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Retinal cell apoptosis is the primary pathological process in many retinal diseases,
including retinitis pigmentosa and age-related macular degeneration, which can
cause severe visual impairment and blindness. Lycium barbarum L., a traditional
Chinese medicinal botanical drug, has a long history and extensive application in
ophthalmic disease prevention and treatment. This study systematically reviewed
the key active metabolites in L. barbarum L., including L. barbarum
polysaccharides, carotenoids, and flavonoids, that exert retinal protective
effects. A comprehensive analysis of the pharmacological effects and
underlying molecular mechanisms of L. barbarum L. and its active metabolites
in the prevention and treatment of retinal cell apoptosis, including essential
aspects such as antioxidant activity, anti-inflammatory properties, autophagy
regulation, and mitochondrial function preservation, is essential to establish a
comprehensive and solid theoretical basis for further investigation of the
medicinal value of L. barbarum L. in ophthalmology and provide a reference
for future research directions.
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1 Introduction

The photoreceptor cells in the retina, particularly the rod cells and cone cells, are
essential components in visual information transmission (Chai et al., 2024). They are
responsible for capturing light and converting it into neural signals, which establishes visual
perception (Peshenko et al., 2024). Retinal pigment epithelial (RPE) cells function as the
“logistical support system” of photoreceptor cells. The RPE absorbs essential nutrients,
including glucose, amino acids, and vitamins, from the choroidal capillaries and
subsequently transports them to photoreceptor cells to meet their metabolic demands
and sustain their normal functions and activities (Li B. et al., 2021). Photoreceptor cells
produce substantial metabolic waste, including shed outer disc membrane fragments during
the metabolic process. RPE cells phagocytize and degrade these metabolic wastes,
maintaining the cleanliness of the retinal microenvironment and preventing metabolic
waste accumulation from interfering with retinal function (Zhu et al., 2020). Under
physiological conditions, apoptosis influences retinal cell renewal and the clearance of
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abnormal cells, thereby regulating the maintenance of homeostasis
(Yi et al., 2020). Genetic, environmental, metabolic, and other
factors can disrupt retinal equilibrium, leading to excessive
apoptosis of retinal cells and impairing visual function (Ou et al.,
2022). The pathological mechanisms involved in this process are
complex, including oxidative stress (Ren et al., 2022), the release of
inflammatory mediators (Bishayee et al., 2024), abnormal cellular
autophagy (Wang X. et al., 2024), and mitochondrial dysfunction
(Wang C. et al., 2024). These mechanisms interact to collectively
facilitate retinal cell apoptosis.

Retinal cell apoptosis is the core pathological process in the
progression of various retinal degenerative diseases and the main
cause of visual impairment and blindness, severely threatening
patients’ visual function and quality of life (Chang et al., 2021).
Retinitis pigmentosa (RP) (Qiu et al., 2025) and age-related macular
degeneration (AMD) (Hu et al., 2024) are representative retinal
diseases characterized by retinal cell apoptosis. Their high incidence
rate and increasing number of patients have brought a major burden
to global health (Fitton et al., 2025; Mosallaei et al., 2025). The
strategy for treating retinal cell apoptosis aims to mitigate or prevent
this process to protect and restore visual function. While treatment
modalities, including antioxidant therapy (Liu Y.chen et al., 2024),
gene therapy (Staurenghi et al., 2022), and stem cell transplantation

(Maeda et al., 2022), exist, their efficacy and safety require additional
validation and optimization (Singh et al., 2020). Therefore,
developing new, efficient, and safe prevention and control
strategies is imperative.

Goji berries from traditional Chinese medicine (TCM) have
attracted much attention for their potential retinal protective effects.
The goji berry, Lycium barbarum L., is a perennial shrub in the
Solanaceae family. Approximately 80 species of L. barbarum L exist
globally, with a predominant concentration on the American
continent (Yao et al., 2021). In China, L. barbarum L. has a
recorded history exceeding 3,700 years and a cultivation history
of >600 years (Yu et al., 2023). Lycium Chinense Mill is a
representative variety among them, known for its excellent
quality (Yang et al., 2022). Lycium barbarum L., a nutrient-rich
edible medicinal plant, is essential in TCM and has a history
of >2000 years as a TCM and food supplement (Yun et al.,
2022). It possesses properties that nourish the liver and kidneys,
replenish essence, and improve eyesight (Ou et al., 2025). Modern
scientific research has clarified the potential of L. barbarum L. in
protecting the retina and impeding cell apoptosis (Liu et al., 2022).
The active metabolites of L. barbarum L. can effectively mitigate
retinal damage and improve visual function through various
mechanisms, including antioxidant, anti-inflammatory, anti-
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apoptotic properties, and the promotion of nerve regeneration
(Jiang et al., 2024). Lycium barbarum L. is rich in various
bioactive metabolites, including L. barbarum polysaccharides
(LBP), carotenoids, flavonoids, vitamins (including vitamins A, C,
and E), and mineral elements, collectively contributing to its unique
nutritional and medicinal value system (Lee and Choi, 2023).
Among these metabolites, LBP, carotenoids, and flavonoids are
not only abundant, but also play a significant role in the
medicinal value of L. barbarum L.

Although the potential of L. barbarum L. in protecting retinal
cells has been confirmed, investigations into its specific mechanism
of action are still relatively scarce. Therefore, this study aims to
systematically clarify the pharmacological mechanisms of L.
barbarum L. and its active metabolites, including LBP,
carotenoids, and flavonoids, in preventing and treating retinal
cell apoptosis, thereby providing a comprehensive theoretical
basis for enhancing their medicinal value in ophthalmology.

2 Methodology

In order to explore the potential efficacy and mechanism of L.
barbarum L. as a botanical drug for preventing and treating retinal
cell apoptosis, we mainly searched relevant articles in databases such
as PubMed,Web of Science, and Google Scholar. The search strategy
included nine keywords: “L. barbarum L.”, “Lycium Chinense Mill”,
“goji berry”, “Gouqizi”, “L. barbarum polysaccharides”,
“carotenoids”, “flavonoids”, “traditional Chinese medicine”, and
“mechanism”. Two independent reviewers evaluated each article
based on predefined inclusion and exclusion criteria. The literature
search period was from January 2010 to January 2025. The inclusion
criteria were: (1) Articles written in English; (2) Articles published in
peer-reviewed journals; (3) Articles that studied the relevant
mechanisms and clinical applications of L. barbarum L. and its
active metabolites in preventing and treating retinal cell apoptosis.
The exclusion criteria were: (1) Non-English articles; (2) Non-peer-
reviewed articles, such as conference abstracts, editorials, and non-
academic reports; (3) Articles that had nothing to do with L.
barbarum L. and its active metabolites; (4) Duplicate articles.

3 The main active metabolites of
Lycium barbarum L.

3.1 LBP

LBP, as a distinctive bioactive metabolite in L. barbarum L., has a
complex chemical structure comprising various monosaccharides,
including mannose, xylose, galacturonic acid, glucose, galactose, and
arabinose (Yin et al., 2024). These sugar chain structures endow LBP
with unique biological activities, including immune regulation,
antioxidant properties, hypoglycemic effects, and lipid-lowering
capabilities, which are essential to the pharmacological effects of
L. barbarum L. (Liu et al., 2024b; Wu D. et al., 2024).

Regarding retinal protection, LBP exhibits significant inhibitory
effects on retinal cell apoptosis through various mechanisms
(Figure 1). A previous study has demonstrated that LBP can
effectively prevent ROS generation in the retina of mice exposed

to light, potentially through the upregulation of antioxidant genes
NRF2 and TrxR1, attenuating mitochondrial responses to oxidative
stress and enhancing antioxidant capacity (Tang et al., 2018). This
regulatory effect weakens the mitochondrial response to oxidative
stress, thereby enhancing antioxidant capacity and offering effective
protection for photoreceptor cells against light-induced retinal
damage. Furthermore, LBP may protect ARPE-19 cells from
oxidative stress damage caused by hydrogen peroxide by
activating the NRF2/heme oxygenase 1 (HO-1) signaling
pathway, demonstrating significant efficacy in reducing oxidative
damage and inhibiting cell apoptosis (Liang et al., 2021). The strong
antioxidant capacity of LBP can eliminate excessive ROS and free
radicals generated in retinal cells, thereby mitigating oxidative stress
damage and protecting retinal cells from apoptosis.

LBP directly mitigates oxidative stress and indirectly protects the
retina by regulating immune cell function. Microglia in the retina are
immune cells of the central nervous system that typically oversee
and maintain tissue homeostasis (Li L. et al., 2021). Once
overactivated, they release a significant amount of inflammatory
mediators, resulting in retinal inflammation and damage (Zhang
et al., 2022). LBP can regulate microglial activities, inhibit their
polarization toward the pro-inflammatory M1 phenotype, facilitate
their transformation toward the anti-inflammatory M2 phenotype,
and consequently enhance the survival rate of retinal ganglion cells
(Li et al., 2019). LBP diminishes neuroinflammation and mitigates
chronic retinal inflammation to protect visual function by inhibiting
microglial phagocytosis and migration, decreasing the release of
inflammatory mediators, including TNF-α and IL-1β, and inhibiting
NF-κB signaling pathway activation (Ni et al., 2024). Furthermore,
LBP can activate anti-apoptotic signaling pathways in retinal cells,
including phosphatidylinositol 3-kinase (PI3K)/protein kinase
(Akt)/mammalian target of rapamycin (mTOR), enhance cell
survival factor expression, and inhibit the activation of apoptosis-
related proteins, directly combating the process of cell apoptosis (Qi
et al., 2022). LBP has potential therapeutic value in retinal
degenerative diseases, including RP and AMD, which are
characterized by retinal cell apoptosis.

3.2 Carotenoids

Lycium barbarum L. is abundant in carotenoids, including β-
carotene, lutein, and zeaxanthin. (Neelam et al., 2021), which are
complex chemical structures composed of various carbon-hydrogen
chains and functional groups, including hydroxyl and ketone groups
(Li L. H. et al., 2020).

β-Carotene is crucial for the conversion to retinol in the body,
which is essential for retinal photoreceptor cells (Zhong et al., 2023).
Retinol, the active form of vitamin A, binds with opsin to form
rhodopsin, an essential compound for retinal rod cells to detect low
light (Fujiki et al., 2022). Upon exposure to light, rhodopsin
decomposes into opsin and retinol, initiating the generation of
neural signals and facilitating vision (Radhakrishnan et al., 2024).
In the darkness, vitamin A can re-synthesize rhodopsin, maintaining
the sensitivity of the retina to dim light. Therefore, the intake of β-
carotene is essential for the synthesis of rhodopsin, ensuring the
normal function of rod cells, homeostasis of retinal retinas, and
promoting visual health. Recent studies have demonstrated that β-
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carotene can significantly mitigate the pathological structural
damage of retinal tissue during RP disease, inhibit the secretion
of inflammatory factors including NF-κB, TNF-α, interleukin-6 (IL-
6), and IL-1β (Shi et al., 2024), reduce oxidative metabolite
accumulation (Li et al., 2017), and effectively restore cone cell
function (Moon et al., 2023).

The retina is exposed to light for a long time, particularly blue
light, which has high energy and can directly penetrate the eyeball to
reach the retina. Excessive blue light can induce photooxidative
stress and damage retinal cells (Ziółkowska and Lewczuk, 2022).
Lutein and zeaxanthin are densely concentrated in the macular
region of the retina and can absorb light within a specific wavelength
range (Masri et al., 2024). This optical property enables the filtration
of harmful light, including blue light, and reduces photooxidative
damage to the retina (Jia et al., 2017). From a biological perspective,
the mechanism through which lutein and zeaxanthin protect retinal
cells from apoptosis is associated with the regulation of antioxidant
capacity and signaling pathways. They engage in the intracellular
antioxidant defense system, capturing and neutralizing free radicals
through their structure, protecting the lipids, proteins, and nucleic
acids of retinal cells from oxidative stress damage (Rozanowska
et al., 2023). Additionally, they can regulate cell signaling and
maintain the normal order of metabolism, proliferation, and
differentiation of retinal cells, thereby protecting the structural
and functional integrity of cells and reducing the risk of
apoptosis (Liu et al., 2021).

Because of their essential role in protecting retinal photoreceptor
cells from apoptosis (Figure 2), carotenoids have exhibited significant
potential in various retinal disease treatments and prevention. In
retinal degenerative diseases characterized by photoreceptor cell
apoptosis, including RP, β-carotene can effectively preserve patients’
dark adaptation ability, expand the visual field, and correct vision
(Rotenstreich et al., 2013). Zeaxanthin dipalmitate can markedly

improve the survival rate of photoreceptors, improve retinal photo
response, and mitigate morphological and functional degeneration of
the retina (Chen et al., 2024). In AMD, supplementation with
carotenoids (especially lutein and zeaxanthin) slows down the
geographic atrophy progression of AMD toward the fovea (Keenan
et al., 2025) while protecting visual function (Li X. et al., 2021).

FIGURE 1
Mechanism of LBP in inhibiting retinal cell apoptosis. LBP inhibits ROS generation and reduces cellular oxidative damage by upregulating antioxidant
genes. Simultaneously, it can inhibit the expression of pro-inflammatory cytokines TNF-α and IL-1β through NF-κB signaling. Additionally, LBP can
activate the anti-apoptotic signaling pathway PI3K/Akt/mTOR, exerting anti-apoptotic effects By Figdraw.

FIGURE 2
Mechanism of carotenoids in inhibiting retinal cell apoptosis. β-
Carotene can help promote the conversion of retinol in the body,
maintain the synthesis of rhodopsin, ensure the normal function of rod
cells, and promote visual health. Lutein and zeaxanthin can filter
blue light and reduce photooxidative damage to the retina. They
neutralize free radicals through their own structure and protect retinal
cells from oxidative stress damage. Besides, they can regulate cell
signaling, maintain normal metabolism, proliferation, and differentiation
of retinal cells, and reduce the risk of apoptosis By Figdraw.
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3.3 Flavonoids

Flavonoids are a class of essential secondary metabolites widely
distributed and abundant in foodborne plants (Liu et al., 2023).
Previous studies demonstrated that the flavonoids in L. barbarum L.
are primarily composed of rutin, quercetin, kaempferol, isorhamnetin,
and luteolin, which exhibit various pharmacological effects, including
antioxidant, anti-inflammatory, and vasodilatory properties (Mocan
et al., 2019; Li T. et al., 2020).

Rutin has excellent antioxidant properties because the phenolic
hydroxyl groups in its molecular structure can provide hydrogen
atoms to bind with free radicals, rendering them inactive, reducing
oxidative stress damage to cells, and protecting human cells and
tissues (Safdari et al., 2022). A previous study has demonstrated that
rutin can enhance NRF2 expression by activating the extracellular
signal-regulated protein kinases one and 2 (ERK1/2) signaling
pathway in RPE cells (Li Y. et al., 2021). It improves tert-butyl
hydroperoxide-induced cell death and promotes cell viability by
inhibiting the generation of intracellular ROS, demonstrating its
potential value in preventing retinal diseases caused by oxidative
damage. Some studies have demonstrated that rutin treatment
significantly reduces the tortuosity index observed during fundus
examination (Gupta et al., 2020), enhances the diameter of retinal
arterioles, and reduces the concentrations of pro-inflammatory
cytokines, including TNF-α, IL-1β, and IL-6 in tissues (Moldovan
et al., 2023). This indicates that rutin may enhance the toughness of
retinal capillaries, diminish their permeability, and alleviate
inflammatory stimuli on endothelial cells while preserving the
integrity of the vascular wall (Palmitessa et al., 2022). Additionally,
rutin can inhibit cell apoptosis by modulating intracellular signaling
pathways (Ma et al., 2017). It can enhance the expression of cell
survival factors, including brain-derived neurotrophic factor (BDNF)
and nerve growth factor (NGF), diminish the level of caspase-3 in the
retina, and increase the level of B-cell lymphoma-2 (Bcl-2), thereby
demonstrating anti-apoptotic activity (Ola et al., 2015). This
mechanism of action renders flavonoids significant in delaying the
degeneration of retinal photoreceptor cells (Figure 3).

With advancing age, the dual retinal fluorescent compound A2E,
a photoresponsive retinal aldehyde derivative, gradually accumulates
in RFE cells (Arunkumar and Bernstein, 2023). Quercetin has been
shown to inhibit the formation of photooxidative A2E species from
the source, reduce the release of lipid peroxidation product 4-
hydroxynonenal (4-HNE), and consequently prevent the
photooxidative process in the retina (Wang et al., 2017). Quercetin
exhibits anti-inflammatory properties by inhibiting inflammatory
signaling pathways, including PKCδ-JNK1/2-c-Jun and NF-κB,
decreasing the synthesis of inflammatory mediators, including
TNF-α, and suppressing the expression and activity of intercellular
adhesion molecule-1 (ICAM-1) and matrix metalloproteinase-9
(MMP-9), thus mitigating the recruitment and dissemination of
inflammatory cells (Cheng S. et al., 2019).

The chemical structural similarity between kaempferol and
quercetin endows them with similar biological characteristics and
functions. It can act on immune cells, regulate cytokine secretion,
maintain an appropriate level of the immune response, and prevent
excessive immune response leading to inflammation (Tanaka et al.,
2022). Diabetic retinopathy (DR) is a common secondary
complication of diabetes. The immune system is involved in DR,

which affects microglia-mediated retinal immune response (Lim
et al., 2024). In the initial phase, it is characterized by the
permeability of the blood-retinal barrier, facilitating interaction
between the peripheral and retinal immune systems (Kim et al.,
2024). A previous study demonstrated that kaempferol treatment
promotes phenotypic and functional changes in immune cells,
strongly inhibits pro-inflammatory responses during DR
progression, diminishes the synthesis of inflammatory factors
TNF-α and IL-1β, and significantly reduces the levels of Bcl-2,
caspase-1, and caspase-3, consequently inhibiting retinal cell
apoptosis (Albalawi et al., 2024). In RPE cells, kaempferol has
been shown to significantly reduce the levels of ROS and lipid
peroxidation product malondialdehyde (MDA), while increasing
the levels of endogenous antioxidants glutathione (GSH) and
manganese superoxide dismutase (MnSOD) (Al Sabaani, 2020).
Kaempferol can also reduce the production of inflammatory
factors including interleukin-1 (IL-1), IL-6, and interleukin-12 (IL-
12), enhance RPE cell proliferation activity, and thereby reduce RPE
cell apoptosis (Akalın and Selamoglu, 2019; Zhang et al., 2024).
However, kaempferol can effectively modulate endothelial cell
function, stimulate nitric oxide release, induce vasodilation,
improve local blood perfusion, and deliver sufficient nutrients to
tissues and organs (Firoz and Talwar, 2022). Experimental results
revealed that in a mouse model of oxygen-induced retinopathy,
kaempferol inhibited retinal neovascularization and effectively
prevented VEGF-induced excessive retinal vascular permeability
(Jung et al., 2020). Other flavonoids, including isorhamnetin, have

FIGURE 3
Mechanism of flavonoids in inhibiting retinal cell apoptosis. Rutin
can enhance NRF2 expression by activating the ERK1/2 signaling
pathway, thereby inhibiting the production of ROS in retinal cells.
Rutin can reduce the levels of inflammatory factors, including
TNF-α, IL-1β, and IL-6, in tissues, thereby alleviating inflammatory
stimulation on retinal cells. Rutin can promote the expression of BDNF
and NGF, thereby exhibiting anti-apoptotic activity. Quercetin inhibits
A2E formation, reduces 4-HNE release, and thus prevents
photooxidation processes in the retina. Quercetin can inhibit
inflammatory signaling pathways and reduce the levels of TNF-α,
ICAM-1, and MMP-9, thereby suppressing inflammatory responses.
Kaempferol can significantly reduce the levels of ROS and MDA and
increase the levels of GSH and MnSOD, thereby reducing cellular
oxidative stress damage. Kaempferol can reduce the production of
inflammatory factors TNF-α and IL-1β and significantly lower the levels
of Bcl-2, caspase-1, and caspase-3, thereby inhibiting retinal cell
apoptosis By Figdraw.
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demonstrated similar protective effects that may delay retinal disease
progression (Hui et al., 2024).

4 The main mechanisms of retinal cell
apoptosis and the targets of Lycium
barbarum L. action

4.1 Oxidative stress mechanism and
antioxidant intervention of Lycium
barbarum L.

During evolution, cells have developed a complete antioxidant
defense system. The system includes antioxidant enzymes, such as
superoxide dismutase (SOD) and glutathione peroxidase (Selamoglu
et al., 2017), which specifically catalyze the dismutation,
decomposition, and other reactions of ROS, thereby reducing
their concentration (Wang Y. et al., 2021). Concurrently, there
are non-enzymatic antioxidant enzymes, including GSH, vitamin
C, and vitamin E, which utilize their intrinsic chemical reduction
properties to directly neutralize ROS (Monsalves et al., 2020). Under
normal physiological conditions, the two work collaboratively to
regulate ROS, maintain cellular redox homeostasis, and prevent
oxidative damage (Georgescu et al., 2022). However, in a
pathological state, the function of the antioxidant defense system
is impaired, leading to an imbalance, ROS accumulates in large
quantities, and cell damage is exacerbated (Zhou et al., 2021).

The retina is the fundamental region of visual perception, where
photoreceptor cells play a crucial role in the initial stage of visual signal
transduction (Takeda et al., 2022). Photoreceptor cells exhibit a unique
physiological characteristic of a high metabolic rate aimed at fulfilling
the energy demands required for visual signal capture and conversion
(Oltra et al., 2022). Simultaneously, their microenvironment exhibits a
high oxygen partial pressure. This unique metabolic and environmental
condition renders photoreceptor cells highly susceptible to oxidative
stress (Santhanam et al., 2023). The complex pathologicalmechanismof
retinal lesions involves a disruption of internal homeostasis, leading to a
substantial increase in ROS and free radicals (Yang et al., 2020; Al-Sroji
et al., 2023), including superoxide anions and hydroxyl radicals
(Selamoglu et al., 2020), which possess potent oxidative properties
and specifically target photoreceptor cells (Garza et al., 2024). Initially,
ROS trigger lipid peroxidation reactions, compromising the lipid bilayer
architecture of the cell membrane, resulting in impaired membrane
integrity, decreased fluidity, and severe disruption of substance
exchange and signal transmission intracellularly and extracellularly
(Sui et al., 2024). At the molecular level, ROS can modify amino
acid residues, causing conformational changes in proteins and resulting
in the loss of their original physiological functions, thereby impeding
numerous protein-dependent metabolic pathways within cells.
Oxidative damage can adversely affect DNA, leading to base pair
mismatches, deletions, and DNA strand breaks, resulting in errors in
the storage and transmission of genetic information (Kumar et al.,
2022). These oxidative stress damage events are interconnected and
progressively activate the meticulously regulated apoptotic signaling
pathway within cells, creating latent risk for photoreceptor apoptosis
and endangering visual function (Huang et al., 2024).

The various active metabolites in L. barbarum L. exhibit
antioxidant properties (Figure 4). NRF2 is the principal

transcription factor governing the cellular antioxidant stress
response (Jin et al., 2024). Under normal conditions, NRF2 binds
to kelch-like ECH-associated protein 1 (KEAP1) and remains in an
inactive state within the cytoplasm (Ulasov et al., 2022). Under
oxidative stress, photoreceptor cells utilize LBP to specifically bind
and modify KEAP1, facilitating the uncoupling of NRF2 and KEAP1,
which subsequently activates and translocates NRF2 into the nucleus
(Hu et al., 2021; Nguyen et al., 2024). NRF2 translocates to the
nucleus, precisely binds to antioxidant response elements (ARE)
(Choublier et al., 2022) and activates a cascade of transcription
programs for antioxidant enzyme genes, including SOD and
glutathione peroxidase 4 (GPX4), leading to their substantial
expression (Yu and Xiao, 2021). SOD catalyzes the dismutation of
superoxide anions into hydrogen peroxide and oxygen, while
GPX4 subsequently reduces hydrogen peroxide to water. The two
collaborate to efficiently eliminate excess ROS in cells, reducing
oxidative stress at its origin and maintaining the redox
homeostasis of the photoreceptor cell environment (García-Pérez
et al., 2021). Carotenoids can directly neutralize free radicals, and
their polyene chain structure can interact with free radicals to
transform them into stable products, thereby reducing the direct
assault of free radicals on photoreceptor cells (Welc-Stanowska et al.,
2023). Flavonoids can inhibit ROS generation reactions catalyzed by
metal ions, including iron and copper ions, by chelating them
(Vučkovski et al., 2024). Simultaneously, they can enhance the
activity of other antioxidant components, synergistically producing
antioxidant effects and inhibiting the oxidative stress-induced
apoptosis process of photoreceptor cells through multiple pathways
(Shao et al., 2019).

FIGURE 4
Mechanism of antioxidant intervention in Lycium barbarum L.
LBP facilitates the dissociation of NRF2 from KEAP1, leading to the
activation of NRF2 and its translocation into the nucleus. This process
initiates the transcription and expression of antioxidant enzyme
genes, including SOD and GPX4. SOD catalyzes the dismutation of
superoxide anions into hydrogen peroxide and oxygen, while
GPX4 further reduces hydrogen peroxide to water. Together, these
enzymes effectively mitigate excess ROS within cells, thereby
reducing oxidative stress at its source and maintaining the redox
homeostasis of the photoreceptor cell environment. Additionally,
carotenoids directly neutralize free radicals, converting them into
stable products, which diminishes the direct assault of free radicals on
photoreceptor cells. Flavonoids contribute by chelating metal ions,
thereby inhibiting ROS production By Figdraw.
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4.2 Inflammatory response mechanism and
anti-inflammatory regulation of Lycium
barbarum L.

When the retina is damaged or infected, immune cells, including
microglia and macrophages, become activated, secreting a
substantial amount of inflammatory factors, including TNF-α, IL-
1β, and IL-6 (Wang et al., 2025). These inflammatory factors further
elicit inflammatory responses in retinal cells by activating
downstream signaling pathways, including NF-κB and janus
kinase (JAK)/signal transducer and activator of transcription
(STAT), resulting in cellular damage and apoptosis (Figure 5).

NF-κB is a nuclear transcription factor prevalent in eukaryotic cells,
crucial for regulating multiple biological processes, including immune
response, inflammatory response, cell proliferation, differentiation, and
apoptosis (Ravichandran and Selamoglu, 2023; Cornice et al., 2024).
NF-κB typically exists in an inactive state within cells and binds to its
inhibitory protein inhibitor of NF-κB (IκB) in the cytoplasm (Du et al.,
2024). When cells encounter diverse stress stimuli, including ultraviolet
radiation, oxidative stress, or cytokines, these stimuli activate signal

transduction pathways, resulting in the phosphorylation of IκB and
subsequent proteasomal degradation (Mamun et al., 2024). This process
facilitates NF-κB release and translocation into the nucleus, where it
binds to the promoter regions of specific genes, thereby enhancing their
transcription and expression (Shahbazi and Zakerali, 2022). Activation
of NF-κB in retinal cells enhances the transcription and expression of
various inflammatory genes. These genes encode cytokines,
chemokines, adhesion molecules, and acute phase response proteins
(Ando et al., 2020). The active metabolites in L. barbarum L., including
quercetin, can inhibit the activation of the NF-κB signaling pathway,
diminish the synthesis and release of inflammatory factors, and thereby
mitigate the detrimental effects of the inflammatory response on retinal
cells (Cheng S. C. et al., 2019).

Additionally, the JAK/STAT signaling pathway is essential in the
inflammatory response of retinal cells alongside the NF-κB signaling
pathway. The JAK/STAT signaling pathway is a series of reactions
involving interactions among intracellular proteins, primarily involved in
processes including immunity, cell division, apoptosis, and
tumorigenesis (Xue et al., 2023). Activation of the JAK/STAT
signaling pathway enhances the transcription and expression of

FIGURE 5
Mechanism of anti-inflammatory regulation in Lycium barbarum L. Quercetin can inhibit the activation of NF-κB and JAK/STAT signaling pathways,
reduce the production and release of inflammatory factors, and thus alleviate the damage of inflammatory response to retinal cells. Luteolin can interfere
with the binding of cytokines to their corresponding receptors, thereby preventing receptor dimerization and JAK recruitment, thereby inhibiting JAK
activation. Kaempferol can inhibit the phosphorylation of receptor tyrosine by activating JAK, blocking the formation of STAT docking sites and
inhibiting signal transduction By Figdraw.
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inflammatory factors, thereby exacerbating the inflammatory response
and resulting in damage and dysfunction of retinal cells (Chen et al.,
2022). A previous study has demonstrated that the active metabolites in
L. barbarum L. can inhibit the activation of the JAK/STAT signaling
pathway. Luteolin can obstruct the binding of cytokines to their
respective receptors, thus hindering receptor dimerization and JAK
recruitment, thereby inhibiting JAK activation (Tai et al., 2014).
Subsequently, kaempferol can inhibit the phosphorylation of receptor
tyrosine by activating JAK, thereby obstructing the formation of STAT
docking sites and further inhibiting STAT activation and subsequent
signal transduction (Li et al., 2023). By inhibiting the activation of the
JAK/STAT signaling pathway, quercetin diminishes the transcription
and translation of inflammatory factors, thereby mitigating the
detrimental effects of the inflammatory response on retinal cells,
which aids in preventing and treating inflammation-related retinal
diseases (Zou et al., 2024).

4.3 Abnormal autophagy mechanism and
regulatory intervention of Lycium
barbarum L.

Autophagy is a cellular self-degradation process involving
autophagosome formation with a bilayer membrane structure,
which encapsulates and degrades proteins, organelles, and other
substances to maintain homeostasis (Dragowska et al., 2024). This
process is essential in various physiological and pathological
mechanisms, including cell survival, development, immunity, and

disease manifestation (Zapatería and Arias, 2024). However, the
dysregulation of autophagy may lead to impaired retinal cell
function, potentially precipitating various retinal diseases (Wang
X. et al., 2024).

The PI3K/Akt/mTOR signaling pathway is essential for anti-
apoptotic processes. It is a primary regulator of cellular autophagy
(Figure 6), which is regulated by sensing the nutritional and energy
status inside the cell (Demir et al., 2024). PI3K is the starting point
for signal transduction, catalyzing phosphatidylinositol 4,5-
bisphosphate (PIP2) to generate phosphatidylinositol 3,4,5-
trisphosphate (PIP3), which functions as a second messenger to
activate downstream signaling molecules (Li et al., 2022). Akt, a
direct downstream target of PI3K, is activated by the recruitment of
PIP3 and further activates mTOR through phosphorylation,
initiating a cascade reaction (Sun et al., 2022). In a nutrient-rich
environment, the high energy and abundant nutrients within cells
activate the PI3K/Akt/mTOR signaling pathway (Liu and Sabatini,
2020). As the terminal effector molecule of this pathway, the
activated state of mTOR effectively inhibits autophagy by
inhibiting the activity of the unc-51-like kinase 1/2 (ULK1/2)
complex (autophagy initiating complex) and hindering the
formation of autophagosomes (Despotović et al., 2022). This
process guarantees that cells can completely exploit the
nutritional resources available from their environment to
facilitate their growth and proliferation requirements. However,
under conditions of nutrient deficiency or injury stress, the
activity of the PI3K/Akt signaling pathway weakens, resulting in
the dephosphorylation and subsequent inactivation of mTOR

FIGURE 6
Mechanism of autophagy regulation in Lycium barbarum L. LBPmitigates cellular damage induced by excessive autophagy through the activation of
the PI3K/Akt/mTOR signaling pathway, modulation of autophagy-related gene expression, and facilitation of autophagosome formation. Lutein exerts its
effects by inhibiting autophagosome formation via mTOR activation, thereby reducing cellular apoptosis. Quercetin has been demonstrated to
significantly elevate phosphorylated Akt protein levels in the retina. Moreover, Kaempferol has exhibited efficacy in inhibiting the phosphorylation of
mTOR and ULK1, thereby facilitating the removal of senescent and damaged cellular components By Figdraw.
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(Zi et al., 2022). The mTOR-mediated inhibition of autophagy is
subsequently alleviated, facilitating the onset of autophagy (Wang
and Zhang, 2019). The ULK1/2 complex is activated, initiating the
expression of autophagy-related genes and facilitating the formation
and maturation of autophagosomes (Liang et al., 2023). Excessive
autophagy can result in the excessive degradation of important
nutrients and proteins within cells, resulting in ineffective
clearance of autophagosomes, which can compromise cellular
structure and function, potentially initiating apoptotic pathways
(Wang L. et al., 2021).

The PI3K/AKT/mTOR signaling pathway is highly activated in
RPE cells during proliferative vitreoretinopathy (Cai et al., 2012).
LBP can enhance the survival and proliferation of retinal cells by
activating the PI3K/Akt/mTOR signaling pathway (Qi et al., 2022)
and can inhibit excessive autophagy in RPE cells, thereby
safeguarding them from light-induced damage (Gao et al., 2022).
This activating effect preserves the nutritional and energy balance
within cells, thus preventing cellular damage from excessive
autophagy by regulating the expression of autophagy-related
genes and the formation of autophagosomes (Yu et al., 2018).
Additionally, lutein inhibits the formation of autophagosomes
after hypoxia injury by activating the mTOR signaling pathway,
thereby enhancing the survival rate of Müller cells and inhibiting cell
apoptosis (Fung et al., 2016). After quercetin intervention, the
phosphorylated Akt protein level in the diabetic retina increased
significantly (Ola et al., 2017). Quercetin may protect neurons in the
diabetic retina from damage by inhibiting neuronal apoptosis.
Kaempferol was reported to exhibit good effects in mTOR
inhibition and ULK1 phosphorylation to eliminate aging and
damaged components (Salehi et al., 2018; Kim et al., 2023).

4.4 Mitochondrial dysfunction and the
protective effect of Lycium barbarum L.

Mitochondria are the cellular organelles that generate adenosine
triphosphate (ATP) and maintain normal physiological functions
within cells (Botchway et al., 2022). However, in numerous disease
states, the mitochondrial function can be compromised, leading to
insufficient energy supply, increased oxidative stress, and apoptosis,
a phenomenon known as mitochondrial dysfunction (Huang et al.,
2023). For retinal cells, a lack of sufficient energy impedes their
ability to maintain normal physiological functions, leading to a
significant decrease in the efficiency of capturing and converting
light signals and a deceleration or interruption in the transmission of
nerve signals (Zhang et al., 2023). This series of chain reactions will
ultimately exert a severe impact on the visual system. Mitochondria
are energy producers and the main source of intracellular ROS. The
impaired mitochondrial function may lead to an abnormal increase
in ROS production while the cellular capacity to eliminate ROS
diminishes, significantly increasing intracellular oxidative stress
levels (Zhao et al., 2022). Oxidative stress is a deleterious process
that further damages the DNA, proteins, and membrane structure of
mitochondria, forming a vicious cycle where mitochondrial
dysfunction increases ROS, thereby exacerbating mitochondrial
damage (Sule et al., 2022).

Additionally, mitochondria regulate intracellular calcium ions,
which is crucial for maintaining cellular homeostasis (Guo et al.,

2023). Impaired mitochondrial function can severely disrupt
calcium ion homeostasis, resulting in an abnormal increase in
intracellular calcium ion concentration, which may trigger
apoptosis or necrosis of retinal cells (Yan et al., 2022). This is an
irreversible process of cell demise, whether through programmed
apoptosis or necrosis caused by physical or chemical injury, which
can lead to a significant decline or complete loss of retinal function.

A previous study demonstrated that LBP significantly
ameliorates mitochondrial dysfunction in retinal cells induced by
light damage (Wu F. et al., 2024). In the light damagemodel, LBP can
significantly mitigate mitochondrial DNA damage, enhance
membrane potential, and restore respiratory chain function,
thereby enhancing the energy supply and physiological function
of photoreceptor cells. In addition, LBP can inhibit the inflammatory
response induced by light damage and mitigate subsequent cellular
damage caused by inflammatory factors (Ni et al., 2024). Carotenoids
and flavonoids, the main active metabolites in L. barbarum L., may
optimize the energy metabolism pathway of mitochondria, promote
ATP synthesis, and provide sufficient energy for photoreceptor cells
(Pan et al., 2019; Bu et al., 2020). These metabolites can diminish the
generation of ROS in mitochondria, safeguard the structural and
functional integrity of mitochondria, and consequently inhibit the
critical pathway of retinal cell apoptosis at the mitochondrial level
(Imran et al., 2019; Ademowo et al., 2024). The specific mechanism is
shown in Figure 7.

5 Conclusion and perspectives

Compared with TCM treatment methods, modern medicine for
retinal diseases often targets a single point. When faced with the

FIGURE 7
Mechanism of mitochondrial protection in Lycium barbarum L.
LBP can effectively mitigate mitochondrial DNA damage, enhance
membrane potential, and restore respiratory chain function, thereby
improving the energy supply and physiological function of
photoreceptor cells. Besides, LBP can inhibit the inflammatory
response induced by photodamage and reduce further cellular
damage from inflammatory factors. Carotenoids and flavonoids
contribute to promoting ATP synthesis and provide adequate energy
support for photoreceptor cells. Furthermore, they reduce ROS
productionwithin mitochondria, thereby preserving the structural and
functional integrity of mitochondria and interrupting the critical
pathway of retinal cell apoptosis at themitochondrial level By Figdraw.
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complex physiological and pathological processes of the retina,
single-target treatment is difficult to address all aspects of the
disease comprehensively. In contrast, multiple metabolites in L.
barbarum L. can work together to treat retinal diseases. LBP has a
unique immune-regulating function, which not only enhances
the self-repair ability of retinal cells but also plays a vital role in
autophagy regulation. Carotenoids, with their strong antioxidant
capacity, can quickly eliminate free radicals within retinal cells,
reducing oxidative stress damage and thereby decreasing the risk
of cell apoptosis. Flavonoids can suppress the release of
inflammatory factors, alleviate the attack of inflammation on
retinal cells, and maintain the stability of the cellular
microenvironment. These metabolites intervene in retinal cell
apoptosis from aspects such as immune regulation, antioxidant
activity, anti-inflammation, autophagy regulation, and mitochondrial
function protection and can deal with the complex disease
mechanisms more comprehensively. In addition, the viewpoint
of TCM holds that L. barbarum L. not only acts on eye cells but also
regulates overall bodily functions, improves the internal
environment, and prevents and treats diseases from the root
cause. It effectively complements the local and targeted
treatment of modern medicine and opens up new ideas for the
treatment of retinal diseases.

Despite the fact that numerous scholars have verified the
efficacy of L. barbarum L. in the treatment and prevention of
retinal cell apoptosis, there are still several areas in need of
improvement. Firstly, neither in vitro nor in vivo models can
precisely mimic the physiological and pathological states of the
retina. 2D cell cultures lack the complex immune responses and
intricate intercellular interactions. Animal models suffer from
species-specific differences, which pose significant challenges to
accurately reflecting the real-world situation in human retinas.
Secondly, there is a conspicuous absence of unified standards in
the extraction and identification of L. barbarum L. metabolites.
Different laboratories employ diverse extraction methods and
experimental procedures, resulting in incomparable research
outcomes. This not only hampers the cross-comparison of data
but also severely obstructs the in-depth understanding of the
underlying mechanisms of action of these metabolites. Thirdly,
current clinical research on L. barbarum L. has several
limitations. The number of studies is scarce, and the sample
sizes are generally small. The experimental designs often lack
rigor, and the follow-up periods are short. Although a series of
experimental investigations have indicated that L. barbarum L.
extracts are safe at normal doses, with no significant toxic
reactions observed in animal and cell-based experiments
(Mocan et al., 2018), the long-term clinical efficacy and safety
of L. barbarum L. remain in a state of uncertainty. With the
widespread use of L. barbarum L. in the healthcare and
pharmaceutical industries, the potential toxicity at high doses,
as well as the long-term cumulative effects, necessitate
continuous attention. These aspects could have a profound
impact on its clinical applications and safety evaluations.
Fourthly, some metabolites of L. barbarum L. have been
proven to be highly absorbable. For example, LBP can enter
the bloodstream via specific transporters in the intestine,
thereby exerting immune-regulating and cell-protecting
functions. Nevertheless, further research is urgently required

to elucidate the absorption, distribution, metabolism, and
excretion of these metabolites under different individual and
physiological conditions. This knowledge is crucial for
optimizing the clinical utilization and therapeutic efficacy of
L. barbarum L.

In the future, the research on L. barbarum L. should focus on
several key directions. Developing advanced in vitro models such
as 3D organoids or co-cultures, and conducting in vivo research
using non-human primates that are more similar to human retinal
physiology, can yield more accurate results. These approaches will
enhance our understanding of the real-world effects of L.
barbarum L. on retinal diseases. The scientific community
should also collaborate to establish unified standards, making
the results of different laboratories comparable and reproducible.
This will promote the integration and transformation of research
findings across the field. Additionally, it is of utmost importance to
utilize advanced technologies such as single-cell sequencing and
multi-omics to deeply explore the molecular mechanisms of L.
barbarum L. in preventing retinal apoptosis. In terms of clinical
research, large-scale, multi-center, randomized controlled trials
should be carried out. By increasing the sample size, extending the
follow-up time, and comprehensively evaluating the efficacy, safety,
andmechanism of action of L. barbarum L. in preventing and treating
diseases related to retinal cell apoptosis, we can gain a more
comprehensive understanding of its therapeutic value.
Meanwhile, exploring the combined application of L. barbarum
L. with other botanical drugs and chemical therapies holds great
promise for improving the therapeutic effect, ultimately enhancing
the vision and quality of life of patients. Although L. barbarum L.
shows great potential in the treatment of retinal diseases,
continuous efforts in research methods, mechanism exploration,
and clinical transformation are essential to fully realize its
therapeutic value.
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Glossary

4-HNE 4-hydroxynonenal

Akt Protein kinase

AMD Age-related macular degeneration

ARE antioxidant response elements

ATP Adenosine triphosphate

Bcl-2 B-cell lymphoma-2

BDNF Brain-derived neurotrophic factor

DR Diabetes retinopathy

ERK1/2 Extracellular signal-regulated protein kinases 1 and 2

GPX4 Glutathione peroxidase 4

GSH Glutathione

HO-1 Heme oxygenase 1

ICAM-1 Intercellular adhesion molecule-1

IL-1 Interleukin-1

IL-12 Interleukin-12

IL-1β Interleukin-1 beta

IL-6 Interleukin-6

IκB Inhibitor of NF-κB

JAK Janus kinase

KEAP1 Kelch-like ECH-associated protein 1

LBP Lycium barbarum polysaccharides

MDA Malondialdehyde

MMP-9 Matrix metalloproteinase-9

MnSOD Manganese superoxide dismutase

mTOR Mammalian target of rapamycin

NF-κB Nuclear factor kappa-B

NGF Nerve growth factor

NRF2 Nuclear factor erythroid 2-related factor 2

PI3K Phosphatidylinositol 3-kinase

PIP2 Phosphatidylinositol 4,5-bisphosphate

PIP3 Phosphatidylinositol 3,4,5-trisphosphate

ROS Reactive oxygen species

RP Retinitis pigmentosa

RPE Retinal pigment epithelial

SOD Superoxide dismutase

STAT Signal transducer and activator of transcription

TCM Traditional Chinese medicine

TNF-α Tumor necrosis factor-alpha

TrxR1 Thioredoxin reductase 1

ULK1/2 Unc-51 like kinase 1/2
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