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The combination of chemotherapy and immune checkpoint inhibitors (ICIs)
represents a promising strategy for enhancing the efficacy of tumor
immunotherapy. This review elaborates on its mechanisms and clinical
significances. Chemotherapy-induced immunogenic cell death (ICD) serves as
the foundation of this therapeutic synergy, involving the release of damage-
associated molecular patterns (DAMPs) such as calreticulin, ATP, and HMGB1,
which enhance immune activation in the presence of ICIs. Clinical trials have
demonstrated that this combination approach markedly improves clinical
outcomes across multiple tumor types, including non-small cell lung cancer,
melanoma, bladder cancer, and triple-negative breast cancer. In clinical practice,
this combination is increasingly adopted as a first-line or advanced-stage
treatment, often guided by personalized medicine approaches. However,
several challenges persist, including the management of treatment-related
toxicity, high costs, and the identification of predictive biomarkers.
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1 Introduction

Tumor immunotherapy has fundamentally transformed the therapeutic landscape of
cancer treatment (Yasinjan et al., 2023; Rui et al., 2023; da Silva et al., 2019). Immune
checkpoint inhibitors (ICIs), including anti-PD-1 and anti-PD-L1 antibodies, have shown
substantial effectiveness in certain patient populations (Dall’Olio et al., 2022; Naimi et al.,
2022). These agents function by blocking inhibitory signals on T cells, thereby enhancing
the immune system’s ability to target and eliminate tumor cells. However, not all patients
respond favorably, and resistance to ICIs continues to pose a significant clinical challenge
(Sun and Xu, 2020; Sharma and Allison, 2015; Hughes et al., 2016).

Chemotherapy, a longstanding cornerstone in cancer treatment, utilizes various drugs
that primarily target rapidly proliferating cells, including cancer cells (Knezevic and Clarke,
2020; Jiang et al., 2024). These agents exert their effects by inducing DNA damage (Bai et al.,
2024), arresting cell cycle progression (Sun et al., 2021a), and triggering cell death.
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Specifically, chemotherapy-induced ICD serves as the pivotal
process enabling the immune system to recognize and attack
tumor cells more effectively when combined with ICIs. ICD is
marked by the exposure and release of immunostimulatory
signals—particularly calreticulin, ATP, and HMGB1—which
collectively enhance T cell-mediated immune responses (Bian
et al., 2022; Obeid et al., 2007; Kroemer et al., 2013).

The synergistic potential of combining chemotherapy and ICIs
is promising. This dual approach can amplify the immune system’s
antitumor response (Qian et al., 2022; Galluzzi et al., 2020).
Chemotherapy triggers ICD, leading to tumor antigen release and
TME modulation, which subsequently activates antigen-presenting
cells and promotes T cells recruitment to the tumor site. ICIs can
block T cells’ inhibitory signals, further boosting their antitumor
efficiency (Zouein et al., 2022). This combinatorialstrategy helps
overcome the limitations of monotherapies, providing a more
comprehensive and potent anticancer approach. It holds the
promise of improved patient outcomes, particularly for those
who do not respond adequately to either ICIs or chemotherapy
alone (Roskoski, 2024; Li et al., 2022).

In addition to inducing immunogenic cell death, chemotherapy
exerts multiple immunomodulatory effects within the tumor
microenvironment. For instance, chemotherapeutic agents like
cyclophosphamide and gemcitabine have been demonstrated to
selectively deplete immunosuppressive cells, including regulatory
T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). This
depletion alleviats local immune suppression and promoting
effector T-cell infiltration and activity. Moreover, chemotherapy
can enhance antigen presentation by upregulating major
histocompatibility complex (MHC) class I molecules on tumor
cells, thus improving tumor recognition by cytotoxic T
lymphocytes (CTLs) (Galluzzi et al., 2015). These multifaceted
immunological alterations, when combined with ICIs, foster a

more permissive immune landscape that significantly enhances
antitumor efficacy relative to monotherapy (Pfirschke et al., 2016).

2 Clinical trial outcomes of the
combination of chemotherapy and ICIs
in tumor immunotherapy

2.1 Melanoma

In the treatment of melanoma, combining chemotherapy with
ICIs has emerged as a promising strategy. The CheckMate 067 trial
compared the effects of ipilimumab and nivolumab combination
therapy to ipilimumab or nivolumab alone in patients with
melanoma (Wan et al., 2021; Choueiri Toni et al., 2023;
Owonikoko et al., 2021). The results were noteworthy, with the
combination regimen yielding the highest response rate and the
longest OS observed. Themedian OS didn’t achieve the combination
group, while patients receiving ipilimumab alone had a median OS
of 19.9 months and 36.9 months in the nivolumab-alone
group. These findings indicate that the combination of
ipilimumab and nivolumab exerts a synergistic effect, intensifying
the antitumor immune response and substantially improving
survival outcomes.

In addition, pembrolizumab combined with chemotherapy has
been tested in melanoma patients. A phase II trial examined the use
of pembrolizumab alongside dacarbazine in metastatic melanoma
patients. The outcomes suggest that this combination achieved a
56% response rate, with a median OS of 23.5 months and
a median PFS of 8.9 months. These results suggest that
integratingchemotherapy with ICIs may represent an effective
therapeutic approach for melanoma, capable of improving both
response rates and survival.

TABLE 1 Clinical trial outcomes of combination chemotherapy and ICIs in tumor immunotherapy.

Cancer type Trial Combination Outcome

Melanoma CheckMate 067 Ipilimumab + Nivolumab vs. Ipilimumab or Nivolumab
alone

Highest response rate and extended OS

Melanoma Phase II Pembrolizumab
Trial

Pembrolizumab + Dacarbazine 56% response rate, median OS 23.5 months, median PFS
8.9 months

Bladder Cancer IMvigor130 Atezolizumab + Cisplatin/Gemcitabine Improved OS and PFS in PD-L1-positive tumors; 12-month
OS rate of 71%

Bladder Cancer KEYNOTE-361 Pembrolizumab + Chemotherapy (Gemcitabine/
Docetaxel + Carboplatin/Cisplatin)

Positive trend in improving PFS and response rates

Triple-Negative Breast
Cancer

KEYNOTE-522 Pembrolizumab + Chemotherapy (Carboplatin/
Paclitaxel + Epirubicin/Doxorubicin)

Improved EFS and pCR, 91% EFS at 18 months

Non-Small Cell Lung
Cancer

KEYNOTE-189 Pembrolizumab + Platinum-based agent + Pemetrexed Median PFS 8.8 months vs. 4.9 months (chemotherapy
only), 12-month OS 69.2% vs. 49.4%

Non-Small Cell Lung
Cancer

IMpower130 Atezolizumab + Nab-paclitaxel + Carboplatin Improved OS and PFS, 18-month OS 64% vs. 52%, median
PFS 7 months vs. 5.5 months

Head and Neck Cancer KEYNOTE-048 Pembrolizumab + Chemotherapy (Cisplatin/Carboplatin
+ Fluorouracil)

Improved OS in PD-L1-positive tumors

Gastric and Esophageal
Cancer

KEYNOTE-590 Pembrolizumab + Chemotherapy (Fluorouracil +
Cisplatin)

Improved PFS and OS compared to chemotherapy alone
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2.2 Bladder cancer

In the treatment of bladder cancer, combining chemotherapy
with ICIs has shown notable advantages. The IMvigor130 trial
investigated the addition of atezolizumab to chemotherapy
(cisplatin and gemcitabine) vs. chemotherapy alone in patients
with metastatic or locally advanced urothelial carcinoma (Funt
et al., 2022; Galsky et al., 2024; Balar et al., 2017). The results
showed a notable improvement in OS and FPS among patients with
PD-L1-positive tumors. The combination therapy group
experienced a median PFS of 8.2 months, while the
chemotherapy-only group had a median PFS of 6.3 months.
Additionally, the 12-month OS rate was 71% in the combination
group, compared to 62% in those treated with chemotherapy alone.

The KEYNOTE-361 trial trial assessed the efficacy of
pembrolizumab combined with chemotherapy (gemcitabine or
docetaxel plus carboplatin or cisplatin) compared to
chemotherapy alone in patients with urothelial carcinoma. While
the combination therapy did not meet its primary endpoint for OS, it
showed a positive trend toward improvoved PFS and response rates
(Suzuki et al., 2023; Kelley et al., 2023; Sharma et al., 2024;
Nakamura et al., 2023).

2.3 Triple-negative breast cancer

In triple-negative breast cancer (TNBC), the combination of
chemotherapy and ICIs has produced encouraging results. For
instance, the KEYNOTE-522 trial assessed the use of
pembrolizumab combined with chemotherapy (carboplatin and
paclitaxel followed by epirubicin or doxorubicin and
cyclophosphamide) vs. chemotherapy alone in early-stage TNBC
patients (Rizzo et al., 2022; Pusztai et al., 2024; Dent et al., 2024;
Zhao et al., 2023). The trial demonstrated significant improvements
in both event-free survival (EFS) and pathological complete
response (pCR) for the combination treatment. Specifically,
patients receiving the combination therapy achieved an 18-month
event-free survival (EFS) rate of 91%, significantly higher than the
85% observed in those treated with chemotherapy alone.
Additionally, the combination group achieved a pCR rate of 65%,
which was higher than the 51% observed with chemotherapy alone.
These results suggest that incorporating ICIs into chemotherapy
could enhance outcomes for patients with TNBC, potentially
lowering recurrence rates and boosting survival. This
combination approach may offer a promising strategy for
patients with this aggressive breast cancer subtype. A summary
of key clinical trials is presented in Table 1.

2.4 Non-small cell lung cancer

In non-small cell lung cancer (NSCLC), combining chemotherapy
with ICIs has led to significant improvements in patient outcomes. The
KEYNOTE-189 trial evaluated pembrolizumab in combination with
chemotherapy (a platinum-based agent and pemetrexed) versus
chemotherapy alone in patients with metastatic nonsquamous
NSCLC (Gandhi et al., 2018; Wu et al., 2022; Yang et al., 2022;
Huang et al., 2024). The findings were compelling, showing a

marked improvement in progression-free survival (PFS) among
patients receiving the combination therapy. In the combination
group, the median PFS in the combination group was 8.8 months,
significantly longer than the 4.9 months observed in the chemotherapy-
alone group. This data highlights a significant delay in disease
progression and offering patients more time with stable disease and
improved quality of life. Additionally, the overall survival (OS) benefit
was impressive, with 12-month OS rates of 69.2% in the combination
group vs. 49.4% in the chemotherapy-alone group. These results
indicate not only delayed disease progression but also a clinically
meaningful extension in overall survival.

The IMpower130 trial further confirmed the efficacy of this
combination in NSCLC. This trial compared atezolizumab
combined with chemotherapy (nab-paclitaxel and carboplatin) to
chemotherapy alone for the treatment of advanced nonsquamous
NSCLC (Zhang et al., 2023; Felip et al., 2021; Horn et al., 2018; Park
et al., 2023). The oresults confirmed that the combination therapy
significantly enhanced OS and PFS. The 18-month OS rate was 64%
in the combination set vs. 52% in the chemotherapy-alone set, while
the median PFS was 7 months in the combination set, vs. 5.5 months
in the chemotherapy-only set, while.

2.5 Other tumor types

The combination of ICIs and chemotherapy has also been
investigated in several other malignancies, including head and
neck, gastric, and esophageal cancers. In head and neck cancer,
the KEYNOTE-048 trial assessed the effect of pembrolizumab
combined with chemotherapy (cisplatin or carboplatin plus
fluorouracil) in comparison to chemotherapy alone or with
cetuximab in patients with recurrent or metastatic head and neck
squamous cell carcinoma (Burtness et al., 2022; Harrington et al.,
2022; Burtness et al., 2019). The study demonstrated that the
addition of pembrolizumab to chemotherapy significantly
improved OS in patients with PD-L1-positive tumors compared
to chemotherapy alone.

Similarly, the KEYNOTE-590 trial evaluated pembrolizumab
combined with chemotherapy (fluorouracil and cisplatin) versus
chemotherapy alone in patients with gastroesophageal junction or
esophageal cancer (Kojima et al., 2022; Sun et al., 2021b; Kato et al.,
2019). This combination treatment significantly enhanced both PFS
and OS compared to chemotherapy alone.

2.6 Real-world applications

For certain malignancies, such as NSCLC, the combination of
pembrolizumab and chemotherapy has been established as a
standard first-line treatment. This regimen has demonstrated
superior PFS and OS compared to chemotherapy alone (Gandhi
et al., 2018). Similarly, in melanoma, the combination of
chemotherapy with ICIs such as ipilimumab and nivolumab may
also be incorporated into treatment regimen (Larkin et al., 2015).
For patients with advanced-stage cancers, particularly those with
limited treatment options and poor prognoses after prior therapies,
combining chemotherapy with ICIs may improve quality of life and
delay disease progression. For instance, in TNBC and bladder
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cancer, the addition of pembrolizumab or atezolizumab to
chemotherapy has shown promising benefits for patients (Emens
et al., 2021).

In clinical practice, there is an increasing emphasis on
personalized medicine approach. Physicians increasingly tailor
treatment strategies according to tumor-specific characteristics,
including biomarker expression profiles. Tumors with high PD-
L1 expression may respond better to the combination therapy, while
those with lower expression may require alternative strategies.
Genomic profiling plays a crucial role in identifying mutations or
alterations that may be more responsive to this combined treatment,
thereby allowing for a more individualized and potentially more
effective therapeutic approach (Xu et al., 2024; Malone et al., 2020).

2.7 Selected failed or negative trials

Although numerous clinical trials have demonstrated the
efficacy of chemotherapy combined with ICIs, several studies
have reported limited or negligible benefits. For instance, the
KEYNOTE-361 trial evaluated pembrolizumab in combination
with chemotherapy versus chemotherapy alone in advanced
urothelial carcinoma. Despite showing a trend toward improved
PFS, it failed to meet the primary endpoints for OS or PFS
statistically (Powles et al., 2021). Potential reasons for this failure
include a heterogeneous patient population with variable PD-L1
expression, suboptimal selection of chemotherapy agents for
immune synergy, and insufficient biomarker-based stratification.

Another example is the IMvigor211 study in metastatic
urothelial cancer, where atezolizumab failed to demonstrate OS
superiority compared to chemotherapy in patients with high PD-
L1 expression (Powles et al., 2018). Although early-phase trials
yielded promising results, phase III studies failed to replicate
these benefits, underscoring the variability of immune responses
and the critical need for improved patient selection strategies. These
failed trials highlight the importance of biomarker-guided patient
selection, appropriate chemotherapy pairing, and understanding of
tumor immunobiology to enhance future trial success. It is worth
noting that the chemotherapeutic agents used in these successful
combinations are recognized for their ability to robustly induce ICD,
significantly contributing to the observed clinical benefits.

3 Analysis of clinical trial
success factors

A comparative analysis of clinical trials highlights notable
similarities and differences in treatment outcomes but alsoreveals
several critical factors underlying the varying degrees of success
observed when combining chemotherapy with immune checkpoint
inhibitors (ICIs).

3.1 Commonalities and individualities across
tumor types

Clinical trials spanning diverse cancer types (e.g., NSCLC,
melanoma, bladder cancer, TNBC) consistently demonstrate that

high PD-L1 expression is positively associated with superior
clinical outcomes, as evidenced by studies such as KEYNOTE-189
and IMvigor130. Nevertheless, tumor-intrinsic characteristics
significantly influence the therapeutic benefit. Melanoma
and NSCLC typically exhibit more robust responses to
chemotherapy-ICI combinations, This heightened responsiveness
is likely attributable to their relatively higher tumor
mutational burdens (TMB) and intrinsic immunogenicity,
which enhance the potential for immune recognition and
attack. In sharp contrast, bladder cancer demonstrates
variable responses to such combinations. This variability
indicates that the complexity and heterogeneity of the
tumor microenvironment may profoundly impact the tumor’s
responsiveness to chemotherapy-ICI regimens, as illustrated
by the findings of KEYNOTE-361 (Reck et al., 2016; Galsky
et al., 2024).

3.2 Why some treatments worked and
others did not

Successful clinical trials, including KEYNOTE-189 (NSCLC)
and KEYNOTE-522 (TNBC) typically employed regimens
integrating chemotherapy agents with proven immunogenic
potential (e.g., platinum compounds, taxanes). These regimens
were highly effective in enhancing antigen presentation,
depleting immunosuppressive populations (e.g., Tregs,
MDSCs), and robustly inducing ICD, thereby potentiating
the effect of ICIs. Conversely, trials with limited
success or failures—such as KEYNOTE-361 in bladder
cancer—commonly exhibited inadequate patient stratification,
suboptimal chemotherapy drug selection, or less favorable
immune modulation. These included insufficient patient
stratification, suboptimal selection of chemotherapy drugs, and
ineffective immune modulation. Such deficiencies impeded the
creation of an optimal immune microenvironment, which is
essential for the successful activity of ICIs (Gandhi et al.,
2018; Felip et al., 2021; Pusztai et al., 2024).

3.3 Factors influencing superior outcomes

The selection of chemotherapy selection plays a pivotal role in
determining treatment efficacy. Platinum-based chemotherapy
regimens (KEYNOTE-189, IMpower130) consistently yield
improved clinical outcomes due to their potent
immunomodulatory effects, including robust ICD induction and
enhanced CTL infiltration into tumors. Timing and dosing are
equally critical: administering chemotherapy concurrently with or
shortly before ICIs maximizes immune priming and antigen release,
fosteringa favorable immune environment that significantly
enhances therapeutic efficacy. A key determinant of success in
chemotherapy-ICI combinations is the ability of
chemotherapeutic agents to induce ICD. Agents such as
anthracyclines, oxaliplatin, and cyclophosphamide are well
documented to elicit strong ICD responses (Zitvogel et al., 2010).
The combination of pembrolizumab and certain chemotherapy
drugs (KEYNOTE-361) in bladder cancer illustrates such a
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scenario, indicating that not all chemotherapy agents synergize
equally well with ICIs (Galluzzi et al., 2015; Pfirschke et al., 2016).

4 Mechanisms of action

The synergistic effect of chemotherapy and ICIs relies on a
multifaceted mechanism network that collectively boost the
antitumor immune response. As a cornerstone of cancer
treatment, chemotherapy influences the immune system through
various pathways. A pivotal mechanism is the induction of
immunogenic cell death: chemotherapy-induced damage to
cancer cells leads to the release of tumor antigens and DAMPs
(Galluzzi et al., 2017; Kroemer et al., 2022). Tumor antigens are
captured and processed by antigen-presenting cells (APCs), while
DAMPs act as “danger signals” that alert the immune system. This
dual activation primes APCs to mature and migrate to lymph nodes,
where they initiate a cascade of immune responses—including the
activation of CTLs—to recognize and eliminate tumor cells.
Moreover, chemotherapy can modify the TME, which is
inherentlyimmunosuppressive, filled with factors that dampen
immune cell activity. A core fundamental mechanism driving the
efficacy of chemotherapy in this combination is its ability to induce
ICD, characterized by the release of DAMPs—including calreticulin,
ATP, and HMGB1. Calreticulin promotes dendritic cell

phagocytosis of dying cancer cells, ATP serves as a
chemoattractant and immunomodulator for dendritic cells, and
HMGB1 enhances antigen presentation and T-cell priming (Szulc
and Woźniak, 2024; Li et al., 2024; Zhou et al., 2019; Kepp et al.,
2014). By reducing immunosuppressive elements and releasing
these immunostimulatory signals, chemotherapy transforms the
TME into a more “inflammatory” state, thereby enhancing the
responsiveness of ICIs and enabling a robust antitumor
immune response.

ICIs are pivotal in amplifying the antitumor immune response.
T cells express inhibitory receptorslike PD-1 on their surface, while
tumor cells in the TME (tumor microenvironment) often
overexpress ligands such as PD-L1 (Wei et al., 2018; Kuzume
et al., 2020). When PD-L1 on tumor cells interacts with PD-1 on
T cells, it transmitsan inhibitory signal that suppresses T cell activity,
suppressing effective tumor attack. ICIs, such as anti-PD-L1 or anti-
PD-1 antibodies, block this interaction, essentially releasing the
inhibitory “brakes” on T cells, enabling them to restore their
antitumor activity.

When used in combination, ICIs and chemotherapy work
synergistically (Hodi et al., 2010; Peggs and Quezada, 2010).
Chemotherapy initiates a cascade by inducing ICD and alters the
TME, thereby creating favorable conditions for immune activation.
The activation of APCs and the release of tumor antigens prime
naïve T cells and recruit them to the tumor site. Concurrently, ICIs
prevent these T cells from being inhibited by the immune evasion
strategies employed by tumors, allowing them to mount a stronger
attack against tumor cells. This integrated approach offers a
promising strategy to overcome the limitations of each treatment
on its own and enhance the overall effectiveness of cancer therapy
(Brahmer et al., 2015; Horn et al., 2017). As illustrated in Figure 1,
the synergistic mechanism of chemotherapy-induced ICD in
combination with ICIs. By promoting the exposure and release
of damage-associated molecular patterns (DAMPs)—such as
calreticulin, ATP, and HMGB1—chemotherapy enhances
dendritic cell (DC) activation and T cell priming. This process
creates a highly immunogenic TME that, when paired with ICIs,
amplifies the anti-tumor immune response through sustained T cell-
mediated tumor elimination.

5 Conclusion

In conclusion, the combination of chemotherapy and ICIs
represents a highly promising strategy in tumor treatment.
Mechanistically, chemotherapy induces immunogenic cell death
and reprograms the tumor microenvironment, while ICIs block
inhibitory signals on T cells, working synergistically to enhance the
antitumor immune response. Clinical trials across diverse tumor
types, including NSCLC, melanoma, bladder cancer, and TNBC,
have demonstrated improved patient outcomes such as enhanced
progression - free survival and overall survival. In clinical practice,
this combination is increasingly utilized as a first-line or advanced
treatment option, with a growing emphasis on personalized
medicine. However, several challenges warrant attention,
including toxicity management, cost considerations, and the
identification of predictive biomarkers to guide patient selection.
Future research should prioritize optimizing treatment protocols to

FIGURE 1
Mechanistic illustration of chemotherapy in conjunctionwith ICIs
for tumor treatment. Chemotherapy induces ICD, leading to the
release of tumor-associated antigens and DAMPs, such as ATP,
calreticulin, and HMGB1. These signals activate dendritic cells
(DCs), which process and present tumor antigens to CD8+ T cells.
Chemotherapy also modulates the tumor microenvironment by
reducing immunosuppressive populations such as Tregs and MDSCs.
Meanwhile, immune checkpoint inhibitors (e.g., anti-PD-1, anti-PD-
L1) block inhibitory signals between tumor cells and T cells, restoring
T cell cytotoxic function. The combination of chemotherapy and ICIs
enhances T cell activation, tumor infiltration, and tumor cell killing,
providing a synergistic anti-tumor immune response.
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further enhance the efficacy and safety of this combination,
ultimately providing better treatment options for cancer patients.
The analysis of unsuccessful trials underscore the necessity for
meticulous trial design, including patient selection based on
predictive biomarkers, appropriate chemotherapy regimens that
promote ICD, and strategic treatment sequencing. These
elements are indispensable for optimizing the therapeutic
potential of chemotherapy and ICI combinations.
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