).
Proteoglycans are critical for ECM regulation and are essential
components of myocardial remodeling in the heart (Mongiat
et al., 2024). Hyaluronan, a linear glycosaminoglycan polymer
that is composed of repetitive disaccharide GlcNAc and GlcA, is
similarly associated with ECM regulation and heart remodeling

FIGURE 2
The primary synthesis of N-glycosylation and O-glycosylation. (A) N-glycosylation initiates with a preassembled 14 sugar glycan forms dolichol to
Asn residues by the Asn-X-Ser/Thr sequence. Subsequently, glycans are further processed by glucosidases, mannosidases and glycosyltransferases,
producing hybrid and complicated N-glycans. (B) O-glycosylation begins by adding sugar molecule to Ser or Thr residues, followed by various core
structure extensions and elongations. (C) Proteoglycans belong to a unique group of O-glycosylated types of proteins, which starts by adding xylose
to Ser residues by XYLT1/2. Proteoglycans contain glycosaminoglycans in the protein core, which is composed of a common tetrasaccharide linker, Xyl-
Gal-Gal-GlcA, forming linear polysaccharides. Afterwards, repeating disaccharide units are sequentially incorporated, such as GlcNAc, GalNAc, GlcA and
iduronic acid.
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(Han et al., 2024). Hyaluronan synthases (HAS1, HAS2 and HAS3)
mediate the formation of hyaluronan at plasma membrane
(Figure 3) (Rabelink et al., 2024). In addition, as another class of
extracellular glycoproteins, matricellular proteins play important
roles in cell and ECM interactions such as signaling, adhesion,
proliferation. Matricellular proteins are composed of
thrombospondins, secreted protein acidic and rich in cysteine
(SPARC) proteins, tenascins, the CCN family of proteins,
periostin, and osteopontin (Frangogiannis, 2022). Owing to a
lack of glycosaminoglycan motif, most matricellular proteins do
not belong to proteoglycans.

Initially, glycoproteins were believed to be either located on the
membrane or extracellular proteins; however, in 1984, O-GlcNAc
modified proteins within cells were observed and found to be widely
distributed within the intracellular compartment (Lunde et al.,
2012). Unlike multiple enzymes involved in classical protein
glycosylation, the addition and removal of O-GlcNAc from Ser
and Thr protein residues is catalyzed by a unique
glycosyltransferase, O-GlcNAc transferase (OGT), and a single
glycosylhydrolase, O-GlcNAcase (OGA) (Liu et al., 2007).

O-GlcNAc modified proteins remain one of the most enriched
types of glycosylation in eukaryotic cells and was initially ignored
(Dassanayaka and Jones, 2014). First, the O-GlcNAc modification is
typically observed on intracellular proteins. However, Matsuura
et al., revealed O-GlcNAc modification on the Drosophila

sp. Notch receptor, which is extracellular in 2008 (Belke, 1985).
Unlike OGT-mediated O-GlcNAcylation, extracellular O-GlcNAc is
attached to epidermal growth factor (EGF)-like repeat domains in
the ER. This process is catalyzed by a unique glycosyltransferase,
EGF-domain-specific OGT (EOGT) (Chatham et al., 2021). Unlike
intercellular O-GlcNAcylation, extracellular O-GlcNAc can be
further processed by galactose and sialic acid in mammals.
EOGT is highly conserved among species and shares little
similarity with OGT (Chen et al., 2019).

The hexosamine biosynthesis pathway

All types of protein glycosylation are initiated by an essential
precursor, uridine diphosphate-GlcNAc (UDP-GlcNAc), which is
catalyzed by the hexosamine biosynthesis pathway (HBP)
(Selitrennikoff et al., 1976). First, fructose-6-phosphate is converted
to glucosamine-6-phosphate mediated by glutamine–fructose-
6-phosphate aminotransferase (isomerizing) 1 (GFAT). GFAT
comprises GFAT1 and GFAT2, encoded by varied genes, as well
as a variant (GFAT-L or GFATAlt), which is primarily identified
in cardiac and skeletal muscle (Olson et al., 2020). GFAT activity
can be phosphorylated regulated and allosterically inhibited
by glucosamine-6-phosphate and UDP-GlcNAc. GFAT can
also be transcriptionally regulated predominantly in the heart.

FIGURE 3
UDP-GlcNAc metabolism pathways. (A) Delivery to the Golgi apparatus or ER: UDP-GlcNAc is transported into the Golgi or ER by NSTs,
accompanied with the export of UMP. UDP-GlcNAc is available for the production of the N-glycosylation and O-glycosylation of proteins. (B)GlcNAc-1-
P fromUDP-GlcNAc is transferred to Dol-P, forming Dol-P-P-GlcNAc in the initial process of N-glycan synthesis on the ER via DPAGT1. (C)UDP-GlcNAc
is used as the substrate for the attachment of O-GlcNAc by OGT. (D) Sialic acid generation: UDP-GlcNAc is catalyzed by the UDP-N-
acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), followed byN-acetylneuraminic acid synthase (NANS) andN-acylneuraminate-9-
phosphatase (NANP) to form sialic acid. (E)Hyaluronan synthesis: UDP-GlcNAc and UDP-GlcA are catalyzed by hyaluronan synthases, such as HAS2, with
the concomitant release of UDP.
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The functions of GFAT isoforms of are confusing at present; some
believe that GFAT1mainly regulate O-GlcNAc levels in cardiomyocyte,
whereas others are convinced that GFAT2 is the main modulator in the
heart (Paneque et al., 2023; Filippis et al., 2002). The next step of the
HBP is the UDP-GlcNAc synthesis.

UDP-GlcNAc metabolism

UDP-GlcNAc is a critical component in various glycosylation
processes in the ER and Golgi (Jones et al., 2014; Laczy et al., 2011).
Nucleotide sugar transporters (NSTs) mediate the transportation
of UDP-GlcNAc from the cytosol into these compartments
(Figure 3). N-Acetyl-D-glucosamine 1-phosphate (GlcNAc-1P)
from UDP-GlcNAc is transferred to dolichol phosphate (Dol-P),
forming dolichol pyrophosphate Glc-NAc (Dol-P-P-GlcNAc)
in the initial process of N-glycan synthesis on the extracellular
lumen of the ER via UDP-GlcNAc–dolichyl-phosphate N-acetyl
glucosaminephosphotransferase (DPAGT1) (Figure 3). Additionally,
UDP-GlcNAc is necessary for the formation of sialic acid, during
which the initial step is facilitated by bifunctional UDP-
GlcNAc 2-epimerase/N-acetylmannosamine kinase (GNE).
UDP-GlcNAc and UDP-GlcA are necessary for the synthesis
of hyaluronan. Finally, UDP-GlcNAc is used as the substrate for
attaching O-GlcNAc to proteins (Marshall et al., 2005; Sage
et al., 2010).

Interactions between O-GlcNAc and N- and
O-glycosylation

Interactions between O-GlcNAc and classic N-glycosylation or
O-glycosylation has been underestimated, probably owing to the
different distributions where these protein modifications occur.
However, accumulating evidence indicates that O-GlcNAcylation
modulates glycan processing to some extent. UDP-GlcNAc
transportation into the Golgi is monitored by OGT and
O-GlcNAc and therefore impacts the biosynthesis of N-glycan
(Marshall et al., 1991; Willems and van Engelen, 2016).
Moreover, OGT deletion affected the regulation of
N-glycosylation and O-glycosylation (Lee et al., 2021).
O-GlcNAcylation is important in the synthesis of hyaluronan.
O-GlcNAcylation also modulates GNE activity, an enzyme
involved in the synthesis of sialic acid (Lima et al., 2009;
Gonzalez-Rellan et al., 2022). Disturbance of O-GlcNAc
homeostasis dramatically altered O-glycans but did not change
N-glycans in Caenorhabditis elegans. Although the crosstalk of
these modifications has not been studied in the heart, they are
still critical aspects when evaluating changes in O-GlcNAcylation
during cardiac (patho)physiology via genetic or pharmacological
interventions.

Heart and vascular function

N-linked and O-linked glycosylation abnormality can lead to
multisystem defects, such as congenital disorders of glycosylation
(CDGs), a rare and heterogeneous genetic disorders (Boyer et al.,

2022). Approximately 20% of the CDGs presented severe cardiac
pathologies, including structural abnormalities, cardiomyopathies
and arrhythmias, indicating glycosylation importance on
cardiovascular function (Pascreau et al., 2023). Many
glycosyltransferases and other glycoproteins are embryonically
lethal in global knockout mice, indicating the critical role of
glycosylation in embryonic development (Greczan et al., 2022).
The expression levels of cardiac glycogenes, as well as N-glycans,
are considerably different between atrial and ventricular
cardiomyocytes, which is quite consistent with that in
cardiomyocyte homeostasis (Buyukdogan and Hancer, 2023).

Analysis of the cardiac glycoproteomes of young (3-month-old)
and aged (22-month-old) male mice revealed that the ratio of high-
mannose N-glycans increased and that the number of complex
N-glycans decreased with age, potentially resulting in a functional
decline in the cardiovascular system (Paton et al., 2021).
Cardiomyocyte-specific Ogt deletion mice presented high
perinatal mortality accompanied by defects in cardiac maturation,
and in adult animals it was associated with dilated cardiomyopathy,
suggesting O-GlcNAcylation is important in the heart (Xiong et al.,
2022). Ogt flox/flox mice crossed with cardiac troponin T (Tnnt2)-
Cre transgenic mice revealed the importance of OGT andO-GlcNAc
in early cardiac development via the modulation of angiopoietin
1 expression (WangH. F. et al., 2023). Conditional overexpression of
dominant-negative splice variant of OGA (dnOGA) in
cardiomyocytes dramatically elevated cardiac O-GlcNAc levels
and subsequently resulted in cardiac hypertrophy, abnormal
cardiac remodeling and moderate diastolic impairment after
6 months (Bolanle et al., 2021). In contrast, in mice, OGA
specific overexpression in cardiomyocyte had no significant effect
on the heart for up to 3 months, although it lowered overall
O-GlcNAc levels to a half. During acute cardiac damage, the role
of O-GlcNAc, especially after ischemia-reperfusion, was explored.
The cardiac level of O-GlcNAc in ischemia-reperfusion was
markedly reduced, which is associated with aggravated cardiac
injury (Jensen et al., 2019). Conversely, reducing O-GlcNAc
levels in cardiomyocyte prevents hypoxia stress in these cells. In
contrast, an acute increase in O-GlcNAc levels seems to be
cardioprotective, especially in the context of myocardial
ischemia-reperfusion injury, accompanied by increased tolerance
to ischemia-reperfusion injury in female mice (Figure 4) (Jensen
et al., 2019). Therefore, these studies highlight the importance of
homeostasis on cardiomyocyte O-GlcNAc levels since rare levels of
O-GlcNAcylationmake the heart vulnerable to acute injury, whereas
persistent increases in O-GlcNAc levels induce chronic
injury (Figure 4).

CVD and cardiac remodeling

Hypertension or valvular disease, heart failure may originate
from genetic factor-induced cardiomyopathies, chemotherapy-
mediated cardiotoxicities, and multiple causes (Luan et al., 2021a;
Luan et al., 2021b; Luan et al., 2024). Specific α-1,3-mannosyl-
glycoprotein 2-β-N-acetylglucosaminyl transferase deletion in
cardiomyocyte led to reduced complex N-glycans and increased
high-mannose N-glycans, leading to the progression of dilated
cardiomyopathy and death before maturation (Ednie et al., 2019).
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Deletion of ST3 β-galactoside α-2,3-sialyltransferase 4 presented
dilated cardiomyopathy (Zhu et al., 2024). In a heart failure canine
model, the level of N-glycosylation on calsequestrin 2, which is
relevant with Ca2+ modulation in the sarcoplasmic reticulum (SR), is

dramatically reduced, indicating defective Ca2+ handling. Overall,
the overall variation in complex N-glycans is likely a signature of
heart failure and potentially promotes the pathogenesis of this
abnormity (Young et al., 2024).

FIGURE 4
Beneficial and defective effects of O-GlcNAcylation by chronic or acute upregulation of specific modification. (A) Under chronic elevated
O-GlcNAcylation on diabetic hearts, heart failure, cardiomyocyte, smooth muscle cell. (B) Acute elevation of O-GlcNAcylation on cardiomyocyte and
aortic segments under certain circumstance.
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Cardiac hypertrophy
Left ventricular hypertrophy is a risking factor in the progression

of heart failure, which probably results from increased afterload due
to hypertension, aortic stenosis or genetic factors (Wang et al.,
2024). In the heart of individuals with cardiac hypertrophy, the
mRNA levels of Gfat and UDP-GlcNAc are increased in mice and
rats, indicating increased substrate availability resulting from
protein glycosylation in the hypertrophic heart (Osterholt et al.,
2013). Afterwards, a cardiac hypertrophy animal model by pressure
overload- and isoprenaline-induced cardiac hypertrophy exhibited
increased overall protein N-glycosylation and sialylation levels
(Young et al., 2024). However, increased levels of mucin-type
O-glycosylated proteins and decreased levels of N-glycosylation
were identified in hypertrophy induced by high-salt hypertension
(Lunde et al., 2012; Marsh and Dell’Italia, 2011). Additionally,
increased O-GlcNAcylation levels have been revealed in
hypertrophic rodent and human hearts. Dysregulation of various
forms of protein glycosylation are induced in cardiac hypertrophy,
accompanied by marked increases in the expression of glycogenes,
such as Galnt1, Galnt2 and Galnt7, relevant to initiation of
O-glycosylation, as well as decreases in glycosyltransferases
associated with core extension (Dozio et al., 2021). Cardiac
hypertrophy induces a set of variations in transcription factors in
a time-dependent manner. However, how these genes are regulated
during this process remains unknown, probably owing to the less
studied mechanisms in the regulation of glycogene expression.

Many glycogenes are found epigenetically regulated in various
cancers as well as in pathological cardiac hypertrophy, suggesting a
possible mechanism of glycogene level in the heart. At present,
increased O-GlcNAc levels in both animal and human cardiac
hypertrophy is widely acknowledged. Two questions remain
unanswered. First, the causative association between increased
O-GlcNAc levels and the progression of hypertrophy remains
unsolved. Second, the exact role of increased O-GlcNAcylation in
cardiac remodeling is still unknown. The classical opinion is that the
activation of calcineurin, followed by dephosphorylated nuclear
factor of activated T cells (NFAT) and nuclear transfer, initiates
hypertrophic transcriptional signaling in cardiomyocytes. The
O-GlcNAcylation increase in cardiomyocytes of neonatal rat is
adequate and indispensable for increasing transcriptional activity
of NFAT and initiating cardiomyocyte hypertrophy (Collins and
Chatham, 2020). Another study revealed that stimulation with
phenylephrine, a hypertrophic agonist, increases O-GlcNAc levels
in cardiomyocytes by increasing GFAT protein levels. In this study,
the phosphorylation of GFAT mediated by AMPK reduced
O-GlcNAc levels, suggesting that the relief of cardiac
hypertrophy by activating AMPK in vivo largely contributed to
the inhibited increase in O-GlcNAc levels (Zibrova et al., 2017). Both
GFAT1 and GFAT2 are involved in adverse cardiac remodeling by
mediating O-GlcNAc levels (Ishikita et al., 2021). Notably, the
possibility of protein N-glycosylation and O-glycosylation
occurring during this process, which is also capable of inducing
cardiac remodeling, is not excluded. Cardiomyocyte-specific
overexpression of OGT led to increase in O-GlcNAc levels,
contributing to dilated cardiomyopathy, ventricular arrhythmias
and premature death (Ha et al., 2023). On the contrary, OGA
overexpression dramatically relieved both the increased
O-GlcNAc level and cardiac remodeling. However, O-GlcNAc

levels decrease did not protect against pressure overload-induced
cardiac dysfunction before or after surgery. These studies
demonstrated that increase in O-GlcNAc levels are capable of
inducing cardiac hypertrophy, although this effect may result
from other roles of OGT, such as a protease or protein scaffold.

A long-term elevation of cardiomyocyte O-GlcNAc levels
(24 weeks) can lead to cardiac hypertrophy (Ha et al., 2023).
Although accumulating evidence supports the driving role of
elevation in O-GlcNAc levels in pathological hypertrophy and
remodeling, the mechanisms underlying how increased
O-GlcNAcylation affects cardiac function remain elusive.
Increased O-GlcNAcylation can contribute to significant
reprogramming of transcription, regardless of the method used
(Very et al., 2024). Among these studies, genes associated with
mitochondrial oxidative phosphorylation were changed, impairing
mitochondrial function. Consistently, the level of O-GlcNAcylated
proteins enriched in oxidative phosphorylation was markedly
changed in pressure overload-induced hypertrophy, as revealed
by a proteomics study. Moreover, alterations in fatty acid and
glucose metabolism pathways were also observed. Additionally,
the expression of redox signaling proteins also changed, such as
significantly elevated NADPH oxidase, in the dnOGA-
overexpressing model, similar to AAV-mediated OGT
overexpression in mouse hearts (Begum et al., 2022).

Diabetic cardiomyopathy
In adverse cardiac remodeling, diabetes acts as an independent

risk factor, but its effects on the myocardial glycoproteome are less
studied. As a result, how the overall profile of N-glycosylation or
O-glycosylation in the heart is altered by diabetes remains
unidentified. As shown by a previous study, the levels of
N-glycosylated proteins in the hearts of db/db mice (with type
2 diabetes) were globally elevated (Kohda et al., 2009; Ganguly et al.,
1990; Zhao et al., 2018). Specifically, α-1,6-fucosylation levels were
elevated, with consequences that were not adequately identified.
Matricellular proteins are involved in aggravated cardiac fibrosis
stimulated by diabetes (Russo and Frangogiannis, 2016). For
example, elevated thrombospondin 1 (TSP1) is associated with
increased fibrosis in db/db mice. However, TSP1 deletion led to
left ventricular dilatation instead of a protective effect (Rogers et al.,
2014). Additionally, the activity of TGFβ and SMAD did not change
in TSP1-deleted db/db mouse hearts, despite being canonical
activators of TGFβ. In contrast, TSP1-deleted db/db mouse
presented reduced collagen accumulation and increased matrix
metalloproteinase activity in the hearts. The obvious paradox of
Tsp1 deletion in the hearts of mice may be due to systemic deletion
instead of cardiomyocyte-specific deletion, which contributes to
different effects in other tissues. Decorin overexpression in rats
via AAV attenuated cardiac fibrosis and inflammation and restored
the contractile function induced by diabetes by attenuating
TGFβ1 activity and the nuclear factor-κB (NF-κB) pathway
(Chen et al., 2020). Elevation in decorin levels also promoted
angiogenesis in diabetic rodent hearts.

The expression of CCN family member 2 (CCN2) was
dramatically increased in type 1 diabetes, which was
accompanied by increased TGFβ, which was dependent on the
protein kinase Cβ (Tsoutsman et al., 2013). Mouse
CCN2 deletion in either cardiomyocytes or activated fibroblasts
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showed that CCN2 in cardiomyocytes promoted only fibrotic
remodeling, whereas CCN2 from fibroblasts showed obvious
fibrotic features, indicating that CCN2 derived from fibroblasts
was involved in diabetes-mediated cardiac remodeling (Gravning
et al., 2013).

Diabetes induces increased O-GlcNAc levels in the heart and
vascular system, and is involved in contractile dysfunction and
adverse remodeling (Chen et al., 2019; Akimoto et al., 2000;
Vaidyanathan and Wells, 2014; Cox, 2013). Heart OGA
overexpression lowered O-GlcNAc levels and relieved contractile
function in type 1 diabetes mouse model (Akimoto et al., 2000). In
addition, the beneficial effect of reduced O-GlcNAc levels was
related to the improvement in ATPase 2a levels, which restored
Ca2+ reuptake into the SR and ameliorated the impacts of diabetes on
relaxation. OGA overexpression in the heart relieves left ventricular
diastolic dysfunction and adverse remodeling in type 2 diabetes
(Kaleem et al., 2021). These phenotypes are closely associated with
cardiac phosphoinositide 3-kinase-Akt signaling. The underlying
mechanisms can be largely attributed to increased O-GlcNAc levels.
Increased O-GlcNAcylation is linked to impaired role of contractile
proteins, such as actin, myosin and troponin (Jo et al., 2023). The
unfavorable outcome of diabetes on the heart are associated with
metabolic dysfunction, including abnormal mitochondrial function.
Multiple mitochondrial proteins have been found to be modified via
O-GlcNAcylation. Increased cardiac O-GlcNAc levels mediated by
diabetes are also related to mitochondrial fragmentation and
mitochondrial DNA damage (Chen et al., 2019). Among those,
Calcium–calmodulin (CaM)-dependent protein kinase II (CaMKII)
is believed to mediate the adverse consequence of diabetes on the
heart, and its O-GlcNAcylation is increased in human diabetic
hearts, accompanied by increased kinase activity. The increase in
CaMKII activity mediated by O-GlcNAcylation is potentially
involved in the pathogenesis of arrhythmias and is also
responsible for increased production of reactive oxygen species in
cardiomyocytes. Notably, the increase in CaMKII signaling can be
neutralized by O-GlcNAcylation on HDAC4 in diabetic mouse
models (Erickson et al., 2013). Moreover, autophagic signaling
may also be involved in O-GlcNAc-mediated cardiac dysfunction,
which has already been confirmed in animal models of type 1 or type
2 diabetes (Marsh et al., 2013). A rising number of autophagic
regulatory proteins have been revealed to be potential O-GlcNAc
targets. Furthermore, circadian proteins, which are
O-GlcNAcylated, are also altered in the hearts of diabetic model
mice (Hui et al., 2024). Interestingly, cardiac O-GlcNAc levels are
constantly changing throughout the day, and once the cardiac
circadian clock is disrupted, these changes disappear in the heart.
Therefore, the regulation of circadian-related pathways has emerged
as a critical factor in diabetic cardiac remodeling.

Diabetic cardiomyopathy is often associated with myocardial
fibrosis. Previous research has shown that both cardiac fibrosis and
protein O-glycosylation are heightened in diabetes. Prolonged
exposure to high glucose levels significantly upregulated type III
collagen expression in rat cardiac fibroblasts (RCFs), yet had no
impact on protein O-glycosylation. Treatment with glucosamine not
only elevated the expression of collagen types I and III, but also
augmented O-glycosylated proteins. These findings indicate that
HBP activation-induced protein O-glycosylation modulates
collagen expression and may contribute to the development of

diabetic cardiomyopathy. Understanding how O-GlcNAcylation
contributes to these changes can provide insights into the
underlying mechanisms and potential therapeutic targets.

Myocardial fibrosis is known as an adverse consequence of
diabetes; however, the underlying mechanisms remain poorly
understood. One generally accepted explanation is that
hyperglycemia activates cardiac fibroblasts, inducing
myofibroblast proliferation and ultimately leading to increased
ECM deposition via oxidative stress or proinflammatory
pathways (Feng et al., 2020). A short-term increase in
cardiomyocyte O-GlcNAc levels promoted profibrotic gene
expression, and long-term exposure induced fibrosis, along with
increased ECM structure and collagen synthesis pathways (Wang
J. et al., 2023; Yokoe et al., 2023). In all, O-GlcNAcylation level in
cardiomyocyte may directly result in ECM remodeling and that
excess O-GlcNAc accumulation in cardiomyocytes may act as a
factor in aggravating fibrosis.

Vascular disease
Vascular inflammation is characterized by the enrichment in

immune cells on the endothelium, leading to endothelial
dysfunction and smooth muscle cell proliferation and
remodeling, eventually contributing to vascular diseases, such as
atherosclerosis and coronary artery disease (Masbuchin et al., 2021).
Multiple cell types and proteins participate in the process, but the
potential involvement of O-GlcNAcylation, O-glycosylation and
N-glycosylation in this disease remains poorly understood.
During the initiation and progression of atherosclerotic lesions,
the adhesion of monocytes to the endothelium is fundamental. For
example, the level of high-mannose N-glycan modification on the
endothelium plays an important role in recruiting proinflammatory
monocytes to induce lesions (Herzog et al., 2014). Alterations in
high-mannose structures did not disturb neutrophil binding to
endothelial cells, highlighting the notion that distinct types of
glycoprotein regulation, as well as the expression of adhesion
molecules, might act as key regulators in monitoring how
immune cell subtypes are recruited to their specific vascular bed
when stimulated by stimuli (Chandler et al., 2019). Thus, glycans on
the cell surface work as a ‘postcode’, regulating leukocyte trafficking.
Moreover, infections can promote the clearance of glycoproteins
from vascular cells.

Cardiac fibroblasts interact closely with endothelial cells,
influencing vascular homeostasis and function. They can secrete
factors such as vascular endothelial growth factor (VEGF) and
fibroblast growth factor (FGF), which are essential for
angiogenesis and the maintenance of vascular integrity. In
pathological states, such as myocarditis, endothelial cells can
become activated, leading to increased expression of adhesion
molecules and the recruitment of immune cells, which can
further exacerbate cardiac injury. Cardiac fibroblasts are exposed
to various stressors, including mechanical stress, oxidative stress,
and metabolic changes. O-GlcNAcylation can help these cells adapt
to stress bymodulating stress response pathways. For example, it can
influence the activity of heat shock proteins and other molecular
chaperones, which are essential for maintaining protein homeostasis
under stress conditions.

Metabolic pathways play crucial roles in the processes of
atherosclerosis and coronary artery disease, highlighting the
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importance of O-GlcNAcylation in vascular disease (Hou et al.,
2023). At present, increasing studies suggest that increased
O-GlcNAc levels are closely linked to the pathophysiology of
atherosclerotic disease and suggest that O-GlcNAc modifications
may lead to adverse effects following vascular interventions (Miguez
et al., 2018). For example, specific Ogt deletion in vascular smooth
muscle cells (VSMCs) protected against atherosclerosis in a high-fat
diet or Apoe−/− mouse model. VSMC-specific Ogt deletion induced
arterial stiffness, supporting its role in controlling contractility
(Hayakawa, 1991). Increased O-GlcNAcylation is found to
modulate vascular contractile responses (Marsh and Collins,
2014). Therapies targeting atherosclerosis also led to reduced
O-GlcNAc levels (Peretz et al., 1992). In contrast, an acute
increase in O-GlcNAc in VSMCs protected against VSMC
dysfunction and neointima formation following balloon injury
(Hilgers et al., 2012). The initial increase in O-GlcNAc levels
may be vascular protective; however, chronic elevation may be
detrimental, leading to chronic disease.

Outlook

Protein glycosylation, particularly O-GlcNAcylation, represents
a pivotal PTM that critically regulates cardiac and vascular functions
by modulating protein stability, localization, and interactions.
Dysregulated glycosylation has been implicated in the
pathogenesis of CVDs, contributing to processes such as adverse
cardiac remodeling, mitochondrial dysfunction, and vascular
inflammation (Figure 5). Despite its recognized significance, the
clinical application of glycosylation-related findings remains
limited. Elucidating specific glycosylation signatures holds
promise for the development of novel biomarkers for early
diagnosis and risk stratification, especially in populations

predisposed to CVDs, such as individuals with diabetes.
Moreover, therapeutic strategies targeting glycosylation pathways,
including precise modulation of OGT and OGA activity, present an
emerging avenue for intervention. Translational research, supported
by advanced tools for glycosylation profiling and mechanistic
studies, is essential to bridge the gap between molecular insights
and clinical implementation, thereby advancing the field of precision
cardiovascular medicine.

Modulating glycosylation pathways, particularly
O-GlcNAcylation, represents a promising therapeutic avenue for
CVD. Recent findings highlight its dual role in cellular stress
responses, offering cardioprotection in acute injury but
contributing to chronic pathologies, such as cardiac hypertrophy
and diabetic cardiomyopathy. The precise modulation of OGT or
OGA activity has the potential to restore glycosylation homeostasis,
addressing key mechanisms underlying mitochondrial dysfunction,
calcium dysregulation, and inflammation. Advances in small-
molecule inhibitors and glycan-targeting therapies provide novel
opportunities for intervention.

The therapeutic translation of glycosylation research is hindered
by the complexity and context dependence of glycosylations. The
tissue-specific roles of glycosylation and the interconnected nature
of its pathways pose significant risks of off-target effects, as
interventions targeting enzymes such as OGT or OGA may
disrupt systemic homeostasis. Additionally, the dynamic and
reversible nature of glycosylation demands precise temporal and
spatial modulation, which current therapeutic strategies lack.
Addressing these challenges requires the development of highly
selective modulators, tissue-targeted delivery systems, and
predictive models to minimize adverse effects, ensuring safe and
effective clinical application.

Mechanistic studies are essential to clarify how glycosylation
impacts mitochondrial dysfunction and metabolic regulation in

FIGURE 5
The intersection of N-glycans, O-glycans and O-GlcNAcylation in cardiac physiology and pathology. The physiological function and pathological
effects of N-glycans, O-glycans and O-GlcNAcylation in cardiovascular system, with the middle overlap indicating the biological processes and diseases
mediated by all the types of protein glycosylation.

Frontiers in Pharmacology frontiersin.org09

Li et al. 10.3389/fphar.2025.1570158

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1570158


cardiovascular diseases, offering potential therapeutic targets. The
development of tools for real-time monitoring of glycosylation
during cardiovascular events could further enhance
understanding and guide precise interventions.

Glycosylation biomarkers hold significant potential for
personalizing treatment strategies by enabling precise risk
stratification and monitoring disease progression, particularly in
complex conditions such as diabetes-related CVD. These
biomarkers could guide tailored interventions, identifying
patients who would benefit most from glycosylation-modulating
therapies. Furthermore, integrating glycosylation-targeting
approaches with existing treatments, such as metabolic or anti-
inflammatory therapies, could increase treatment efficacy by
addressing the underlying molecular mechanisms involved. This
synergy underscores the need for interdisciplinary efforts to validate
glycosylation biomarkers and optimize combination treatment
strategies for specific patient subgroups.

In summary, targeting glycosylation pathways offers a
promising approach for improving cardiovascular health by
addressing key mechanisms underlying disease progression, such
as mitochondrial dysfunction, inflammation, and metabolic
dysregulation. Advancing these therapies requires close
collaboration between basic researchers and clinicians to translate
molecular insights into effective, patient-centered interventions,
bridging the gap between laboratory findings and clinical
application.
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