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Benzoylaconine (BAC), a key active metabolite in traditional Chinese medicine, is
derived from the subsoil roots of Fuzi (Aconitum carmichaelii Debx
[Ranunculaceae, Aconitum carmichaelii Debx roots]). BAC has garnered
considerable research attention because of its therapeutic effects against
cardiovascular disease, inflammation, and arthritis, and this has led to
continual updates in the literature. This systematic review summarizes
evidence on the pharmacological effects, molecular mechanisms, and
pharmacokinetics of BAC. PubMed and Web of Science were searched for
relevant articles published between January 2000 and November 2024.
Genes, proteins, and pathways related to the activity and therapeutic effects
of BAC were identified. BAC usually targets proteins such as ACE2, IL-6, MAPK,
PI3K, Akt, STAT3, TNF-a, and VEGF. The identified genes and proteins were
subjected to protein—protein interaction analysis, molecular docking between
BAC and protein hubs, and bioinformatic analyses (gene ontology, Kyoto
Encyclopedia of Genes and Genomes, and disease ontology analyses).
Protein—protein interaction analysis and molecular docking indicated IL-6,
Aktl, and STAT3 as key targets of BAC. These findings offer theoretical
insights into the potential therapeutic mechanisms of BAC and may inform its
future development as a pharmacological agent.

benzoylaconine, toxicity, pharmacokinetics, pharmacological activity, molecular
mechanisms

1 Introduction

Benzoylaconine (BAC) is a white crystalline compound that is soluble in organic
solvents such as methanol, ethanol, isopropanol, and chloroform and slightly soluble in
water. The oral bioavailability (OB) of BAC is 12.8, indicating limited absorption through
the oral route. Nonetheless, BAC has a relatively high drug-likeness value of 0.25. BAC, a
common monoester diterpenoid alkaloid (MDA), is a major active metabolite in the
traditional Chinese medicine (TCM) Fuzi. Fuzi is widely used in TCM formulations such as
Shenfu-Tang, Fuzi-Tang, Zhenwu-Tang, and Sini-Tang for cardiac support, diuresis,
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Aconitine

FIGURE 1

Benzoylaconine

Primary metabolic pathway involving AC and BAC. Benzoylaconine; Chemical Abstracts Service registry number: 466—-24-0; molecular formula:

C32H45N010; molecular weight: 603.7 g/mol.
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FIGURE 2
PRISMA flowchart depicting article selection

vasodilation, circulatory enhancement, and central analgesia. BAC is
the hydrolysis product of aconitine (AC) (He et al., 2022) (Figure 1),
which is derived during the processing of Aconitum carmichaelii.
(He et al., 2022). The toxicity of BAC is approximately 100 times
lower than that of AC. (Zhang et al., 2016; Ye et al., 2012). BAC has
proven effective in mitigating arthritis, inflammation, cardiac injury,
and psoriasis. (Li et al., 2021; Li et al., 2023; Yu et al., 2020; Zhang
et al.,, 2024).

The present systematic review summarizes evidence on the
molecular  mechanisms, and

pharmacological  effects,

pharmacokinetics of BAC. This study was conducted adhering
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(n=18)
(excluded by automated tools)

Reports excluded:

Related to separation method of
| Benzoylaconine (n=49)

Related to other plant sources of
Benzoylaconine (n=10)

Abstract and full-text not related
to Benzoylaconine (n=39)
(excluded by humans)

to standard methods: inclusion and exclusion criteria were
predefined to ensure reproducibility, comprehensive search
strategies were used across multiple databases (PubMed and
Web of Science), and structured data extraction and quality
assessment were performed in accordance with the Preferred
Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) guidelines. The use of these standard methods
differentiates the present study from narrative reviews, which
typically offer a broader thematic overview without a systematic
search or quality appraisal. Our ultimate goal was to provide
valuable insights for future translational research.
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2 Methods

PubMed and Web of Science were systematically searched for
BAC-related studies published between January 2000 and
November 2024. The article language was restricted to English.
The search strategy was as follows: “(Benzoylaconine) AND (“2000/
01/01” [Date - Publication]: “2024/11/30” [Date - Publication])” and
“(ALL=(Benzoylaconine)) and DOP=(20000101/20241130).” A
total of 111 records were retrieved from PubMed and 119 from
Web of Science. Duplicate articles (n = 56) were removed using
Zotero Literature Manager (https://www.zotero.org/). Articles
unrelated to BAC were manually excluded by reviewing titles and
abstracts. Moreover, studies focusing on the synthesis and
development of BAC formulations were excluded. The final
analysis included 53 articles. A flowchart depicting the article
selection process (Figure 2) was created by following the
PRISMA guidelines. (Page et al., 2021). The study protocol was
registered with the International Prospective Register of Systematic
Reviews database (identifier: CRD420250639795).

In this
pharmacokinetics, toxicity, and pharmacological effects of BAC.

comprehensive  review, we  explored the
In addition, through protein-protein interaction (PPI) analysis, we
investigated the genes and proteins that mediate BAC’s therapeutic
effects against various diseases. PPI revealed multiple high-node-
degree or hub proteins for molecular docking with BAC. We further
performed bioinformatic analyses, which involved gene ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
disease ontology (DO) analyses. Our findings may inform future
research on BAC and have implications for the safety and clinical
application of BAC-containing TCMs.

3 Pharmacokinetics
3.1 Pharmacokinetic profiles

Pharmacokinetic studies provide valuable insights into in vivo
drug metabolism and efficacy, toxicity reduction, and clinical
application. High-performance liquid chromatography-mass
spectrometry can be used to simultaneously determine the in
vivo concentration-time profiles of several Aconitum alkaloids,
such as BAC, AC, mesaconitine (MA), and hypaconitine (HA).
(Fan et al., 2021). Fan et al. reported that BAC had a peak residence
time of 60.75-69.59 min and an average residence time of
284.57-292.56 min in rats, indicating slow clearance. (Fan et al.,
2021). High dosages consistently increased the apparent volume of
distribution/OB ratio of Aconitum alkaloids, thereby reducing the
OB of each alkaloid. (Fan et al., 2021).

Ye et al. intravenously injected rats with a mixture of eight
alkaloids (AC, MA, HA, and BAC) and their parent compounds and
eventually found these alkaloids in the rats’ blood. (Ye et al., 2012).
Therefore, the parent compounds, which were more toxic than were
the corresponding secondary metabolites, were rapidly eliminated
from the body. Zhang et al. demonstrated that the maximum plasma
concentrations of BAC, AC, and aconine (ACN) were reached
within 1 h of the injection, indicating the rapid absorption of
these alkaloids into circulation. (Zhang et al., 2016). Notably, the

clearance rate and absorption efficiency were higher for AC than for
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BAC and ACN. AC primarily accumulates in muscles, whereas BAC
and ACN primarily accumulate in the heart and kidneys. The
easily absorb BAC, and BAC is
consequently excreted mainly through feces.

bloodstream does not

Yougui-Wan, a TCM preparation used for treating osteoporosis
due to kidney yang deficiency, contains Fuzi. (Wang et al., 2023).
The rates of BAC absorption and clearance in rats with osteoporosis
due to kidney yang deficiency were higher and lower, respectively,
than in those with osteoporosis due to kidney yin deficiency.
Yougui-Yin, another TCM preparation for treating osteoporosis,
contains six types of Aconitum alkaloids, among which BAC has the
lowest clearance rate and longest residence time. (Zhang J. et al.,
2019). Pharmacokinetic studies involving Shenfu-Tang revealed that
although the ginsenoside Rgl markedly enhanced BAC absorption
and accelerated AC metabolism, it exerted nonsignificant effects on
ACN. (Xu et al., 2020). BAC is the primary active metabolite in Sini-
Tang, which is used to treat myocardial infarction (MI) and heart
failure. (Zhou et al., 2019). A study highlighted a lower level of
systemic BAC exposure and a lower rate of drug clearance in MI rats
than in control rats. A Phase I clinical trial analyzed the
pharmacokinetics of BAC after intravenous injection of Shenfu-
Tang powder in 18 healthy volunteers. (Zhang et al., 2008). The
pharmacokinetic half-life of BAC was relatively short (<1 h).
Furthermore, the plasma concentration of BAC peaked at 30 min
for moderate doses and 45 min for high and low doses.

Combining Fuzi with other TCM preparations can reduce its
toxicity and improve therapeutic efficacy. (Zhang M. et al,, 2019). A
pharmacokinetic study underscored the therapeutic potential of
BAC in rats orally treated with Fuzi plus Dahuang Fuzi
decoction. (Liu X. et al, 2014). Notably, Ganjiang (Zingiber
officinale Roscoe [Zingiberaceae; Zingiberis Rhizoma]) may
promote AC clearance and enhance BAC absorption when
coadministered with Fuzi. (Peng et al., 2013). Due to the reduced
toxicity of Chuanwu (Aconitum carmichaelii Debx. [Ranunculaceae;
Aconiti Radix]) when used in combination with honey, Chuanwu
has been used in combination with honey for a long time. Wu et al.
reported that a combination of Chuanwu and honey resulted in a
higher peak plasma concentration, a higher area under the plasma
concentration-time curve, a shorter time to reach the peak plasma
concentration, and a longer half-life of clearance for BAC than did
Chuanwu alone. (Wu et al., 2022). The detoxifying and synergistic
effects of honey may be attributable to its ability to reduce the
toxicity of diester diterpenoid alkaloids (DDAs) while increasing the
in vivo bioactivity of MDAs. In their pharmacokinetic study on BAC
in rats, Zhi et al. elucidated the mechanisms underlying the
detoxifying effect of Chaihu on Caowu, supporting the rationale
for using steaming and boiling methods in Caowu-based treatments.
(Zhi et al., 2020).

The pharmacokinetic properties of drugs are influenced by
protein binding. Zhou et al. performed multispectroscopic
analysis, molecular docking, and dynamic simulation to
investigate the interaction between human serum albumin and
BAC. (Zhou et al.,, 2023). Molecular docking indicated that the
electronic domains of BAC’s nitrogen and benzene ring skeletons
were essential for complex formation. In silico simulation revealed
stability changes and key residues involved in the binding of AC
analogs with human serum albumin—for example, TRP-214, LEU-
219, and LEU-238.
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TABLE 1 Pharmacokinetic studies on BAC.

Species Research Pharmacokinetic parameters Reference
objects

AUC(O-t) Trmax (h) Crax T1/2 ()
(ng/mL-h) (ng/mL)

Administration route:Gavage

SD rats BAC 0.5 121.4 + 45.77 1.16 + 0.59 34.51 + 21.62 5479 + Fan et al. (2021)
2.276
1 280.6 + 107.6 0.841 + 122.8 £ 62.49 4.508 +
0.327 1.424
2 987.7 + 382.9 1.013 + 359.9 + 89.75 4.985 +
0.392 1.471
SD rats Cw 92.34 + 0.49 698.3 + 52.41 075+ 0 1.54 £ 0.09 6.057 + Wu et al. (2022)
0.163
CW-honey 90.65 + 5.96 1239.8 + 41.13 025+ 0 12.26 £ 0.73 8.309 +
0.148
SD rats BAC 20 215 + 38.1 0.333 + 352 + 115 11.0 + 2.85 Xu et al. (2020)
0.105
BAC + Rgl 20 + 20 318 £ 72,5 0.333 £0.00  63.1 £ 11.1 10.3 + 4.21
SD rats CwW 0.001 6.74 + 0.68 0.5 + 0.00 444 + 0.72 1.12 + 0.18 Zhi et al. (2020)
Hezi-CW 2.97 + 0.60 0.83 + 0.29 1.79 + 0.25 0.58 + 0.17
SD rats SND 1.895 mg/mL 40.44 + 13.61 0.71 £ 0.13 12.82 + 5.80 12.38 £ 4.02 | Zhou et al. (2019)
MI SD rats 10.79 £ 7.53 1.44 + 0.17 3.56 + 2.10 15.49 + 2.99
Wistar rats Fuzi 10 mL/kg 82+27 0.63 + 0.14 34+ 0.6 3.69 + 0.25 Song et al. (2015)
Fuzi-Mahuang 122 £23 0.67 £ 0.20 31+03 4.36 £ 1.13
SD rats Fuzi 0.45 g/mL 5.928 + 0.324 0.586 + 1.16 + 0.05 3.11 £0.235 | Peng et al,, 2013)
0.098
Fuzi-Ganjiang 6.958 + 0.392 0.365 + 2.08 + 0.16 3.154 +
0.149 0.155

Administration route: Oral

SD rats Ccw 0.1963 32.45 £ 9.17 0.19 + 0.04 7.887 + 4.192 13.82 £3.10 | Liu J. et al. (2014)
0.2067 40.43 + 13.04 4.17 £ 0.75 4.813 +3.923 99 +18
SD rats Fuzi 0.2813 486.9 + 255.5 0.6 £0.3 151.6 + 129.3 94 +23 Liu X. et al. (2014)
DFD 0.2778 144.6 + 36.8 02+0.2 17.2 £ 10.7 28.7 £ 12,5

SD rats Shen-Fu prescription 0.93 23.34 £ 13.01 0.29 £ 0.17 | 6.56 + 3.32 1.10 £ 0.68 | Ouyang et al.
(2018)

Kidney yang deficiency SD = YGW 1764 8.87 +3.94 0.17 £ 0.00 | 13.25 + 1.38 508 £1.29 | Wang et al. (2023)

rats

Kidney yin deficiency SD 2.65 + 0.35 0.17 £ 0.00 | 6.64 + 0.87 0.40 + 0.12

rats

SD rats BAC 1 13.54 £ 2.29 0.31 £ 0.17 3.99 £1.20 9.49 + 0.49 Zhang et al. (2016)

SD rats YGY 15 mL/kg 271.3 £ 394 8.4+ 5.6 18.3 + 3.8 10.7 + 3.6 Zhang J. et al.
(2019)

Administration route:Intravenous injection

healthy volunteers Shen-Fu powder 1.1035 14.12 + 331 075+ 0 9.120 + 2.02 0.739 + Zhang et al. (2008)
0.031
1.4677 21.87 £ 1.31 05+0 11.80 + 0.290 1.036 +
0.047

(Continued on following page)
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TABLE 1 (Continued) Pharmacokinetic studies on BAC.

Dose
(mg/kg)

Research
objects

Species

AUC(q-y
(ng/mL-h)

1.8428

Pharmacokinetic parameters

2547 £ 0.54

10.3389/fphar.2025.1571153

Reference

Tmax (h) Cmax

(ng/mL)

Tay2 (h)

075+ 0 17.58 + 1.76 0.8 £0.23

Abbreviations: SD, sprague dawley; AUC,_,, area under the plasma concentration-time curve from 0 to the last quantifiable time point; C,,x, peak plasma concentration; Ty, time to reach

Conaxs T1/2, half-life of clearance; CW (Caowu), Aconiti Kusnezoffii Radix; Fuzi, Aconiti Lateralis Radix Praeparata; DFD, Dahuang Fuzi decoction (composed of Radix et Rhizoma Rhei, Fuzi,
and Radix et Rhizoma Asari); YGW, You-Gui-Wan; YGY, You-Gui-Yin; Hezi-CW, caowu processed with chebulae fructus; SND, sini decoction; MI, myocardial infarction; Mahuang, Ephedrae

Herba; Ganjiang, Rhizoma Zingiberis.

The key features of pharmacokinetic studies on BAC are
summarized in Table 1. Further animal and human studies are
required to analyze the pharmacokinetic properties of BAC when
administered alone.

3.2 Effects of BAC on efflux transporters

Efflux transporters—such as P-glycoprotein (P-gp), breast
(BCRP), and
resistance-associated protein 2 (MRP2)—are key regulators of

cancer  resistance  protein multidrug
drug pharmacokinetics and herb-herb or herb-drug interactions.
(Ye et al,, 2013). P-gp and BCRP primarily mediate the transport of
AC, whereas MRP2 mediates that of BAC. (Dai et al., 2015). A study
demonstrated that Aconitum alkaloids upregulated P-gp expression
in LS174T and Caco-2 cells; the order of the effect magnitude was as
follows: AC > BAC > ACN. (Wu et al., 2016). Moreover, AC and
BAC increased the transport activity of P-gp. Intracellular BAC can
increase adenosine triphosphate (ATP) levels and mitochondrial
mass. Furthermore, BAC considerably upregulates the expression of
MRP2 and BCRP and increases the efflux activity of MRP2 by
activating the Nrf2-mediated pathway. (Wu et al.,, 2018). Therefore,
BAC may serve as a quality indicator for Aconitum-derived

botanical drugs.

4 Toxicity

Aconitum alkaloids have acute and high toxicity, which induces
severe arrhythmia that can result in death. AC, MA, and HA are the
main and highly toxic alkaloids in the genus Aconitum. (Ji et al.,
2019; Ye et al,, 2019). Accidental ingestion of Aconitum can be fatal.
(Dickens et al., 1994). Although Aconitum roots are highly toxic, (Ito
et al, 1996), they have for centuries been used in traditional
medicine across East Asia. According to the 2020 Chinese
Pharmacopoeia, only processed Aconitum roots are permitted for
clinical use in Fuzi preparations. Aconitum alkaloids are metabolized
primarily by esterases. AC is hydrolyzed at the C-8 position to form
BAC and at both the C-8 and C-14 positions to form ACN
(Figure 1). (Mizugaki et al., 1998; Wada et al., 2005).

Pharmacological experiments in Sprague Dawley rats indicated
that 0.01 mg/kg AC and 10 mg/kg ACN improved cardiac function,
whereas 2 mg/kg BAC impaired it. (Liu et al., 2017). DDAs are
100-700 times more toxic than are MDAs. During aconite
processing, Aconitum alkaloids are converted from DDAs into
MDAs and then into alkylamine diterpenoid alkaloids, thereby
reducing toxicity. (Bisset, 1981). However, caution should be

Frontiers in Pharmacology

exercised to avoid overprocessing and overhydrolysis of BAC into
ACN. (Lietal,, 2016). A study measuring BAC and similar alkaloids
in rapidly dried and fresh-cut Aconitum revealed that although
traditional processing reduces toxicity, it leads to >85.2% alkaloid
loss. (Zhang D. K. et al., 2017).

Ephedrae Herba (Mahuang) (Ephedra Stapf
[Ephedraceae; Ephedrae Herba)-Fuzi is a traditional formula
used to treat the common cold, asthma, and rheumatoid arthritis

sinica

(RA). A study reported that the combination of Aconitum and
Ephedra poses a risk of Aconitum alkaloid poisoning, as evidenced
by the widespread distribution of nine alkaloids, including BAC, in
the heart, liver, spleen, lungs, kidneys, and brain of treated
individuals. (Ren et al., 2017). Prolonged use of this formula may
lead to drug accumulation. Therefore, patients using formulations
that contain ephedrine and Aconitum alkaloids should be closely
monitored to prevent adverse effects on the cardiovascular and
central nervous systems. (Song et al., 2015). Oral administration of
AC induced bradycardia and hypotension in rats, consistent with
AC poisoning in humans. (Zhang P. et al., 2017). These findings
indicate that the metabolites of AC and BAC have antihypertensive
properties.

5 Pharmacological effects
5.1 Cardioprotective effects

Fuzi is widely used for treating heart failure and related cardiac
diseases. BAC, a major active metabolite in Fuzi, holds promise for
the prevention and treatment of cardiovascular diseases,
inflammation, arthritis, and other conditions (Table 2).

BAC considerably reduces the serum levels of superoxide
dismutase, MDA, creatine kinase-myocardial band, cardiac
troponin T, and cardiac troponin I in MI rats and downregulates
the expression of hypoxia- and inflammation-related genes such as
VEGF, PKM2, GLUT-1, LDHA, TNF-a, IL-1B, IL-6, and COX2.
(Xing et al.,, 2022). Furthermore, BAC markedly improves cardiac
function, reduces infarct size, inhibits inflammatory cell infiltration,
and mitigates myocardial fibrosis.

BAC was demonstrated to inhibit angiotensin II-induced
cellular hypertrophy and fibrosis in primary cardiomyocytes
and fibroblasts from rats and mitigate cardiac dysfunction and
remodeling in mice with thoracic aortic constriction. (Zhang
et al., 2024). Regarding heart failure treatment, BAC directly
targets angiotensin-converting enzyme 2 (ACE2), thereby
inhibiting the activation of the p38/extracellular signal-

regulated kinase signaling-mediated mitochondrial reactive
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TABLE 2 Molecular mechanisms underlying the pharmacological effects of BAC.

Cell/Animal

Model

BAC dose

10.3389/fphar.2025.1571153

Molecular mechanisms

References

Cardiovascular system protection

Wistar Rat MI

Gavaged,
0.0068 mg/kg

Promoting cardiac function,
alleviating myocardial hypoxia,
inhibiting inflammatory response
fibrosis in heart tissue

|VEGF, |PKM2, | GLUT-1, |LDHA,
|TNF-a, |IL-1p, |TL-6, |COX2

Xing et al. (2022)

C57BL/6 mice, ACE2—/— HF Oral, 3, 10, 30 mg/kg | Enhancing cardiac function in heart | ACE2, |p38, |ERK, Mitochondrial, = Zhang et al.
mice failure JROS, |NF-kB (2024)
SD rats IR 20 mg/kg Alleviated myocardial injury TAMPK, TPGC-1 Chen Z. et al.
(2022)
H9c2 cells 50, 75 uM improves mitochondrial function TROS, TLDH
Anti-inflammatory activity and Antirheumatic activities
SD rats OA Gavaged, FZD, Anti-OA, restored cartilage TCol2, I[MMP13, |Coll0, Chen L. et al.
0.2114 + 0.028 mg/kg | degeneration, ameliorating pain |PI3K, |Akt (2022)
behavior, benefitting cartilage
anabolism, increased cell viability
and wound healing capacity,
recovering histopathological
alterations
SD rats CIA Gavaged, 1.5 mg/kg Alleviate the degree of swelling, |PGE2, |IL-1B, | TNF-a, |VEGF, Li et al. (2022)
arthritis index and pathological |IgG, |STATI1, |STAT3
lesions of the sacroiliac gland
KM mice inflammatory intravenous injection, = Anti-inflammatory for RA therapy |TNF-a, |IL-1B, |[NF-kB, |p65 Gai et al. (2020)

ear, paw edema

RAW264.7 cells

10 mg/kg

5, 18, 40 pg/mL

reduce the viability of activated
macrophages

Wistar rats AIA Gavage, 0.126, 0.252, = Anti-inflammatory, inhibiting JIL-1B, |IL-17A, |COX-2 Li et al. (2021)
0.504 mg/kg immune organs (spleen and thymus),
attenuating paw swelling, infiltration
of inflammatory cells and synovial
hyperplasia
SW982 cell 0, 5.10 uM Anti-inflammatory |IL-6, |MAPK, |AKkt, |IkB-a, |p65, = Yu et al. (2020)
|IL-8
SD rats and KM mice OA Orally, 536.6 + 6.16, Against OA, attenuated joint pain, 1Col10, |[Mmp2, |Sox5, | Adamts4/ Zhang et al.
813.1 + 3.5 mg/kg prevented articular degeneration, 5/9, TCol2 (2020)
suppress chondrocyte hypertrophy
and extracellular matrix degradation
HFLS-RA fibroblast-like RA 1,000 pg/mL Anti-inflammatory and anti- |PGE2, |IL-6, |IL-1B, | TNF-a, Zhang et al.
synoviocytes rheumatic activities |TLR4, |HIF-1a, |VEGFA (2021)
SD rats SH 0.6, 2, 6; 3, 10, Antihypertensive effects, enhancing = TAkt/eNOS, TNO, TAng (1-7), Zhang et al.
30 mg/kg vasodilation and alleviating vascular | ACE2; |TNF-q, |IL6, | COX-2, (2022)
inflammation |ACE, |Angll, |IKB-a
HUVECs cell 25, 50, 100 pM

RAW264.7 macrophage

0.1, 1, 10, 100,

Anti-inflammatory

|IL-6, | TNF-a, |IL-1B, |ROS, |NO,

Zhou et al. (2021)

cells 500 uM |PGE2, |iNOS, |COX-2, |NF-kB,
|IxBa, |p65, | TLR4, | TAKI, 1JNK,
Tp38, TERK
Others
HepG2 cells 25, 50, 75 uM Induces mitochondrial biogenesis, TmtDNA copy number, Tcellular Deng et al. (2019)
increased mitochondrial mass ATP, TOXPHOS, TAMPK
Balb/c mice 10 mg/kg

SD rats
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Mitochondrial abnormalities

06

Tmitochondrial energy metabolism

Zhang D. K. et al.
(2017)

(Continued on following page)
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TABLE 2 (Continued) Molecular mechanisms underlying the pharmacological effects of BAC.

Cell/Animal Model BAC dose Effect Molecular mechanisms References
HaCaT keratinocytes Psoriasis 10, 20, 40 pM Anti-psoriasis, inhibiting cell |STAT3 Li et al. (2023)
proliferation, the release of
inflammatory factors, and the
accumulation of Th17 cells
C57BL/6 mice 1, 3 mg/kg
C57BL/6] mice cholestatic Oral, YCZFD, 2.383 + = Against CLF, decreased liver injury, = |PDGFRp, |PI3K-Akt Meng et al. (2024)
mouse 0.103, 4.765 + and fibrosis biochemical indicators
0.205 pg/kg
Wistar rats and KM mice 350 pg/cm’ analgesic and anti-inflammatory Tsurface tension, Tskin permeation, | Liu et al. (2019)
effects Tinteraction strength
SD rats IR intraperitoneal against skeletal muscle I/R TIF1, TAMPK, TNrf2, THO-1 Cui et al. (2024)
injections, injury
5,10,20 mg/kg
C2C12 cells 60 uM

Abbreviations: SD, sprague dawley; MI, myocardial infarction; HF, heart failure; I/R, ischemia/reperfusion; AIA, adjuvant-induced arthritis; LDH, lactate dehydrogenase; OA, osteoarthritis;
FZD, fuzi decoction; CIA, collagen-induced arthritis; KM, kunming; RA, rheumatoid arthritis; SH, spontaneous hypertension; YCZFD, yinchenzhufu decoction.
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Targets and pathways associated with the cardioprotective effects of BAC. The symbols “|", 1", <| and p denote protein downregulation,
upregulation, inhibition, and phosphorylation, respectively. Arrows (“—") indicate signal transduction or promotion.

oxygen species (ROS) and nuclear factor (NF)-kB pathways. BAC
appears to be a promising ACE2 agonist and therapeutic agent for
heart failure because it can regulate mitochondrial ROS release
inflammatory activation, thereby improving cardiac
function. (Zhang et al., 2024). An in vitro study indicated that
BAC enhanced the survival rate of H9c2 cells subjected to
oxygen—glucose deprivation and reperfusion. (Chen L. et al,
2022).

and

Furthermore, BAC upregulates the expression of
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phosphorylated adenosine monophosphate-activated protein
kinase (AMPK) and peroxisome proliferator-activated receptor
gamma coactivator la. It also improves mitochondrial function,
reduces oxidative stress and apoptosis, and mitigates myocardial
injury in vivo.

The mechanisms through which BAC treats cardiovascular
disease, as outlined in the literature, are depicted in Figure 3 and
Table 2. Nonetheless, further

studies are required to
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comprehensively identify the targets of BAC and the pathways
mediating its cardioprotective effects.

5.2 Anti-inflammatory and
antiarthritic effects

BAC  exhibits
lipopolysaccharide
demonstrated to reduce primary and secondary paw swelling in

strong  anti-inflammatory  activity in

(LPS)-stimulated macrophages. It was

rats with adjuvant-induced arthritis and to mitigate collagen-
induced arthritis. (Gu et al., 2018). In addition, BAC markedly
alleviated joint tissue inflammation, prevented bone destruction,
and reduced serum interleukin (IL)-1P and IL-17A levels. It also
downregulated the expression of cyclooxygenase (COX)-1 and
COX-2 in synovial tissues. (Li et al., 2021). BAC further inhibited
IL-1p-induced gene and protein expression of IL-6 and IL-8 in
human synovial SW982 cells. Moreover, BAC suppressed the
activation of mitogen-activated protein kinase (MAPK) and
protein kinase B (Akt), inhibited the degradation of inhibitor of
kB-a, and prevented the phosphorylation and nuclear translocation
of p65. (Yu et al., 2020). One study reported that BAC strongly
inhibited the proliferation of human-fibroblast-like synoviocytes
derived from adult RA synovial tissues, (Zhang et al, 2021),
highlighting the in vitro antirheumatic activity of this alkaloid.
This activity may be mediated through downregulation of
inflammatory cytokines, such as prostaglandin (PGE)2, IL-6, IL-
1B, and tumor necrosis factor (TNF)-a; hypoxia-inducible factor
(HIF)-1a; vascular endothelial growth factor (VEGF); and Toll-like
receptor (TLR)4 expression.

The aforementioned findings are consistent with those reported
by another study, in which BAC considerably inhibited the release of
proinflammatory cytokines and mediators, such as IL-6, IL-1f,
TNF-a, ROS, nitric oxide, and PGE2. (Zhou et al., 2021). BAC
also dose-dependently blocked LPS-induced increases in the protein
levels of inducible nitric oxide synthase and COX-2. Moreover, it
suppressed the phosphorylation and degradation of inhibitor of kB-
a and the nuclear translocation of p65, thereby inhibiting LPS-
induced NF-kB activation. In addition, BAC blocked LPS-induced
increases in the levels of phosphorylated c-Jun N-terminal kinase,
p38, and extracellular signal-regulated kinase. It further inhibited
LPS-induced phosphorylation of transforming-growth-factor-f-
activated kinase one in activated RAW264.7 macrophages. (Zhou
et al., 2021). Considering BAC’s anti-inflammatory properties, Gai
et al. developed a drug delivery system by encapsulating BAC in
nanoparticles to regulate inflammatory responses. (Gai et al., 2020).
Activated macrophages treated using this system exhibited 70% and
66% lower TNF-a and IL-1P levels, respectively, compared with
corresponding levels in the control without BAC nanoparticles. Liu
et al. reported that the use of penetration enhancers in BAC-loaded
transdermal patches intensified the analgesic and anti-inflammatory
effects of BAC, supporting its potential for treating inflammatory
pain. (Liu et al., 2019).

RA is a chronic, systemic autoimmune disease of the joints. BAC
has been demonstrated to substantially reduce swelling and arthritis
index scores in rats with collagen-induced arthritis and
downregulate IL-13, VEGF, PGE2, TNF-q, and immunoglobulin
G by inhibiting the Janus kinase/STAT pathway. In a rat model of
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osteoarthritis, BAC downregulated aberrant expression of Coll0,
Mmp2, Sox5, and Adamts4/5/9 and upregulated that of Col2 in
cartilage. (Zhang et al.,, 2020). In vitro experiments using rat cells
revealed that treatment with BAC-containing serum considerably
promoted chondrocyte proliferation and regulated Col2, Mmpl,
Adamts9, and Aggrecan expression. These findings highlight the
molecular mechanisms underlying BAC-mediated inhibition of
chondrocyte hypertrophy and extracellular matrix degradation.
Thus, BAC serves as an analgesic and a regulatory agent. In a
study on osteoarthritis, Fuzi-Tang was found to involve similar
molecular mechanisms. (Chen Z. et al., 2022). BAC, the main active
metabolite in Fuzi-Tang, improved pain-related parameters,
mitigated  histopathological ~ changes, promoted cartilage
anabolism (by upregulating Col2 expression), and inhibited
cartilage catabolism (by downregulating matrix metalloproteinase
13 and Col10 expression), thereby reversing cartilage degeneration
in rats with osteoarthritis. Experiments and network pharmacology
analyses have indicated that the phosphoinositide 3-kinase/Akt
pathway mediates the antiarthritic effect of BAC. Notably, BAC
may be the active metabolite responsible for the anti-inflammatory
and immunosuppressive effects of Mahuang-Fuzi-Xixin-Tang.
(Tang et al.,, 2015).

The primary targets of BAC and the pathways that mediate its
activity against inflammation and RA are depicted in Figure 4 and
Table 2. Further studies are required to comprehensively explore
BAC targets in inflammation and RA as well as associated
therapeutic pathways.

5.3 Others

BAC modulates mitochondrial energy metabolism and exerts
antipsoriatic and anticholestatic effects against liver fibrosis.

In HepG2 cells, BAC dose-dependently increased the mass of
the mitochondria, copy number of mitochondrial DNA, cytosolic
level of ATP, and expression of proteins involved in oxidative
phosphorylation. (Deng et al, 2019). Moreover, this alkaloid
dose-dependently upregulated the expression of proteins involved
in the AMPK pathway both in vivo and in vitro. In HepG2 cells, BAC
increased cell viability without influencing cell proliferation. In vitro
data suggest that BAC increases the rate of oxygen consumption in
mice and activates AMPK signaling in the heart, liver, and muscles.
Notably, the ester bond at the C-8 position, hydroxyl group at the C-
3 position, and ethyl group on the nitrogen atom in BAC
substantially contribute to its effects on mitochondrial energy
metabolism. (Zhang D. K. et al.,, 2017). These findings highlight
the therapeutic potential of BAC against diseases involving
mitochondrial dysfunction.

Psoriasis is a common polygenic skin condition characterized by
inflammatory infiltrates, keratinocyte hyperproliferation, and
immune cell accumulation. BAC may ameliorate psoriasis
symptoms by inhibiting keratinocyte proliferation, inflammatory
factor release, and Th17 cell accumulation. (Li et al., 2023). In TNF-
a/LPS-stimulated HaCaT keratinocytes, BAC markedly reduced the
protein and mRNA levels of inflammatory cytokines by inhibiting
STAT3 phosphorylation. Therefore, BAC may slow psoriasis
progression and thus serve as a promising therapeutic agent
for psoriasis.
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Targets and pathways associated with the anti-inflammatory and antirheumatic effects of BAC. The symbols “|", “1", “&boxvl;,” and p denote protein

downregulation, upregulation, inhibition, and phosphorylation, respectively. Arrows ("—") indicate signal transduction or promotion.

Yinchenzhufu decoction (YCZFD) is a TCM preparation with
YCZFD
metabolites, including BAC, which can considerably reduce

hepatoprotective effects. contains seven primary
serum metabolite levels, liver injury, and fibrosis index scores
in mice with cholestatic liver fibrosis (CLF). (Meng et al., 2024).
This study revealed that the expression of platelet-derived growth
factor receptor-f (PDGFRp) was upregulated in the liver of mice
with CLF. (Meng et al., 2024). However, YCZFD treatment
downregulated the expression of PDGFRP. The protective
effect of BAC against CLF is mediated primarily through
regulation of the PDGFRP/phosphoinositide
Akt pathway.

BAC has been demonstrated to protect skeletal muscle tissue

3-kinase/

from ischemia/reperfusion injury; increase cell viability; elevate the
superoxide dismutase level; and reduce creatine kinase, lactate
dehydrogenase, ROS, MDA, and proapoptotic factor levels both
in vivo and in vitro. (Cui et al, 2024). Mechanistically, BAC
upregulates ATPase inhibitory factor 1 expression, promotes
AMPK phosphorylation, facilitates Nrf2 nuclear translocation,
and induces heme oxygenase-1 expression.

6 Network pharmacology analysis

To investigate the potential relationships of BAC with its target
proteins and genes, we performed PPI network analysis by using a
previously reported method (Xie et al., 2020). The resulting network
contained 31 nodes and 146 edges, excluding hidden standalone
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nodes. IL-6, Aktl, and STAT3 emerged as the primary proteins with
high connectivity in the PPI graph (Figure 5).

Molecular docking performed using SYBYL-X (version 1.3;
Tripos Inc., St. Louis, MO, United States) revealed three key
amino acid residues involved in the binding of IL6 with BAC:
Asp, Thr, and Asn. These residues formed three intramolecular
hydrogen bonds, each of length <2 A: 1.9 A for Asp34, 1.9 A for
Thr168, and 1.7 A for Asn145. The amino acid residues involved
in the binding of Aktl with BAC were Asp, Gly, and Glu. The
corresponding hydrogen bonds had length smaller than 2.5 A; the
lengths were 2.1 A for Asp292, 2.3 A for Gly159; and 2.3 A for
Glu278, indicating strong binding affinity (Figure 5). The score
for molecular docking between IL-6 and BAC was 6.04, whereas
that for molecular docking between Aktl and BAC was 7.53. To
simplify the simulation, explicit water molecules were excluded
from the docking system. Our findings indicate that BAC strongly
interacts with IL-6 and Aktl, highlighting the need for further in-
depth mechanistic studies. IL-6 and Aktl appear to play key roles
in the PPI network of BAC, as indicated by their high degrees and
docking affinities. A study demonstrated that, under hypoxic
conditions, IL-6 promoted apoptosis and inhibited autophagy in
cardiac stem cells by suppressing the phosphorylation of STAT3,
suggesting the existence of a regulatory axis. (Li et al., 2025).
Regarding systemic inflammation, cannabidiol mitigates
cardiovascular injury by downregulating IL-6, STAT3, and
HIF-la and upregulating endothelial nitric oxide synthase;
these findings implicate the IL-6/STAT3 pathway in the
regulation of oxidative stress and inflammation. (Tepebasi
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FIGURE 5

PPI network constructed using BAC targets and high-node-degree proteins.

etal., 2024). In pulmonary hypertension, the IL-6/gp130 pathway
CD4* T  cells drives  pathogenesis  through
STAT3 phosphorylation and Th17 cell activation. Notably, IL-
6 knockdown or gpl30 deficiency can ameliorate pulmonary
hypertension. (Ishibashi et al., 2024). In RA, the IL-6/
STAT3 pathway serves as an “autoimmune adaptive axis,”

in

enabling immune cells and synovial fibroblasts to perpetuate
inflammation and resist treatment through epigenetic and
noncoding RNA-mediated mechanisms. (Kumar and Mangla,
2025). Together, the findings that the IL-6/
STAT3 pathway mediates inflammation, and
immune regulation in cardiovascular disease and arthritis.
(Qin et al., 2025; Abdelaziz et al., 2025). Thus, this pathway
holds promise as a therapeutic target for BAC.

indicate
apoptosis,

After constructing the PPI network, we performed gene
enrichment analyses—GO, KEGG, and DO analyses—with the
identified proteins and genes. These analyses were performed
using relevant bioinformatic tools (http://www.bioinformatics.
com.cn/). (Sherman et al., 2022)

GO is used to determine the properties of genes and gene
products. A biological analysis revealed that the key processes
influenced by BAC include inflammation, angiogenesis, LPS-
mediated signaling, positive regulation of smooth muscle cell
proliferation, positive regulation of IL-8 production, positive
regulation of IL-1B production, and phosphorylation of the
stress-activated MAPK cascade (Figure 6A), supporting our
A
in

cellular indicated
the
reticulum lumen, cytoplasm, caveolae, cytosol, LPS receptor
space

(Figure 6B). A molecular function analysis suggested that the

conclusions. component analysis

localization extracellular region, endoplasmic

complex, plasma membrane, and extracellular

function of BAC primarily includes protein serine/threonine
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kinase activity, identical protein binding, protein
homodimerization, MAP kinase activity, and ATP

binding (Figure 6C).
The KEGG database contains
intermolecular interactions, such as biochemical and metabolic

information on known

reactions. Figure 7A presents the major pathways potentially
influenced by BAC—for example, HIF-1
TLR glycation
product-receptor for advanced glycation end product signaling

signaling, cancer

development, signaling,  advanced end

(in diabetes-related complications), lipid metabolism and
atherosclerosis development, and hepatitis B development. The
predicted pathways, particularly those involving cancer and HIF-
la signaling, should be validated through Western blotting and
reverse transcription quantitative polymerase chain reaction to
elucidate the precise mechanisms underlying the therapeutic
effects of BAC.

DO is a key analytical tool used in studies concerning the genetic
basis of pathogenesis. In the present study, DO analysis indicated
that genes and proteins associated with BAC were also associated
with chronic obstructive pulmonary disease, obstructive pulmonary
disease, hepatitis, connective tissue cancer, cerebrovascular disease,
bacterial infectious diseases, cerebral infarction, parasitic infections,
brain infarction, and ischemia (Figure 7B). Although BAC is known
to alleviate inflammation and reduce cardiocerebrovascular risk,
very few studies have investigated its effects against chronic
obstructive pulmonary disease, connective tissue cancer, bacterial
infections, and myocardial ischemia, indicating a need for further
investigation.

On the basis of the literature, we hypothesize that BAC
exhibits immunomodulatory activity in infectious diseases.
Some studies have underscored the vital role of TLR4-NF-xB

signaling in parasitic infections. For instance, in poultry birds
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FIGURE 6
Dot plots for GO analysis: (A) BP, (B) CC, and (C) MF analyses.
with Heterakis gallinarum infection, elevated TLR4 level was  proinflammatory  response, upregulating TNF-a  and

associated with elevated proinflammatory cytokine (e.g., IL-1B
and interferon-y) levels and tissue damage. (El-Saied et al., 2024).
Similarly, Plasmodium falciparum elicited a TLR-mediated
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downregulating IL-10. (McCall et al., 2007). This mechanism
may be analogous to the immunomodulatory effect of BAC. In
viral hepatitis (hepatitis B or C), dysregulated microbiota and
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cytokine profiles (e.g., IL-6 and TNF-a) exacerbate liver
pathology, (Padilha et al., 2024), highlighting the need to
the TLR and NF-xB, as
demonstrated in Echinococcus granulosus infection. (Taha

regulate crosstalk  between
et al., 2025). Parasitic nematodes such as Trichinella spiralis
reduce the levels of proinflammatory cytokines (e.g., IL-6 and
TNF-a) to ameliorate metabolic disorders. (Kang and Yu, 2024).
BAC may mimic this immunoregulatory mechanism.
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7 Conclusion and implications

We systematically reviewed BAC-related studies published between
January 2000 and November 2024. This review focused on the
effects of BAC cardiovascular  and
cerebrovascular diseases, inflammation, arthritis, and related
conditions. Our results indicate that BAC regulates multiple
signaling cascades, exerting diverse biological effects on various targets.

therapeutic against
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BAC enhances cardiac function, alleviates myocardial hypoxia,
and inhibits inflammatory response-induced fibrosis in cardiac
tissue. It also exerts antiarthritic effects by restoring degenerated
cartilage, alleviating joint pain, reversing histopathological changes,
promoting cartilage anabolism, inhibiting cartilage catabolism, and
improving chondrocyte viability and wound healing capacity.
Moreover, BAC reduces sacroiliac gland swelling, foot and
plantar swelling, arthritis index scores, and the extent of
pathological lesions (e.g., inflammatory cell infiltration and
synovial hyperplasia). It further suppresses immune organs (e.g.,
the spleen and thymus) and inhibits splenocyte proliferation,
exerting strong anti-inflammatory effects.

Although promising findings have been obtained, several limitations
persist in BAC-related research. (1) Animal Models versus human
diseases: Although animal models are indispensable in preclinical
research, interspecies differences in genetics, metabolism, and disease
pathophysiology limit their translational relevance. For example, murine
models often fail to fully replicate human immune responses and
complex comorbidities. (2) Effect of low OB: Low OB (attributable to
factors such as first-pass metabolism or poor intestinal absorption) can
reduce systemic exposure and thus drug efficacy. In such cases, high
dosing (which carries a high risk of toxicity) or alternative delivery
methods (e.g, nanocarriers and prodrugs) should be considered to
achieve therapeutic concentrations. (3) Delivery route trade-offs: Oral
administration offers convenience at the cost of variable absorption; it is
thus suitable for chronic conditions. Intravenous delivery, suitable for
acute conditions, ensures full bioavailability but is invasive. Subcutaneous
or intramuscular routes strike a balance between bioavailability and
patient compliance, particularly for biologics. Thus, the delivery route
should be tailored to drug characteristics and clinical indications to
optimize treatment efficacy and adherence. However, few studies have
compared the various routes of BAC monotherapy delivery. Further
research in this area is warranted.

Owing to its multitarget mechanism and low toxicity, BAC offers
therapeutic advantages over conventional anti-inflammatory and
cardiovascular drugs. Unlike single-target biologics (e.g., anti-IL-
6 receptor monoclonal antibodies) and small-molecule kinase
inhibitors (e.g., Janus kinase/STAT blockers), BAC simultaneously
modulates IL-6/STAT3 signaling and activates ACE2. This dual
mechanism makes BAC suitable for treating a wide range of
comorbidities such as RA and cardiovascular diseases.
although the cardioprotective
of BAC are well known,
investigations into its multitarget mechanisms remain limited.

In summary, and anti-

inflammatory effects systematic
Future studies should explore the relationships between BAC’s
physiological activities and investigate its multipathway-multitarget
synergistic mechanisms. Furthermore, researchers should incorporate
network pharmacology analyses and perform systematic analyses
from a holistic perspective. To enhance translational relevance,
additional in vitro and in vivo experiments should be conducted to
validate BAC’s interactions with IL-6, STAT3, and Aktl.

8 Future perspectives and unresolved
challenges

Although BAC has considerable therapeutic potential, several
challenges hinder its clinical application. First, sustained-release

Frontiers in Pharmacology

13

10.3389/fphar.2025.1571153

formulations must be developed to address the metabolite’s short
half-life and improve treatment adherence in patients with chronic
diseases such as arthritis. Second, leveraging the ACE2 agonist activity
of BAC in precision medicine represents a promising area of research.
For instance, stratifying patients with heart failure by biomarkers may
help predict each patient’s response to BAC’s dual effects:
cardioprotective (through STAT3 inhibition) and vasodilatory
(through the ACE2/angiotensin one to seven pathway) effects.
Finally, the synergistic effects of BAC with other drugs should be
systematically evaluated, particularly in comparison of BAC with
mainstream drugs such as IL-6 inhibitors for arthritis or
SGLT2 inhibitors for heart failure, to determine whether BAC can
improve treatment efficacy or reduce adverse reactions. Addressing
these research gaps through interdisciplinary collaboration will
expedite the clinical translation of BAC.
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Glossary

BAC benzoylaconine

IL-6 interleukin-6

MAPK mitogen-activated protein kinase

PI3K Phosphatidylinositol 3-kinase

Akt protein kinase B

STAT3 signal transducer and activator of transcription 3
MDA monoester diterpenoid alkaloid

TCM traditional Chinese medicine

AC aconitine

PPI protein—protein interaction

GO gene ontology

KEGG Kyoto Encyclopedia of Genes and Genomes
DO disease ontology

MA mesaconitine

HA hypaconitine

ACN aconine

MI myocardial infarction

DDA diester diterpenoid alkaloid

P-gp P-glycoprotein

ROS reactive oxygen species

BCRP breast cancer resistance protein

MRP2 multidrug resistance-associated protein 2
ATP adenosine triphosphate

ACE2 angiotensin-converting enzyme 2

RA rheumatoid arthritis

LPS lipopolysaccharide

YCZFD Yinchenzhufu decoction

IL interleukin

PGE2 prostaglandin 2

TNF-a tumor necrosis factor a

HIF-a hypoxia-inducible factor a

VEGF vascular endothelial growth factor

TLR toll-like receptor

CLF cholestatic liver fibrosis

PDGFRpP  platelet-derived growth factor receptor-p.
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