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Over the past 2 decades, tumor immunotherapies have witnessed remarkable
advancements, especially with the emergence of immune checkpoint-targeting
bispecific antibodies. However, a quantitative understanding of the dynamic
cross-talking mechanisms underlying different immune checkpoints as well as
the optimal dosing and target design of checkpoint-targeting bispecific
antibodies still remain challenging to researchers. To address this challenge,
we have here developed a multi-scale quantitative systems pharmacology (QSP)
model platform that integrates a diverse array of immune checkpoints and their
interactive functions. The model has been calibrated and validated against an
extensive collection of multiscale experimental datasets covering 20+ different
monoclonal and bispecific antibody treatments at over 60 administered dose
levels. Based on high-throughput simulations, the QSP model platform
comprehensively screened and characterized the potential efficacy of
different bispecific antibody target combination designs, and model-based
preclinical population-level simulations revealed target-specific dose-response
relationships as well as alternative dosing strategies that can maintain anti-tumor
treatment efficacy while reducing dosing frequencies. Model simulations also
pointed out that combining checkpoint-targeting bispecific antibodies with
monoclonal antibodies can lead to significantly enhanced anti-tumor efficacy.
Our mechanistic QSP model can serve as an integrated precision medicine
simulation platform to guide the translational research and clinical
development of checkpoint-targeting immuno-modulatory bispecific
antibodies.
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Introduction

T cells are now recognized as central players in the immune
surveillance and cytotoxicity against tumors (Waldman et al., 2020).
In the past decade, various classes of tumor immunotherapies
harnessing T cell immunity, such as immune checkpoint
inhibitors (ICIs), T cell engagers, and adoptive cellular therapies,
have emerged as promising clinical treatment for cancer patients
(Zhang and Zhang, 2020). Within the tumor microenvironment,
different immune checkpoints (inhibitory and stimulatory)
expressed on T cells, tumor cells and other immune cells
dynamically interact with each other, and typically the inhibitory
checkpoint functions would dominate and thereby drive evasion of
immune detection and suppression of anti-tumor immune response
(He and Xu, 2020). Therefore, the field of ICIs have attracted
enormous research and made significant progress with a number
of approved drugs in a wide range of cancer types. In 2011,
Ipilimumab, a monoclonal antibody (mAb) targeting cytotoxic
T-lymphocyte-associated protein 4 (CTLA4), became the first ICI
approved by the U.S. Food and Drug Administration (FDA) for
treating advanced melanoma (Mansh, 2011). Another checkpoint
axis demonstrated to have a critical role in the regulation of T cells is
programmed death receptor-1 (PD-1)/programmed cell death
ligand 1 (PD-L1), and this has led to several approved
blockbuster mAbs targeting the PD-1/PD-L1 pathway (e.g.,
Nivolumab, Pembrolizumab, Atezolizumab, Durvalumab) (Li
et al., 2019; Wu, 2021). The advancements in ICIs have
substantially transformed the therapeutic landscape of cancer
treatment, with more and more research and clinical trials
investigating ICI combinations in recent years (Lim et al., 2021).
The promise and success of ICI combination in cancer treatment has
also catalyzed the design and development of bispecific antibodies
(BsAbs) that can simultaneous target two different immune
checkpoints. By targeting two immuno-modulatory checkpoints
and pathways (different from the mechanism of T cell or NK cell
engagers), such BsAbs can potentially address the single-target
limitations of classical mAbs to better boost immune cell
activation and enhance anti-tumor efficacy. In 2022,
Cadonilimab, an anti-PD-1/CTLA-4 bispecific antibody, has
received regulatory approval in China for treating patients with
relapsed or metastatic cervical cancer, marking the first ever
approval of immuno-modulatory checkpoint-targeting bispecific
antibody in the clinic (Keam, 2022). As interest in this area
continues to grow, an increasing number of immuno-modulatory
BsAbs targeting a long list of different immune checkpoints are
progressing into clinical development, with more than 60 BsAbs in
different clinical stages and many more in the preclinical research
(Zhang et al., 2023; Klein et al., 2024).

The tumor microenvironment contains various types of innate
and adaptive immune cells (as well as tumors cells) with differential
expression of an array of inhibitory and stimulatory immune
checkpoints, and it is now clear that their convoluted interactions
can send dynamic cascaded signals via complex intracellular
signaling to ultimately determine cell fate and immune activity
(Anderson and Simon, 2020). For example, binding of PD-1 on
T cells to PD-L1 expressed on tumor cells or antigen presenting cells
(APCs) would first recruit protein tyrosine phosphatase-2 (SHP2) to
dissociate proximal signaling molecules downstream of the T cell

antigen receptor (TCR) and CD28 (Nagai, 2020a). This further
dampens TCR-mediated signaling and downregulates key
downstream proliferation-related pathways including the PI3K/
AKT and MAPK axis (Bardhan et al., 2016; Wu et al., 2021).
Similarly, T cell immunoglobulin and ITIM domains (TIGIT) on
T cells can engage CD155 expressed on tumor cells and APCs to
recruit SH2-containing inositol phosphatase-1 (SHIP1) to inhibit
T cell signaling and activation (Liu et al., 2021). The checkpoint
CTLA4 can shut down T cell activation by competitively inhibiting
and blocking the CD28−CD80/86 co-stimulatory signal as it has
higher affinity for CD80/CD86 compared to CD28 (Willsmore et al.,
2021a; Alegre et al., 2001). Lymphocyte activation gene-3 (LAG3)
can induce the sequestration of a key signaling kinase, lymphocyte-
specific protein tyrosine kinase (Lck), from its co-receptor CD4/
CD8, and this prevents the initiation of TCR-induced activation
signals in T cells (Hivroz, 2022). On the other hand, stimulatory
immune checkpoints such as tumor necrosis factor receptor
superfamily members 4-1BB and OX40 are shown to play
important roles in promoting T cell proliferation and activation
(Webb et al., 2016; Martinez-Perez et al., 2021). Upon interaction
with their respective ligands (4-1BBL and OX40L), these receptors
recruit tumor necrosis factor-associated receptors (TRAFs) to
transmit stimulatory signals and activate downstream hub
proteins involving nuclear factor kappa B (NF-κB) and AKT,
thereby enhancing T cell activation and cytokine production
(Kim et al., 2022a; Sanchez-Paulete et al., 2016). As mentioned
above, the different immune checkpoints can employ various
mechanisms and intracellular signaling processes to collectively
influence T cell function and anti-tumor cytotoxicity within the
tumor microenvironment; furthermore, their dynamic binding and
competition at the cell-surface level adds another layer of
mechanistic complexity to this multi-cellular multi-scale system.
As a result, such complexity can pose challenges to the research and
development of new effective immuno-modulatory BsAbs and
combination checkpoint-targeting treatments.

To address this, mechanism-based quantitative systems
pharmacology (QSP) modeling has a great potential in helping us
better understand this complex biosystem and guiding the optimal
target selection as well as dosing design/evaluation of novel
immuno-modulatory BsAbs. While a number of mechanism-
based clinical-level QSP models (such as the QSP-IO platform
and its series of modeling investigations) have been formulated
to study patient treatment response and clinical dosing design in
immuno-oncology (Sové et al., 2020; Milberg et al., 2019; Wang
et al., 2023), only a few models have been developed specifically to
guide the preclinical research and translation of BsAbs (including
for immuno-modulatory and T cell engagers) and checkpoint-
targeting mAbs (Kosinsky et al., 2018; Ma et al., 2021; Qiao
et al., 2022). For example, Ma et al. formulated a mechanistic
model for PBMC-humanized mouse that integrated T cell
dynamics and tumor growth, and they utilized the model to
assess mouse-specific response to T cell engagers in order to
provide support for preclinical drug development (Ma et al.,
2021). Qiao et al. constructed a preclinical QSP model to
investigate the potential variability of anti-CTLA4 treatment in
syngeneic mouse to derive biomarkers for human extrapolation
(Qiao et al., 2022). Despite these advancements, prior modeling
works are mostly cell-level models that rarely delved into
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checkpoint-mediated T cell intracellular signaling which critically
controls tumor cytotoxicity as explained earlier. Moreover,
published preclinical QSP models tend to focus on only one
immune checkpoint and lack generalizability for therapies or new
modalities (e.g., BsAb) targeting different checkpoint combinations.
To address these limitations, we have here developed a new QSP
model platform to guide the translational efficacy evaluation and
target combination design of bispecific checkpoint-targeting
immuno-modulatory antibodies. The model platform included
more than 10 major immune checkpoints and was calibrated and
validated using multiscale in vitro/vivo datasets obtained for over
20 BsAbs and mAbs evaluated at over 60 administered dose levels.
Using the QSP platform, we comprehensively and comparatively
assessed the efficacy of an array of bispecific antibody target
combinations and revealed target-specific dose-response
relationships to aid preclinical experimental design. The QSP
model was also employed to evaluate the feasibility of alternative
dosing strategies to maintain anti-tumor efficacy with reduced

frequency, and simulations showed that the immuno-modulatory
BsAb plus mAb combination treatment strategy can significantly
enhance anti-tumor efficacy. Our mechanistic QSP model can serve
as a high-throughput simulation platform to expedite translational
research and clinical development of new immuno-modulatory
bispecific antibodies and treatment combinations.

Results

Overview of the QSP model

The major components of our QSP model included the immune
checkpoint-mediated interactions between T cells, tumor cells, and
APCs, as well as in vivo drug pharmacokinetics and targeting. For
the immune part, we focused on the TCR-mediated signaling
pathway and major immune checkpoints including PD-1, PD-L1,
CD28, CD80/CD86, LAG3, CTLA4, TIGIT, CD155, OX40, OX40L,

FIGURE 1
Diagram describing the mechanistic model structure including tumor cells, T cells and APCs. (A) The model primarily considers the interaction
between T cells, APCs, and tumor cells within the tumormicroenvironment, as well as the interaction between a number of immune checkpoints that can
modulate T cell activation and anti-tumor cytotoxicity. Mono-specific (mAbs) and bispecific antibody (BsAbs) therapeutics can bind their corresponding
immune checkpoints and regulate these processes to boost T cell response and tumor shrinkage. (B) We designed the model based on a pathway
that starts from cell signaling pathways, proceeds to in vitro cell co-culture, and ultimately extends to in vivo studies in mice. The mouse model
incorporates multiple modules, enabling it to meticulously elucidate the pharmacodynamics of diverse antibodies within mice.
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4-1BB, and 4-1BBL (expressed on T cells, tumor cells, or APCs)
(Figure 1). In the model, T cell activation occurs through the binding
of TCR/CD3 complex to major histocompatibility complex (MHC)
on APCs and tumor cells, accompanied by the physical interaction
between CD80/CD86 on APCs and CD28 on T cells (Boomer and
Green, 2010; Bommhardt et al., 2019). For TCR-mediated cell
signaling, we primarily included key intracellular signaling
proteins and transcriptional factors (ZAP70, PI3K, NF-κB, ERK,
and AKT) as well as their activating mechanisms (Hwang et al.,
2020). Activated NF-κB, ERK, and AKT can mediate the release of
IL-2 and IFN-γ from T cells, and these cytokines can in turn
promote T cell proliferation and enhance tumor cell killing
(Jorgovanovic et al., 2020; Setrerrahmane and Xu, 2017). On the
other hand, the immune checkpoints interact correspondingly to
exert their regulatory impact. Inhibitory immune checkpoints such
as PD-1 binding to PD-L1 (on tumor cells and APCs) can recruit
SHP2 and downregulate the phosphorylation of ZAP70 and PI3K in
T cell intracellular signaling, thus driving T cells toward inactivation
(Wu et al., 2021). Similarly, binding of TIGIT on T cells to CD155 on
tumor cells and APCs can downregulate activation of ZAP70 and
NF-κB in T cell intracellular signaling, which in turn inhibits T cell
activation (Liu et al., 2022). The checkpoint LAG3 on T cells can
induce the sequestration of key activating adaptor proteins from
their co-receptors CD4/CD8, thereby preventing the initiation of
TCR-mediated signaling as well as downstream signal transduction
(Hivroz, 2022). Conversely, the stimulatory immune checkpoints
can enhance T cell proliferation and function. In the model, binding
between 4-1BB and 4-1BBL increases ERK and AKT
phosphorylation in T cell intracellular signaling, while the OX40-
OX40L binding between T cells and APCs can enhance the
phosphorylation of AKT and NF-κB to drive T cell activation
(Wang et al., 2009; Konstorum et al., 2019).

At the cell level, T cells can proliferate and mediate direct tumor
cell killing. The mechanisms of different antibody therapeutics were
included: they direct bind and sequester (if blocking antibody, e.g.,
PD-1) or activate (if activating antibody, e.g., 4-1BB) their
checkpoint targets, thereby modulating checkpoint interaction
and signaling (primarily on T cells). At the in vivo level, the
biodistribution and pharmacokinetics of antibodies were included
to estimate intratumoral drug concentration, and time-course tumor
growth inhibition can be simulated by integrating all the
aforementioned modules in the QSP model.

Model-based characterization of T cell
signaling and quantitative calibration using
experimental data

In physiology, T cell activation happens primarily through TCR
signaling and involves an array of downstream signaling proteins
and axes. As the immune checkpoints are also known to regulate the
phosphorylation of major signaling hub proteins like ZAP70, ERK,
PI3K, AKT, and NF-κB (Wu et al., 2021; Hivroz, 2022; Nagai, 2020b;
Kim et al., 2022b; Willsmore et al., 2021b; Liu et al., 2013), we
therefore focused on these key proteins when formulating the
intracellular signaling pathway that characterizes T cell activation
in the QSP model. Upon activation of TCR and CD28, transient
phosphorylation of ZAP70 and PI3K/AKT would first occur and

lead to downstream cascaded activation of ERK and NF-κB (Figures
2A–G), which can promote the production and secretion of IL-2 and
IFN-γ by T cells to enhance anti-tumor cytotoxicity (Figures 2H, I).
To calibrate our model simulations, various experimental time-
course protein phosphorylation and cytokine release datasets
were employed (including T cell activation by antibody addition
such as anti-CD3 and anti-CD28, as well as by APC co-culture).
Overall, these quantitative data on T cell intracellular signaling were
well captured by our QSP model (Figures 2A–I;
Supplementary Figure S1).

Integrative stepwise calibration and
validation of the QSP model using in vitro
and in vivo drug perturbation data

After we calibrated the T cell intracellular signaling module, we
then integrated it into the QSP model at the in vitro level that
considers checkpoint-mediated cell-cell interaction, proliferation
and cytotoxicity. First, the behaviors of individual cell
components (T cell, tumor cell) were optimized so that the
experimentally observed cell growth kinetics can be reproduced
by the model simulations (Figures 3A, B; Supplementary Figure S2A,
B). Then, in T-tumor co-culture scenarios, the in vitro QSP model
can quantitatively and simultaneously predict the tumor cell killing
dose response upon antibody treatments (mAbs and BsAbs)
targeting different immune checkpoints such as TIGIT
(Figure 3C), PD-1 (Figure 3D), PD-L1 (Supplementary Figure
S2) and TIGIT/PD-L1 (Figure 3E; Supplementary Figure S2). In
addition to cytotoxicity, our QSP model was able to characterize the
increase in cytokine release in T-APC co-culture scenarios upon
immune-modulatory antibody treatment (covering an array of
checkpoint targets such as PD-L1, 4-1BB, LAG3, CTLA4 and
considering both mAbs and BsAbs) (Figures 3F, G; Figure 2E–G).

To further extend the model framework to in vivo scenarios,
pharmacokinetic (PK) modules for immune-modulatory antibodies
were then added and calibrated against time-course in vivo mouse
PK data. However, as mouse PK data were not readily available for
all the different antibodies, we assumed that the same set of
parameters can be derived for a general prediction of in vivo
antibody mouse PK, and the validity of this assumption was
supported through quantitatively benchmarking model prediction
against a set of published in vivo PK data obtained for mAbs and
BsAbs (Figures 3A–H). After the addition of antibody PK, we again
calibrated the model parameters using quantitative in vivo tumor
growth inhibition data (primarily in MC38 syngeneic mice) that
were obtained for numerous immuno-modulatory mAbs and BsAbs
(Figures 3I–P; Supplementary Figure S4, 5). Overall, the dataset used
for in vivo QSP model calibration encompassed 12 different mAbs
and BsAbs treatment regimens (covering all major immune
checkpoints) with 35 doses tested and over 300 time-course
datapoints included (Figure 3Q).

After the integrative QSP model was calibrated in stepwise
manners using both in vitro and in vivo drug perturbation data,
we aim to validate the model’s predictive capacity using new in vivo
data unused during model calibration. For that purpose, we reserved
all the high dose treatment arms for the different immuno-
modulatory mAbs and BsAbs in the mice experiments as the
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validation set and simultaneously compared such data with the
corresponding model simulations (Figures 4A–J; Supplementary
Figure S6), which included a total of 23 doses/regimens of
antibody treatment (covering 5 BsAbs, two mAbs, and six
different mAb combinations) (Figure 4K). Overall, the
quantitative model simulations under different antibody
treatment scenarios agree well with the reported experimental
data (Figure 4; Supplementary Figure S6), indicating that our
integrative QSP model has significant potential in characterizing
and predicting the preclinical in vivo efficacy of new combination
strategies targeting these immune checkpoints.

Model-based global sensitivity analysis and
anti-tumor efficacy prediction of BsAbs with
different checkpoint targets

We conducted global sensitivity analysis on the in vivo level QSP
model using the Sobol method to identify the most influential

parameters on the model output of interest, specifically tumor
volume. Among the top-ranked parameters (besides the rate of
tumor proliferation and death), the rate of IL-2 production (kf_IL-2)
stood out as a crucial factor influencing the model output
(Figure 5A), as IL-2 in the model can positively feedback to
regulate T cell signaling and control T cell proliferation and
thereby limiting tumor growth. In addition, parameters
associated with immune checkpoint-mediated processes such as
the rate of ZAP70 activation or inhibition by upstream
checkpoint complexes also showed substantial impact (e.g., kf_
CTLA4_ ZAP70_n, kf_PD-1_ZAP70_n). Besides, cell surface
expression of certain immune checkpoints (e.g., OX40_per_cell,
PD-1_per_cell, TIGIT_per_cell) were also suggested to be
influential in terms of regulating tumor growth, as expected.

As drug development efforts are now looking into different
combinations of immune checkpoints when designing bispecific
antibodies, we therefore comprehensively analyzed all possible
bispecific combinations of the seven major immune checkpoints
included in our QSP model. The tumor growth inhibition (TGI)

FIGURE 2
Model-based quantitative characterization of T cell intracellular signaling. Upon T cell activation, ZAP70 was rapidly phosphorylated, as shown by
model simulation and experimental data in scenarios of (A) anti-CD3 treatment (data from and (Kästle et al., 2020; Tewari et al., 2021)), (B) anti-CD3 and
anti-CD28 treatment (data from (Thumkeo et al., 2020) and (Cattley et al., 2020)), and (C) T-B cell co-culture (data from (Hui et al., 2017)). (D)Downstream
activation of AKT by phosphorylation under anti-CD3 and anti-CD28 stimulation (data from (Narayan et al., 2006), (Zheng et al., 2019) and (Fu et al.,
2021)). (E) Downstream activation of ERK by phosphorylation under anti-CD3 treatment (data from (Kassem et al., 2016) and (Lee et al., 2013)).
(F) Downstream activation of pERK under anti-CD3 and anti-CD28 stimulation (data from (Kästle et al., 2020) and (Sheppard et al., 2004)). (G) In T cells,
anti-CD3 and anti-CD28 stimulation activates NF-κB by phosphorylation (data from (Coudronniere et al., 2000) and (Clavijo and Frauwirth, 2012)).
(H) Increased IFN-γ secretion by T cells after anti-CD3 stimulation (data from (Coto-Llerena et al., 2021)). (I) Increased IFN-γ secretion by T cells after
anti-CD3 and anti-CD28 stimulation (data from (Wang et al., 2007)). (A–G) Y-axes are relative expression levels (normalized to their respective maximum
values). S, simulation; D, experimental data.
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FIGURE 3
Stepwise model calibration using in vitro and in vivo data on antibody-induced tumor growth inhibition. The QSP model can quantitatively capture
(A) the time-dependent proliferation of T cells (data from (Teschner et al., 2011)) and (B) the growth of tumor cells over time (data from (Khazen et al.,
2019)). The integrated in vitroQSPmodel captures the dose response relationship of (C) anti-tumor cytotoxicity of anti-TIGIT antibody (data from (Zhong
et al., 2022)), (D) anti-tumor cytotoxicity of anti-PD-1 antibody (data from (Wang et al., 2021)), (E) anti-tumor cytotoxicity of anti-TIGIT/PD-
L1 bispecific antibody (data from (Yang et al., 2023)), as well as increase in (F) IFN-γ release after anti-4-1BB/PD-L1 bispecific antibody treatment (data
from (Muik et al., 2022)) and (G) IL-2 release after anti-LAG3/PD-L1 bispecific antibody treatment (data from (Jiang et al., 2021)). (H) Plasma
pharmacokinetics of anti-TIGIT/PD-L1 bispecific antibody in mice (data from (Mu et al., 2022)). (I-P) In vivo antitumor activity of different antibody
treatment regimens targeting immune checkpoints (and administered at different doses) as characterized by the QSP model; examples shown here

(Continued )
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value in vivo (e.g., in MC38 mouse model) of these virtual BsAbs
were predicted under low (1 mg/kg) and high doses (10 mg/kg),
respectively. Simulation results indicate that different combinations
of checkpoints employed by the BsAbs can result in highly different
anti-tumor efficacy, although this efficacy difference tend to be
smaller at higher treatment doses (Figure 5B). Simulations also
suggested that the checkpoints 4-1BB and OX40 may be most
influential when designing immune-modulatory BsAbs, possibly
due to their immuno-activating functions, as BsAbs that include
either of these two checkpoints as one activating arm were always
predicted to have superior anti-tumor efficacy (Figure 5B).

Model-based evaluation of dosing regimens
for immuno-modulatory antibody
therapeutics in preclinical research

To evaluate the treatment dose response of immuno-
modulatory antibody therapeutics in preclinical research settings,
we created a virtual mouse population based on our QSP model (see
Materials and Methods for details). Then, we simulated the
population-level anti-tumor response after administering varying
doses of different antibody therapeutics to the virtual mouse
population. For anti-CTLA4 antibodies as an example mAb,
simulations suggested a notable increase in overall population-
level TGI as well as depth of response (e.g., percent of mice with
large TGI values) along with increasing doses (Figures 6A, B).
Different dosing regimens were also simulated (0.5 mg/kg twice
per week versus 1 mg/kg once per week), and the results suggested
comparable anti-tumor efficacy in mice (Figure 6C). For anti-
TIGIT/PD-L1 antibodies as an example BsAb, model simulations
also suggested a consistent increase in population-level TGI as well
as depth of response with increasing doses (Figures 6C, D), as well as
comparable efficacy between twice per week (halved dose) versus
once per week (full dose) regimens (Figure 6F). However, the
above trends were not universal for all immuno-modulatory
antibodies. For example, in the case of anti-LAG3/PD-L1 BsAb,
our model simulations predicted a near saturation effect at the
3 mg/kg dose, with minimal efficacy gain at higher doses (Figures
6G–I). We also evaluated some other example BsAbs and the results
(displaying different dose response trends) were shown in
Supplementary Figure S7.

We further investigated the utility of our QSPmodel in assessing
optimal immuno-modulatory mAb combination dosing design. As
the standard dosages used for co-administering two immuno-
modulatory mAbs was typically around 10 mg/kg based on
published literature, we therefore assessed the landscape of in
vivo TGI in the virtual mouse population in response to
combination mAb treatments at dosing ranges of 2.5–40 mg/kg.

Using anti-PD-1 and anti-LAG3 combination as one example, we
noted a saturation effect at 10 mg/kg for each mAb with marginal
population-level TGI increase beyond this combination dose level
(Figure 6J). Interestingly, in another example (anti-4-1BB and anti-
PD-1 combination), the predicted trend is different and that the
population-level TGI continues to rise along with increasing doses of
anti-4-1BB but not that of anti-PD-1 (Figure 6K). In a similar way,
we also explored the potential combination of one immune
checkpoint mAb with SHP2 inhibition (a targeted mechanism
with increasing significance in cancer treatment), and the results
also suggested better efficacy in the combination scenario at the
preclinical level (Supplementary Figure S8). The above results
indicated the need for case-by-case dose-response evaluation and
the potential utility of high-throughput QSPmodeling in developing
different immuno-modulatory combination strategies.

QSP model-based exploration of triple
checkpoint combination strategy

We also used our model to explore the potential efficacy of
simultaneously targeting three immune checkpoints using antibody
therapeutics, as this idea has attracted accumulating interest in the
pharmaceutical community with pioneering companies already
published encouraging data indicating early signals of superiority
compared to standard single-agent BsAbs targeting two checkpoints
(Huang et al., 2022). Addressing this topic of interest, we further
created subgroups of virtual mouse populations, each exhibiting
different immune checkpoint expression profiles in order to explore
potential treatment efficacy in different tumor phenotypes. For the
four different combination strategies tested, our QSP model
simulations of the BsAb plus mAb combination (targeting three
immune checkpoints simultaneously) suggested overall notable
increase in TGI compared to single agent BsAb (Figures 7A, B).
Among them, the triple combination of TIGIT/PD-L1/
LAG3 appears to be less potent compared to the others,
particularly in PD-1 low or LAG3 low tumors, whereas the 4-
1BB/PD-L1/OX40 combination can yield the best TGI response
across all types of tumors in mice (Figure 7A).

Discussion

We have here developed a novel comprehensive QSP platform
model for the translational evaluation of complex immune-
modulatory antibody therapeutics. Our QSP model integrates
T cell intracellular signaling, T cell and tumor cell proliferation,
multi-cellular immune checkpoint interaction, mechanism of action
of mAbs and BsAbs, and through extensive calibration and

FIGURE 3 (Continued)

include (I) anti-LAG3/PD-L1 bispecific antibody (data from (Kraman et al., 2020)), (J) anti-4-1BB/PD-L1 bispecific antibody (data from Jeong et al.,
2021), (K) anti-TIGIT/PD-L1 bispecific antibody (data form (Xiao et al., 2021)), (L) anti-CTLA4/OX40 bispecific antibody (data form (Kvarnhammar et al.,
2019)), (M) anti-CTLA4 antibody (data from (Gan et al., 2022)), (N) anti-OX40 and anti-PD-1 antibodies (data from (Kuang et al., 2020)), (O) anti-LAG3 and
anti-PD-1 antibodies (data from (Yu et al., 2019)), and (P) anti-4-1BB and anti-PD-L1 antibodies (data from (Cheng et al., 2022)). (Q) An overview table
summarizing the complete in vivo experimental datasets used for model calibration. S, simulation; S*, second simulation after calibration; D,
experimental data.
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FIGURE 4
Model Validation using in vivo data on antibody-induced tumor growth inhibition. In vivo antitumor activity of different antibody treatment regimens
targeting immune checkpoints (and administered at different doses) as predicted by the QSP model; examples shown here include (A) anti-4-1BB/PD-
L1 bispecific antibody (data from (Jeong et al., 2021)), (B) anti-LAG3 and anti- PD-1 antibodies (data from (Yu et al., 2019)), (C) anti-TIGIT and anti- PD-1
antibodies (data from (Shao et al., 2021)), (D) anti-4-1BB/PD-1 bispecific antibody (data from (Qiao et al., 2021)), (E) anti-4-1BB and anti-PD-
L1 antibodies (data from (Cheng et al., 2022)), (F–G) anti-LAG3/PD-L1 bispecific antibody (data from (Kraman et al., 2020)), (F) anti-LAG3 and anti-PD-
L1 antibodies, (H) anti-TIGIT/PD-L1 bispecific antibody (data from (Zhong et al., 2022)), (I) anti-CTLA4 antibody (data from (Du et al., 2018)), (J) anti-OX40
and anti- PD-1 antibodies (data from (Kuang et al., 2020)). (K) A table summarizing the complete in vivo experimental datasets used formodel validation. S,
simulation; D, experimental data.
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validation using multi-scale data, the model can accurately describe
the preclinical efficacy of BsAbs targeting different immune
checkpoints and assess optimal dosing regimens as well as
combinations in tumor-bearing mice. Although the current
model version includes only three major cell types (T cells,
tumor cells, and APCs) in the tumor microenvironment, the
future plan is to continue enriching the model to incorporate
more immune cell types, for example, natural killer (NK) cells
and CD4 and CD8 T cell subsets, as this can greatly enhance the
model’s capability to capture the full complexity of the tumor-

immune interactions. Additionally, the model currently assumed
that the majority of immune checkpoints are expressed at constant
levels on all cells (with the exception of CTLA4). Studies have
revealed that checkpoints such as PD-L1 expressed on tumor cells
can be induced by cytokine IFN-γ (Abiko et al., 2015), and thus
characterizing the dynamic changes in the expression of different
immune checkpoints on different cells is also a feature to be added in
future model iterations. Regarding antibody PK, as the current
model version utilized a calibrated typical PK profile for all
antibody therapeutics due to limitation of data, future

FIGURE 5
Sensitivity analysis and simulation of anti-tumor efficacy of BsAbs with different checkpoint targets. (A) The Sobol indices of the top-ranked
parameters predicted have a significant impact on tumor growth. (B) Model-predicted in vivo tumor growth inhibition (TGI) values under different BsAb
treatment that targets different combinations of immune checkpoints. Each (X,Y) entry represents a potential BsAb drug that simultaneously targets X and
Y checkpoints, with its simulated TGI results under the low dose (1 mg/kg) and high dose (10 mg/kg) conditions shown in the upper diagonal region
(in red heatmap) and lower diagonal region (in blue heatmap) respectively.
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FIGURE 6
Model-based optimization of preclinical antibody dosing design in immuno-oncology research. (A) Predicted TGI in the virtual mouse population
after anti-CTLA4 treatment at doses of 0.1–5mg/kg, and (B) distribution of TGI response depth (percentages ofmice with TGI ≥ 40%, 20%<TGI<40%, and
TGI ≤ 20%) at different doses. (C) Predicted TGI in response to anti-CTLA4 treatment at 0.5 mg/kg biw (twice per week) and 1 mg/kg qw (once per week)
dosing regimens. (D) Predicted TGI in the virtual mouse population after anti-TIGTI/PD-L1 BsAb treatment at doses of 3–18 mg/kg, and (E)
distribution of TGI response depth at different doses. (F) Predicted TGI in response to anti-TIGTI/PD-L1 BsAb treatment at 6 mg/kg biw and 12 mg/kg qw
regimens. (G) Predicted TGI in the virtual mouse population after anti-LAG3/PD-L1 BsAb treatment at doses of 1–10 mg/kg, and (H) distribution of TGI
response depth at different doses. (I) Predicted TGI in response to anti-LAG3/PD-L1 BsAb treatment at 3 mg/kg biw and 6 mg/kg qw regimens. (J–K)
Predicted population-level TGI heatmap for the combination of (J) anti-PD-1 and anit-LAG3, as well as (K) anti-PD-1 and anit-4-1BB, at different doses.
pP < 0.05, ppP < 0.01, ppppP < 0.0001. Statistical analyses were performed using Wilcoxon rank-sum test.
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investigations should plug in experimentally-measured PK data
specific to the antibody of interest (if available) to obtain more
precise efficacy simulations.

The clinical limitations of mAbs in treating cancer patients,
including drug resistance and low response rates, have spurred
extensive research into BsAbs in recent years (Fan et al., 2015).
Numerous studies have shown that BsAbs in immuno-oncology
can effectively complement the intrinsic disadvantage of mAbs
(targeting only one checkpoint), with dozens of BsAbs now in
clinical trials. In theory, the more targets an antibody
therapeutic can bind to, the higher its potential therapeutic
effectiveness tends to be in modulating immune activation
against cancer. Therefore, this field has also evolve beyond
the traditional two-target BsAb approach, with researchers
now actively exploring tri-specific and multi-specific
immuno-modulatory antibodies as well as combination
therapies that aim to regulate more than two checkpoints
(Runcie et al., 2018). Following this idea, we have conducted
extensive in silico efficacy analyses on the various different
combination of an immuno-modulatory BsAbs with a mAb
that together target three checkpoints at the same time. Our
findings revealed that such combinations (of a BsAb with a
mAb) can generally exhibit significantly higher potency
compared to the BsAb alone in terms of higher TGI in
tumor-bearing mice (Figure 7). Consistent with our findings,
emerging experimental studies have also shown that immuno-
modulatory antibody combinations targeting three checkpoints,
e.g., anti-CTLA4/PD-L1 (BsAb) with anti-TIGIT (mAb) in
Huang et al. or the tri-specific anti-PD-L1/TIGIT/
LAG3 therapeutic in Yang et al., can deliver more
pronounced T cell activation and anti-tumor potency
compared to targeting only two checkpoints (e.g., by a BsAb)
(Yang et al., 2023; Huang et al., 2022). However, there is
chance that excessive immune checkpoint targeting could
trigger severe inflammatory storms as side effects in patients.
Moving forward, it is worthy to integrate an adverse effect
module into the QSP model platform to detail the potential

adverse impact of certain immune cells and inflammatory
cytokines on normal tissue.

Another critical point that can be addressed by our QSP
modeling strategy is the optimization of antibody dosing
regimens, considering that the frequency of drug administration
can influence patient compliance and quality of life. Through model
simulations presented in the Results section, we observed that
increasing the dosage while decreasing the frequency of BsAb
administration can give rise to similar preclinical anti-tumor
efficacy (Figure 6). Although the potential of such alternative
dosing strategies has not yet been tested in immuno-modulatory
BsAbs that target two checkpoints, clinical studies have shown that
for immuno-modulatory mAbs targeting PD1/PD-L1 (e.g.,
nivolumab, pembrolizumab, durvalumab), dosing them at lower
frequency and higher doses can result in comparable efficacy and
safety profiles (Hosseini et al., 2020; Zhao et al., 2022). Therefore, it
can be reasonably envisioned that immuno-modulatory BsAbs may
also implement such alternative dosing strategies with the help of
modeling and simulation in the near future. Overall, given the rising
interest in developing effective BsAbs within the pharmaceutical
industry (Klein et al., 2024), challenges remain in the successful
clinical translation of such immuno-modulatory checkpoint-
targeting BsAbs, and mechanism-based QSP modeling can be a
critical tool in guiding decision-making throughout the entire
preclinical-to-clinical development phases. Selecting the optimal
combination of checkpoint targets is of crucial importance in
BsAb design, as immune checkpoints may have widespread yet
differential cell surface expression and sometimes unique or
redundant functions. In this sense, a modeling platform like the
one we developed can provide quantitative and explainable
projections of BsAb’s anti-tumor efficacy to guide target selection
and affinity optimization. Then, during first-in-human dose
selection and dosing regimen design, mechanistic QSP modeling
(integrating preclinical and clinical data) can provide valuable
insights by prospectively simulating possible dosing scenarios in
high-throughput manners and comparatively calculating potential
risk-benefit profiles for patients. Efforts implementing such model-

FIGURE 7
Model-based investigation of triple checkpoint combination strategies. (A) Predicted TGI in different virtual mouse populations (with differential
checkpoint expression profiles) after mAb plus and BsAb combination treatment targeting three immune checkpoints, and comparisons with (B)
predicted TGI in the same virtual mouse populations after only BsAbs treatment targeting two immune checkpoints. CTLA4 (Low), mice with low T cell
expression of CTLA4; TIGTI (Low), mice with low T cell expression of TIGIT; PD-1 (Low), mice with low T cell expression of PD-1; LAG3 (Low), mice
with low T cell expression of LAG3.

Frontiers in Pharmacology frontiersin.org11

Xu et al. 10.3389/fphar.2025.1571844

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1571844


informed decision-making strategies have been increasingly
recognized in the research and translation of innovative new
drugs across different therapeutic areas (Hosseini et al., 2020;
Zhao et al., 2022; Zhou et al., 2024). Still, it should be noted that
the presented QSP platform primarily considered certain syngeneic
mouse models as its main data source, and therefore more
experimental data (from diverse preclinical animal models for
immuno-oncology) and model-based analyses will always be
needed to better fill the translational gap between mouse and
human. Our future plan also includes extending the presented
QSP model to the patient level and create diverse virtual patients
to accurately simulate clinical population-level response of immune-
modulatory antibody therapeutics to speed up bench-to-bedside
translation.

Materials and methods

Summary of QSP model formulation

The presented QSP model is comprised of modules of T cell
intracellular signaling, cell proliferation, T cell-tumor cell-APC
checkpoint interaction, antibody in vivo pharmacokinetics, and
preclinical anti-tumor cytotoxicity by T cells. The mechanisms of
action of the different antibody drugs (mAbs and BsAbs) were
implemented by referencing the mass-action binding kinetics as
described in the related works by Betts et al. and Song et al. (Song
et al., 2021; Betts et al., 2019). To describe the in vivo
pharmacokinetics and biodistribution of antibodies, standard
two-compartment PK models were used and we were able to
derive one consistent set of parameters that can simultaneously
characterize the collected in vivo pharmacokinetics of multiple
antibody drugs with good accuracy, and this set of PK parameter
served as a starting point for further preclinical efficacy estimations.
We also assumed that the concentration of antibodies within the
tumor microenvironment can be calculated using standard partition
coefficients and their corresponding plasma concentrations
(Bordeau et al., 2022; Khaowroongrueng et al., 2021). For the
modeling of T cell intracellular signaling (especially hub protein
phosphorylation or activation, e.g., ERK, NFκB), we assumed mass
action-based multiplicative signal transduction in formulating the
reactions while the upstream signaling modulators were
unconsumed during such reactions. For the modeling of tumor
growth in vitro and in vivo, we implemented first-order growth
kinetics with prespecified maximal tumor volume. The tumor cell
clearance rate was driven by Hill-type promotion or inhibition
calculated for different checkpoint complexes (e.g., level of bound
PD-1/PDL1), activating state of T cells (e.g., level of activated hub
proteins) and secreted cytokines (e.g., level of IFNγ). The binding
rules for immune checkpoints as well as for antibody drugs with
their targets were all mass action-based; for bispecific antibodies,
they were allowed to first form dimers (drug-checkpoint#1 or drug-
checkpoint#2) and then trimers (drug-checkpoint#1-checkpoint#2)
as aforementioned. A detailed summary of model species,
parameters, exemplar reactions, and their descriptions is
provided in Supplementary Table S1.

After the T cell intracellular signaling module was calibrated by
in vitro data, we then utilized a large dataset including in vitro

cytotoxicity data as well as in vivo tumor growth inhibition data for
the stepwise model calibration and validation. We selectively
included experimental datasets of time-course tumor growth
profiles (e.g., TGI under different drug treatment scenarios,
including different doses and combinations) performed in the
MC38 syngeneic mouse model as our primary source for model
calibration and validation, while a small number of TGI data
performed in other syngeneic mouse models were also
considered during model formulation as secondary data sources
to further enhance the general applicability of the model (see
Supplementary Table S1 for details). During this translational
calibration process (of model calibration from in vitro to in vivo
levels), we kept the model structure (T-Tumor-APC) and reactions
unchanged and added the in vivo mouse PK modules for antibody
therapeutics; to better characterize the interplay and contribution of
different checkpoints in modulating T cell activation and tumor
killing, regulatory strength of immune checkpoints (km4~km12)
were re-optimized based on in vivo data (including time-course TGI
data covering all checkpoint interventions), and tumor cell
proliferation as well as death rates were also subjected to
adjustment since different in vivo studies observed large
variations in the tumor growth profiles of the control (untreated)
mice. At the in vivo level, to better mimic the tumor
microenvironment, we set the initial conditions of different cells
within the tumor using literature knowledge (1e5 tumor cells,
370 T cells and 10 APCs per 1 mm3 of tumor) (Li et al., 2022;
Del Monte, 2009; Fearnley et al., 1999). Subsequently during the
model validation stage against in vivo data, we enforced that all
parameters were kept unchanged (compared to the calibration stage)
for each dataset and the model simulation results were validated
respectively against unused experimental data, which primarily
included in vivo TGI profiles obtained in the scenarios of new
(e.g., higher) antibody treatment doses or new combinations.

In the subsequent analyses using virtual mouse populations, we
systematically sampled a comprehensive set of model parameters
within physiological ranges that included initial tumor volume,
tumor growth and death rates, checkpoint expression levels,
initial cell counts, etc. We typically considered 100 sets of
distinct parameterizations as one virtual mouse population, with
each parametrization representing one individual virtual mouse.
The final model was implemented using the MATLAB Simbiology
toolbox (MathWorks, Natick, MA) in terms of mass-action or Hill-
type kinetic rate laws. Model simulations were executed using the
ode15s solver. During model formulation, model parameters were
globally optimized and estimated using the patternsearch function.
A summary of model species, parameters, reactions, and their
descriptions is provided in Supplementary Table S1.

Global sensitivity analysis and
statistical analysis

Global sensitivity analysis was conducted using the Sobol method
under the in vivo no treatment scenario. By assuming a starting tumor
volume of 100 mm3 in vivo and using the predicted tumor volume on
day 25 as the output of interest, the most influential parameters were
then identified and ranked (visualized in terms of total order
sensitivity indices). The Wilcoxon rank-sum test was used to
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evaluate the model-predicted TGI profiles in response to antibody
treatments at different dose levels in the virtual mouse population.
Specifically, we compared the simulated TGI distribution of the lowest
dose group with that of the higher dose groups, and P
values <0.05 were considered statistically significant.
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