
Exploring the impact of
cuproptosis on prostate cancer
prognosis via RNA methylation
regulation based on single cell
and bulk RNA sequencing data

Junchao Wu1,2,3†, Wentian Wu4†, Jiaxuan Qin1,2,3†, Ziqi Chen1,2,3,
Rongfang Zhong5, Peng Guo6* and Song Fan1,2,3*
1Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China, 2Institute
of Urology, Anhui Medical University, Hefei, China, 3Anhui Province Key Laboratory of Urological and
Andrological Diseases Research and Medical Transformation, Hefei, China, 4Department of Oncology,
The First Affiliated Hospital of Anhui Medical University, Hefei, China, 5Department of Urology, The
University of Hong Kong-Shenzhen Hospital, Shenzhen, China, 6Department of Urology, The Affiliated
Jiangyin Hospital of Nantong University, Wuxi, China

Background: Cuproptosis, along with RNA methylation regulators, has recently
come to the fore as innovative mechanisms governing cell death, exerting
profound impact on the onset and progression of multiple cancers.
Nonetheless, the prognostic implications and underlying regulatory
mechanisms of them associated with prostate cancer (PCa) remain to be
thoroughly investigated.

Methods: Genomic and clinical data for PCa from The Cancer Genome Atlas
datasets were analyzed to identify a prognostic model through univariate and
Least Absolute Shrinkage and Selection Operator Cox regression analyses that
were validated utilizing external datasets. We used receiver operating
characteristic curves and C-index to evaluate the accuracy of our prognostic
model. In conjunction with this, we conducted single-cell RNA sequencing
(scRNA-seq) analyses to investigate underlying mechanisms and evaluate the
degree of immune infiltration, as well as to assess patients’ responses to diverse
chemotherapy agents. Especially, qPCR assay was utilized to unveil the
expression of signature genes in PCa.

Results: We meticulously selected six Cuproptosis-Associated RNA Methylation
Regulators (CARMRs) to establish a risk prognosis model, which was further
verified to obtain enhanced predictive capacity in external validation cohorts.
Insights from immune infiltration and scRNA-seq analyses have elucidated the
immune characteristics of PCa, and highlighted the immunosuppressive role of
regulatory T cells on immune response. Additionally, drug susceptibility analysis
demonstrated that patients with PCa in the low-risk category derived better
benefit from bicalutamide treatment, whereas those in the high-risk group
exhibited a favor response to adriamycin and docetaxel treatments. The qPCR
and immunohistochemistry (IHC) staining assays also reveal the a dramatically
altered expression pattern of TRDMT1 and ALYREF in PCa tissues.
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Conclusion: In general, we established a model involving CARMRs that can better
predict the risk of recurrence of PCa and have identified the possible mechanisms
affecting PCa progression, thereby promoting further research in this field.
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prostate cancer, cuproptosis, RNA methylation regulators, immunotherapy,
chemotherapy agent

1 Introduction

Prostate cancer (PCa) is a global health issue. According to the
statistics from GLOBOCAN 2020, PCa serves as the second most
common cancer in men worldwide following lung cancer, and it is
particularly endemic in 112 countries (Sung et al., 2021). Localized
PCa is primarily treated through radical prostatectomy combined
with radiotherapy, whereas high-risk PCa is managed via androgen
deprivation therapy (ADT) (Sekhoacha et al., 2022). Nevertheless,
long-term ADT treatment may contribute to the occurrence of
castration-resistant PCa (CRPC), resulting in a higher risk of
metastasis and poorer recurrence-free survival (RFS) (Bach et al.,
2014; Teo et al., 2019). Nowadays, clinical diagnostic biomarkers
used to screen the public for PCa, such as prostate specific antigen,
lack specificity and the Gleason score can be easily affected by
sampling error and subjectivity. In contrast, genotyping-based
classification can be crucial in identifying specific subtypes of
PCa and promoting individualized treatment (Kench et al., 2022;
Ye et al., 2020). Therefore, exploring novel biomarkers for predicting
the prognosis of PCa and improving treatment accuracy is of great
significance.

Cuproptosis, a novel non-apoptotic mode of cell death, is
mediated by copper-dependent mitochondria and occurs
through direct binding of copper to the acylation components
in the tricarboxylic acid cycle. Increased intracellular levels of
copper ions can induce cuproptosis (Chen et al., 2022). Recent
research has shown that copper levels in tumor tissues are
2–3 times higher than those in normal tissues (Gupte and
Mumper, 2009). As a common form of cell death, cuproptosis
has the capacity to regulate the DLAT/mTOR pathway to enhance
the autophagy of PCa cells and reverse their resistance to
chemotherapy drugs (Wen et al., 2023). Given that cuproptosis
induces cell death via changing mitochondrial metabolism, the
drugs that enhance this dependency, such as enzalutamide could
build on synergies (Gao et al., 2024). The discovery of cuproptosis,
which needs further research, may provide ideas for the
exploration of novel therapeutic targets for cancer treatment.
Moreover, gaining an insight into the mechanism and
associated signaling pathways of cuproptosis would provide new
options for reversing drug resistance in PCa.

On the other hand, RNA methylation modifications participate
broadly in biological processes and correlate with proliferation,
metastasis, cellular stress, and the immune response to cancer
(Yang et al., 2021; Chen et al., 2019). The RNA methylation
categories of significance included N6-methyladenosine (m6A),
5-methylcytosine (m5C), N7-methylguanosine (m7G), and N1-
methyladenosine (m1A) (Long et al., 2023). Among these, the
m6A modification is the most widely distributed in living
organisms and is known to be involved in multiple processes of

RNA synthesis (An and Duan, 2022). For example, YTHDF2 has
been shown to induce the proliferation of PCa cells through an
m6A--dependent mechanism (Li et al., 2020). Elevated methylation
levels of EI3C mRNA may contribute to metastasis by activating the
MAPK pathway (Ding et al., 2022). Additionally, METTL3 (Haigh
et al., 2022), VIRMA (Barros-Silva et al., 2020), FTO (Zhang J. et al.,
2023), and RBM15 (Wang et al., 2023) are known to play key roles in
controlling the extent of methylation to impact the survival,
progression and drug-resistance of patients with PCa by serving
as “writers”. RNA methylation has also shown a strong correlation
with genetic variation, alternative splicing, and immune phenotypes.
We speculate that the tumor microenvironment (TME) would be
remodeled when the methylation level increased (Zhao et al., 2021).
RNA methylation modifications have been implicated in various
cancers making them potential biomarkers for cancer diagnosis
and treatment.

To conclude, rational prognostic models were formerly
established involving Cuproptosis-Associated RNA Methylation
Regulators (CARMRs) to provide fresh insights into the
development of new targets and patient immunotherapy in
colorectal cancer and hepatocellular carcinoma (Li et al., 2023;
Zhao et al., 2024a). CARMRs may help characterize the immune
status, be essential for proliferation and invasiveness, and predict
patient prognosis. Hence, we constructed a CARMR-based
prognostic model to explore the potential mechanism of transfer
and drug resistance in PCa.

In this study, we constructed a prognostic model utilizing
CARMRs in patients with PCa to divide them into high- and
low-risk groups, predict RFS, the landscape of TME, and drug
sensitivity. We believe that clinicians can better identify the PCa
stage and guide individualized treatment through our approach
described here. The workflow of this study is shown in Figure 1.

2 Materials and methods

2.1 Datasets acquisition and preprocessing

Two PCa cohorts were included in this study. The Cancer
Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) cohort
was downloaded from the Genomic Data Commons. We deleted
patients with missing data, and eventually enrolled 488 patients
with complete expression profile data and clinical information.
We transformed Transcripts Per Million (TPM) data to a log2
(TPM) format to achieve better comparability. Subsequently, the
Gene Expression Omnibus (GEO) cohorts from three eligible
GEO datasets, GSE21032 (n = 138) (Taylor et al., 2010),
GSE116918 (n = 223) (Jain et al., 2018), and GSE46602 (n =
36) (Mortensen et al., 2015) were utilized as validation cohorts.
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The baseline information of all cohorts above has been
summarized in Table 1. We removed potential cross-dataset
batch effects using the “sva” library of R software package
implemented via an empirical Bayes framework (Leek et al.,
2012). A single-cell dataset (GSE193337) (Heidegger et al., 2022)
was extracted from the GEO database. The baseline information
of samples from the single-cell dataset was summarized in
Table 2 and the single-cell RNA sequencing (scRNA-seq) data
of four PCa samples were utilized for our study.

2.2 Identification of prognostic CARMRs

We identified 13 cuproptosis-related genes and 59 RNA
methylation regulators, which were treated as the focus of our
study based on previous literature (Chen YS. et al., 2021; He
et al., 2022; Li M. et al., 2022; Tsvetkov et al., 2022). A Pearson
correlation analysis was employed to identify CARMRs, and filter
conditions were set to |R|≥ 0.4,P < 0.001. Further, we conducted a

univariate Cox regression analysis utilizing “survival” package (Liu
et al., 2021) and P < 0.05 was designated as a threshold to identify
CARMRs that were correlated with RFS.

2.3 Construction and validation of a
prognostic model and nomogram

Based on the results of our univariable Cox regression
analysis, we used least absolute shrinkage and selection
operator regression analysis (LASSO) regression analysis (Li
Y. et al., 2022) to select combinations of genes that were
rationally narrowed by the glmnet software package, in order
to minimize the risk of overfitting. Through cross-verification,
we selected the penalty parameter (λ) value with the least average
error to construct the model. Finally, we selected six prognostic
CARMRs to construct a risk model, and calculated the risk
scores for each patient with PCa according to the
following equation:

FIGURE 1
A schematic showing the workflow of the study.
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Risk score � ∑
n

i�1
coef i * exp i( )

where coefi and expi terms represent the coefficients and expression
values of the prognostic genes, respectively. Defining the median risk
score of the TCGA cohort as the cutoff value, the patients of the TCGA
and GEO cohort could be separated into high- and low-risk groups.
Time-dependent receiver operating characteristic (ROC) curves and
Kaplan-Meier (KM) curves were used to evaluate the predictive
performance of our prognostic model in the TCGA-PRAD and GEO
cohorts. Combining clinicopathological factors with prognostic
significance, we constructed a nomogram for the TCGA-PRAD
cohort via the “regplot” package to predict 1-, 3- and 5-year risk of
recurrence for patients with PCa. We then computed the C-index value
to show the predictive performance of our nomogram and other
clinicopathological parameters. The calibration curve also evaluated
the efficacy of the nomogram. Finally, we analyzed the relationship
between different independent factors and risk scores and plotted the
KM curves in the clinicopathological subgroup to further verify the
capability of this approach.

2.4 Function enrichment analysis

The differentially expressed genes (DEGs) of the high-risk and
low-risk group patients with PCa were determined using the
“DESeq2” package with the threshold of |log2 foldChange| ≥
0.5 and adjusted P < 0.05. We then investigated biological
structure and function, using gene ontology (GO) enrichment and

Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment
analyses to identify pathways enriched in PCa. The changes in
signaling pathways and interactions of DEGs were depicted by
Gene Set Enrichment Analysis (GSEA). Various software packages,
namely “clusterProfiler” (Wu et al., 2021), “org.Hs.e.g.db” (Qing et al.,
2022) and the R software package, were employed.

2.5 Drug sensitivity and immune
infiltration analysis

Understanding the responsiveness of patients carrying various
levels of risk of PCa recurrence due to the administration of
common chemotherapeutic agents contributes to developing
individualized treatment plans for patients with PCa. Therefore, we
used the “pRRophetic” software package to calculate the half maximum
inhibitory concentration (IC50) value of adriamycin, bicalutamide and
docetaxel in different risk of PCa recurrence subgroups. In order to
explore the relationship between risk score and TME, the CIBERSORT
(Craven et al., 2021) algorithmwas utilized to investigate the differential
proportions of 22 kinds of immune cells between high- and low-risk
groups in patients with PCa. The ESTIMATE algorithm (Xu et al.,
2021) was utilized to calculate estimate score, immune score, stromal
score and tumor purity. We utilized the ssGSEA algorithm (Ye et al.,
2019) to validate the accuracy of immune infiltration analysis. Finally,
we analyzed the expression of TRDMT1 and ALYREF in tumor and
normal histopathology tissue sections acquired from the Human
Protein Atlas database (www.proteinatlas.org).

2.6 Quality control and annotation of
single-cell RNA sequencing data

The “Seurat_v5” software package was used to further process
single-cell RNA sequencing data derived from PCa samples (Yu
et al., 2022). First, we constructed single cell objects by the
CreateSeuratObject method. With the threshold of RNA features
ranging from 300 to 7,000 and the proportion of a mitochondrial
gene set to less than 5%, eligible cells were selected and retained for
further analysis. We employed the “NormalizeData” algorithm to
standardize the data and selected the top 20 components and first

TABLE 1 Summary of the clinicopathological parameters of the four enrolled datasets.

Items TCGA-PRAD (n = 488) MSKCC(n = 138) GEO116918 (n = 223) GEO46602 (n = 36)

Age

≤60 219 87 31 15

>60 269 51 192 21

Pathological T stage

T1 + T2 187 86 127 19

T3 + T4 301 52 96 17

Gleason score

≤7 287 117 127 32

>7 201 21 96 4

Status

Recurrence free 396 103 172 14

Recurred 92 35 51 22

TABLE 2 After filtering, basic quality control statistics for the respective
combined datasets, and patient samples are characterized in the table
below.

Dataset Sample Number of
cells

Number of
genes

GSE193337 GSM5793828 2,420 19,815

GSM5793829 5,724 21,344

GSM5793831 5,087 21,890

GSM5793832 5,964 21,530
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2,000 variably expressed genes for follow-up analysis, while
“ScaleData” was used to center and scale the highly variable
genes. We conducted principal component analysis (PCA) to
reduce the dimensionality of the data, and the PCA number was
adjusted to 15. The “Harmony” algorithm was applied to integrated
single-cell data from different datasets to eliminate potential batch
effects. Subsequently, we defined a category of genes with the same
expression patten as a cluster and utilized the software function of
uniform manifold approximation and projection (UMAP) to depict
the distribution of each cluster. Cell annotation was performed by
artificiality, and the cell markers were referred from CellMarker2.0.

2.7 Cell-cell communication and
pseudotime analysis

We applied “Cellchat” from R software package to reveal and
visualize the cell-cell interactions and possible signaling pathways
involved (Yu et al., 2022). After identifying the prognostic genes
primarily distributed in T cells, we subdivided and annotated the
T cell cluster on the basis of cell markers obtained from previous
studies (resolution = 0.5). We investigated the transition of different
subtypes utilizing the “Monocle” application from R software
package. The resulting cell state plots and cell type maps revealed
the developmental trajectory of PCa.

2.8 Quantitative real-time PCR (qRT-PCR)

TheRNA extractionwas performed using the Trizol reagent (Beijing
ComWin Biotech Co., Ltd.) from prostate normal and cancer cell lines
RWPE-1, LNCaP, C42, PC3 (Wuhan Pricella Biotech Co., Ltd.). For
cDNA synthesis, reverse transcription was conducted using the TaKaRa
(Dalian TaKaRa Biotech Co., Ltd.) kit according to the manufacturer’s
instructions. GAP was employed as an internal reference gene to
normalize relative expressions of lncRNA with the 2−ΔΔCT method.
The specific primers in our study were as follows: TRDMT1
(forward: 5′-CGGGTGCTGGAGCTATACAG-3′, reverse:5′-
CGACAGTGTTGACATCAATGGC-3′); ALYREF (5′-GCAGGC
CAAAACAACTTCCC -3′, 5′-AGTTCCTGAATATCGGCGTCT -3′).

2.9 Statistical analysis

All statistical analyses were carried out using R software package
(version 4.2.0). The continuous data were analyzed by independent t-test,
Wilcoxon test or Fisher’s exact test, which was considered to analyze
classified data. P < 0.05 was considered to be statistically significant.

3 Results

3.1 Identification of cuproptosis-associated
RNA methylation regulators (CARMRs) and
construction of a prognostic model
involving CARMRs

We conducted Pearson’s correlation analysis between
cuproptosis-related genes and RNA methylation regulators: by

setting filter criteria, a total of 48 CARMRs were selected for
further study (Figure 2A). To screen out CARMRs correlated
with RFS, we performed univariate Cox regression analysis and
identified 13 CARMRs significantly associated with prognosis (P <
0.05) (Figure 2B). The results revealed that only TRDMT1 exhibited
a protective effect, whereas the remaining 12 genes (NEK2, SMCA,
ALYREF, BLM, DNMT1, DNMT3B, TOP2A, TRMT61A, HMMR,
EXO1, HNRNPA2B1, INCENP) were identified as risk factors for
the recurrence of PCa. Further, we conducted LASSOCox regression
analysis to minimize model overfitting and determine the optimal λ
value (Figure 2C). Ultimately, a six-CARMR signature, comprising a
set of genes, was selected for the construction of a prognostic model
assessing the risk of recurrence within PCa and the association
between cuproptosis-related genes and the six select RNA
methylation regulators was vividly visualized using a Sankey
diagram (Figure 2D). Risk scores were calculated as follows: Risk
Score = (0.458731758 × ALYREF) + (0.208975015 × DNMT1) +
(0.462010845 × DNMT3B) + (0.136363177 × EXO1) +
(0.219757226 × HNRNPA2B1) + (−0.864908568 × TRDMT1),
and the gene coefficient was derived from the results of the
LASSO regression analysis. Setting the median risk score of the
TCGA cohort as the cutoff value based on equations, all patients
could be separated into high- and low-risk PCa recurrence groups.
The risk factor association plot depicted the distribution of risk
scores, PCa recurrence status, and expression levels of the model
genes among patients in the high- and low-risk groups,
respectively (Figure 2E). The KM curves revealed that the high-
risk group had a significantly worse prognosis than that of the low-
risk group (P < 0.001) (Figure 2G). In order to measure the efficacy
of our prognostic model, ROC curves were employed to evaluate
the sensitivity and specificity of the model. The results
demonstrated that the area under the curve (AUC) for
predicting 1-, 3-, and 5-year RFS were 0.724, 0.739, and 0.711,
respectively and the predictive performance of the risk scores was
better than other clinicopathological parameters (Figures 2H,I),
indicating that the constructed model possessed a favorable
predictive capability. To further validate our prognostic model,
we applied the approaches mentioned above to the GEO cohort
data. After separating patients into diverse risk groups, we
discovered that the expression levels of the prognostic genes
varied among patients and recurred patients were concentrated
in the high-risk group (Figure 2F). The KM curve revealed a
satisfactory separation of patients (P < 0.001) (Figure 2J).
Complementary to this, AUC values of ROC curves were all
over 0.700, indicating the superior predictive performance of
our prognostic model, and the clinical ROC curve confirmed
the reliable predictive capability of the computed risk scores
(Figures 2K,L).

3.2 Nomogram based on independent
prognostic factors in patients with PCa and
correlation between the CARMR signature
genes and clinicopathological traits

The nomogram integrated independent prognostic factors
which were filtered utilizing a univariate Cox regression analysis,
and multiple line segments were displayed in a specific proportion to
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quantify the 1-, 3-and 5-year probability of PCa recurrence in
patients with PCa (Figure 3A). To evaluate the discriminatory
ability of the model, we calculated the C-index for the Gleason
score, nomogram, pathological T stage and risk score, which were
0.672, 0.740, 0.613 and 0.719, respectively. These results were
displayed as a bar plot and indicated that the nomogram had the
highest accuracy in predicting PCa recurrence compared with a
single norm (Figure 3B). Additionally, calibration curves
demonstrated good consistency between the actual and the

predicted RFS. To further analyze the relationship between the
recurrence risk score and clinicopathological parameters, we
grouped the patients in the TCGA-PRAD cohort according to
age, Gleason score, and pathological T stage score (Figures
3C,F,I). The results demonstrated that age, Gleason score and T
stage score were positively correlated with the risk of PCa recurrence
score (P < 0.05). KM curves indicated that the CARMR signature set
of genes had predictive value for RFS in different stratified cohorts
(P < 0.05) (Figures 3D,E,G,H,J,K).

FIGURE 2
The construction and validation of a prognostic model. (A) An association between 13 copper death-related genes and 56 RNA methylation
regulatory genes is presented by a dot plot. (B) Univariate Cox regression analysis results showing that Cuproptosis-Associated RNA Methylation
Regulators (CARMRs) were associated with the prognosis of patients with PCa. (C) Selection of prognostic CARMRs on the basis of the optimal λ
calculated by LASSO regression analysis. (D) Sankey diagram revealing the correlation between cuproptosis-related genes and RNA methylation
regulatory genes. (E,F) Risk maps depicting the distribution of patient status and the expression profiles of prognostic genes in TCGA and GEO cohorts.
(G–I) KM curve, Time-independent ROC curve, and clinical ROC curve in a TCGA cohort. (J–L) Validation of our prognostic model by conducting KM
curve, time ROC curve, and clinical ROC curve analyses in a GEO cohort. *P < 0.05,**P < 0.01,***P < 0.001.
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3.3 Functional enrichment analysis and drug
sensitivity analysis

An enrichment analysis was conducted on the DEGs between
the high- and low-risk groups. The GO analysis results revealed

that the enriched biological processes included muscle system
processes, muscle organ development, muscle contraction,
striated muscle contraction, assembly of muscle fibers, and
striated muscle cell development. The enriched cellular
components included sarcomeres, muscle fibers, contractile

FIGURE 3
Construction of a nomogram and conducting clinicopathological subgroup analysis. (A) A nomogram was utilized to predict 1-, 3- and 5-year
recurrence-free survival (RFS) values for patients with PCa in a TCGA cohort. (B) C-index, calibration curve of nomogram, and other clinicopathological
factors were utilized to evaluate the accuracy of the nomogram. (C,F and I) Comparisons of risk score differences between various clinicopathological
factor subgroups. (D,E,G,H,J and K) KM analysis was conducted to identify survival differences between high- and low-risk groups of patients with
PCa in different subgroups.
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fibers, M-lines, Z-discs, and A-bands. The molecular functions
enriched included actin binding, actin filament binding, muscle
structural constituent, hormone activity, carboxylic acid
binding, and myosin binding (Figure 4A). KEGG analysis
demonstrated that the CARMR signature set of genes was
involved in pathways related to cardiac muscle contraction,
hypertrophic cardiomyopathy, dilated cardiomyopathy,
neuroactive ligand-receptor interaction, bile secretion,
nitrogen metabolism, and adrenergic signaling in cardiac
myocytes (Figure 4B). The GSEA profile showed that the
HNF1_C and HNF1A_TARGET_GENES pathways were
downgraded, while other pathways were upgraded
(Figure 4C). In addition, the gene interaction network

diagram revealed promising interactions among the DEGs
enriched in various pathways (Figure 4D).

In order to gain a deeper understanding of the drug response, we
performed a drug sensitivity analysis of the high- and low-risk
groups of patients with PCa. By comparing the IC50 values of
chemotherapy drugs for treating PCa, we found that the high-
risk group had a higher IC50 value for bicalutamide than the
low-risk group (P < 0.001), whereas the IC50 values for
doxorubicin and docetaxel were lower for the high-risk group as
shown in the boxplot, which implies that the high-risk group showed
a higher sensitivity to doxorubicin (P < 0.001) and docetaxel (P <
0.001) compared to the low-risk group (Figures 4E–G). These results
may be used to guide personalized therapy.

FIGURE 4
Functional enrichment analysis and chemotherapeutic response prediction of prognostic genes. (A) GO enrichment analysis of CARMRs. (B) KEGG
enrichment analysis of CARMRs. (C)GSEA of CARMRs. (D) The interaction of genes in different enriched pathways. (E–G) Predicting the IC50 value in high-
and low-risk groups of patients with PCa to doxorubicin, bicalutamide and docetaxel therapy.
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3.4 Immune cell infiltration and
correlation analysis

A violin plot was generated utilizing the Cibersort algorithm to
illustrate the proportions of immune cell infiltration in patients with
PCa, and the Wilcoxon test was employed to assess the differences in
immune cell populations between the high- and low-risk groups. The
types of immune cells exhibiting significant differences between the
two groups included plasma cells, T regulatory cells (Tregs),
M0 macrophages, M2 macrophages, and resting Mast cells
(Figure 5A). Further, the results demonstrated that estimate score
(Figure 5B), immune score (Figure 5C) and stromal score (Figure 5D)
values were elevated in the high-risk group compared with those in the
low-risk group (P < 0.05). However, there was no difference between
the two risk groups in terms of tumor purity. In addition, utilizing the
ssGSEA method, we found that the high-risk group exhibited higher
levels of activated CD4+ T cells, activated CD8+ T cells, CD56dim
natural killer cells, myeloid-derived suppressor cells (MDSC), memory
B cells, nature killer cells and regulatory T cells, whereas it showed a
reduction in the levels of activated B cells, immature dendritic cells,
mast cells, neutrophils and Type 17 T helper cells (Figure 5E). To
delineate the expression profiles of signature genes, we initially
investigated the IHC results obtained from the Human Protein
Atlas (HPA) dataset, and ascertained the downregulated expression
of TRDMT1 and the upregulated expression ALYREF in PCa tissues
compared to normal tissues (Figures 5F,H). Furthermore, qPCR assay
was employed across a range of diverse cell lines and also demonstrated
the decreasing expression trend for TRDMT1 from normal to
malignant cells (Figure 5G). Conversely, the expression level of
ALYREF exhibited an opposite trend (Figure 5I).

3.5 Distribution of prognostic genes in
single-cell landscape

To further explore the expression profiles of prognostic genes in
depth, we probed gene expression in PCa tissue at the single-cell level
from a GEO dataset (GSE193337). We extracted the scRNA-seq data
of four samples from patients with PCa. The baseline characteristics of
patients have been described previously (Heidegger et al., 2022).
Utilizing stringent data quality control, we extracted 23,697 cells
and 17,618 genes to construct a PCa single-cell atlas. To eliminate
the batch effect between distinct samples, we applied harmony
function and further establish an initial diagram of PCa tissues.
The plots before and after batch effect removal were depicted in
Supplementary Figures S1A and B. The Seurat software package was
employed to reduce the dimensionality of data. We successfully
classified the cells into 14 clusters. We utilized recognized cell
markers (Heidegger et al., 2022; Kfoury et al., 2021; Ma et al.,
2020; Zaidi et al., 2024), and all clusters were annotated as B cells,
epithelial cells, endothelial cells, fibroblasts, mast cells, macrophages,
monocytes, and T cells (Figures 6A,B). Notably, we discovered that
epithelial cells and T cells were the top two abundant cells in the four
samples (as shown in the histogram), implying that these cell types
figured prominently in the development of PCa (Figure 6C). We
investigated the distribution of prognostic genes in all cell types, and
discovered that DNMT1, EXO1 and HNRNPA2B1 were primarily
distributed in T cells, whereas DNMT3B was detected in endothelial

cells (Figures 6D–G). TRDMT1 and ALYREF were both expressed by
T cells and epithelial cells (Figures 6H,I). To identify the cell clusters
enriched in prognostic genes, we scored individual cells for their
prognostic gene signature and found that the prognostic genes were
strongly enriched in a subtype of cells within the T-cell cluster
compared with other cell types utilizing ANOVA analysis (P <
0.001) (Figures 6J,K).

3.6 Intracellular interactions, pseudotime,
and function enrichment analysis revealing
the role of T cells

Our cell-cell interaction analysis indicated that in terms of interaction
numbers andweights, T cells had the strongest correlation with other cell
types (Figures 7A,B). We identified several intercellular signaling
pathways in seven key epithelial cell clusters (Figure 7C). Based on
the analyses of four significant pathways consisting of COLLAGEN,
MHC-I, APP and MIF signaling pathways (Supplementary Figures
S1C–F), we delineated that T cells exerted predominant impact on
the alteration of TME and needed in-depth investigation. In order to
further define the potential role of T cells in the tumorigenesis of PCa, we
extracted a subset of T cells and further subdivided them into four
subtypes including CD4+ conventional T cells (CCR7), CD4+ regulatory
T cells (FOXP3), CD8+ naïve T cells (LAG3), and CD8+ effector T cells
(GZMA) based on conventional cell markers (Figure 7D) (Guo et al.,
2018; Bian et al., 2024; Tuong et al., 2021). We modeled the
developmental trajectory of cells by conducting pseudotime analysis.
Cell trajectory profiles showed that T cells underwent evolutionary
development (Figure 7E). We observed that CD4+ conventional
T cells and CD8+ naïve T cells were gradually transformed into CD4+

regulatory T cells and CD8+ effector T cells (Figure 7F).
To explore the biological function of T cells in patients with PCa, we

conducted GO, KEGG and GSEA-based gene enrichment analyses.
First, GO analysis revealed the role of the enriched genes in biological
processes, cellular components and molecular functions, respectively.
We discovered that T cells primarily played a role in the regulation of
cell-cell adhesion, mononuclear cell differentiation, lymphocyte
differentiation, positive regulation of cytokine production, leukocyte
cell–cell adhesion, external side of plasma membrane, actin binding,
GTPase regulator activity, and nucleoside-triphosphatase regulator
activity (Figure 7G). Additionally, KEGG analysis indicated that
biological processes, such as human T-cell leukemia virus
1 infection, Epstein-Barr virus infection, T cell receptor signaling
pathway, natural killer cell-mediated cytotoxicity, human
immunodeficiency virus 1 infection, and human cytomegalovirus
infection were correlated with T cells (Figure 7H). Finally, we
discovered that CIITA_TARGET_GENES, HSF2_TARGET_GENES,
KLF3_TARGET_GENES and MORC2_TARGET_GENES pathways
were downgraded in PCa, based on the GSEA results (Figure 7I).

4 Discussion

Due to the failures of post-prostatectomy and radiotherapy in
curing recurrent and locally advanced PCa, it is reasonable to attach
great importance to novel immunotherapy (Sokoloff et al., 2004).
Having previously shown that checkpoint inhibitors could bring
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FIGURE 5
Immune cell infiltration analysis. (A) The differences in the enrichment scores of 22 types of immune cells between two risk subgroups. (B–D)
Comparisons of the differences between two risk subgroups in terms of estimate score, immune score, and stromal score. (E) A violin chart showing the
differences in the proportions of 28 immune cells between high-risk and low-risk groups of patients with prostate cancer. (F) Representative pictures
showing the different protein levels of TRDMT1 from HPA. (G) Expression of TRDMT1 in normal prostate cell and prostate cancer cells. (H)
Representative pictures showing the different protein levels of ALYREF from HPA. (I) Expression of ALYREF in normal prostate cell and prostate cancer
cells. *P < 0.05,**P < 0.01,***P < 0.001.
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favorable healing efficacy for patients with PCa, we have now
explored a signature set of CARMR genes for anticipating the
prognosis and drug response of patients with PCa in this report
(Vietri et al., 2021; Pritchard et al., 2016). Additionally, cell death

may maintain the balance through removing tumor cells, and this
cell function was defective in metastatic and castration-resistant
advanced PCa (Campbell and Leung, 2021; Zhu M. et al., 2023).
Cuproptosis, as a newly discovered form of cell death, differs from

FIGURE 6
Exploring the distribution of prognostic genes. (A) A plot of the different types of cells. (B) A bubble plot of the expression of diagnostic marker genes
in each cell cluster. (C) Cell proportions in four PCa samples. (D–I) The distribution of prognostic genes in different clusters. (J–K) UMAP map and violin
plot indicating the enrichment of gene signatures in PCa tissues.
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other cell death modalities in its reliance on mitochondrial
respiration (Tsvetkov et al., 2022). Meanwhile, growing evidence
suggests that RNA-based epigenetic pathways are dysregulated in
human diseases and may be ideal targets for cancer treatment
(Barbieri and Kouzarides, 2020). In this research scenario, we
investigated the potential connection between CARMRs and PCa.

First, we conducted univariate Cox regression and Lasso
regression analyses to screen for RFS-related CARMRs and

established a model to better predict prognosis and guide the
stratified treatment of patients with PCa. An ROC curve was
generated to validate the robust prognostic accuracy of the
model. Ultimately, six CARMRs (ALYREF, DNMT1, DNMT3B,
EXO1, HNRNPA2B1, TRDMT1) were included in our analysis to
establish a prognostic model for estimating the risk of PCa
recurrence. By reviewing previous studies, we discovered that
prognostic genes played a key role in the tumorigenesis and

FIGURE 7
Investigating the role of T cells in the development of PCa. (A and B) Cell-cell communication analysis in terms of weighted interactions. (C) A
heatmap showing signaling pathways in seven clusters. (D) Subgroups of T cell clusters depicted via a UMAP map. (E) Displaying the beginnings and
endings of pseudo-time trajectories. The colors from dark to light represent the order of pseudo-time. (F) Pseudo-time analysis revealing the transition
fromCD4+ T conventional cells and CD8+ T naive cells to CD8+ T effector cells and CD4+ T regulatory cells. (G–I)GO, KEGG enrichment analysis and
GSEA indicating the potential function of T cell-related genes.
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advancement of PCa. Initially, ALYREF is determined to function as
a reader of the 5-methylcytosine modification, playing a crucial role
in stabilizing the associated mRNA and modulating its expression at
the post-transcription level, thereby involving in cellular metabolism
and movement (Zhang et al., 2021; Zhao et al., 2024b; Nulali et al.,
2024). Building on a prior study, we propose a hypothesis that
ALYREF may interact with the 5-methylcytosine modification on
ACC1 mRNA and trigger the proliferation and lipid synthesis of
PCa cells through activating the CDK13/NSUN5/ACC1 pathway
(Zhang Y. et al., 2023). The DNMT3 gene family includes DNMT3A
and DNMT3B, which are capable of methylating CpG sites and
stably maintaining methylation patterns (Chen et al., 2003). By
interacting with PI3K-Akt signaling pathway, DNMT3B and
DNMT1 effectively silence the expression of tumor suppressor
gene by increasing methylation levels and facilitate the malignant
transformation of PCa cells (Agarwal et al., 2013; Zhu et al., 2021).
EOX1 regulates the reprogramming of lipid metabolism by
suppressing the P53 signaling pathway and promotes the
progression of PCa (Wang et al., 2024). Moreover, distinct from
other CARMRs, HNRNPA2B1 assumes a pivotal role in N6-
methyladenosine methylation to regulate the TGF-β and FOXO
pathways, influencing the phenotype of PCa and its response to
conventional treatment (Qi et al., 2023; Liyanage et al., 2024).
Consequently, CARMRs appear to modulate metabolism by
amplifying the function of specific mRNAs, thereby modifying
the phenotype of PCa. The summary of biological functions of
the CARMRs were listed in Table 3.

We carried out univariate Cox regression analysis to explore the
role of clinicopathological parameters in the prognosis of PCa and
our results showed the prognostic value of age, Gleason score, and
pathological T stage and a correlation with risk score. We integrated
all the factors to ascertain the status and advancement of this disease.
We employed gene functional enrichment analysis to identify the
potential functions of CARMRs in PCa: our data showed that
CARMRs were correlated with muscle organ development and
muscle fiber movement. Previous studies have shown that ADT
treatment for PCa may lead to muscle atrophy and weakness
through reducing Ca2+-sensitivity in Type I and II muscle fibers
(Lamboley et al., 2018). Conversely, the organism of PCa patients
tended to add the abundance and contraction ability of skeletal
muscle to positively regulate the TME (Rocha-Rodrigues et al.,
2021). Except for the adaptive regulatory, muscle cells produced
more interleukins 4 and 13 for the growth of cancer stem cells and
their interaction was essential for the cancer cell fusion and the

generation of drug-sensitive phenotype (Uygur et al., 2019).
Moreover, other studies have shown that cardiac and skeletal
muscle mass is reduced in the absence of anti-cancer treatment
(Baumfalk et al., 2019; Rollins et al., 2017). In this case, it is possible
that tumor cells fuse together, inducing higher cytokine production
from adjacent skeletal muscle cells and generate a metastatic
phenotype by increasing myosin content. Besides, cardiac and
skeletal muscle cells in other regions were consumed accordingly.
Our point of view may be validated if there is evidence that the
myosin expression profile in PCa influences the formation of a
metastatic phenotype (Makowska et al., 2015). The evaluation of
chemotherapy drugs indicated that doxorubicin and docetaxel were
more effective when applied to patients with a high-risk of PCa
recurrence. Studies have also demonstrated that doxorubicin and
docetaxel exhibit anti-tumor activity in metastatic PCa (Petrioli
et al., 2008; Fizazi et al., 2022).

It is well-established that immune responses play a dominant
role in tumor development and anti-tumor therapy. To guide
immunotherapy of patients with PCa, we investigated the
immune infiltration in PCa tissue (Hawley et al., 2023). As key
components of TME, immune cells and stromal cells are
significantly correlated with immune therapy and prognosis of
PCa. From the results of our study, the high-risk group exhibited
increased abundance of M0 macrophages, M2 macrophages, and
Tregs, and a significant reduction in plasma cells and mast cells.
M0 macrophages are a plastic cell population that can change their
phenotype under the influence of environmental signals such as
radiation injury, potentially transitioning to tumor-associated
macrophages (TAMs) (Qiu et al., 2018). TAMs are known to
impact tumor progression through cell proliferation,
angiogenesis, adaptive immune control, and metastasis, making
them an attractive therapeutic target in PCa immune therapy
(Jairath et al., 2020). To be specific, circSMARCC1 could activate
the miR-1322/CCL20/CCR6 signaling pathway and induce the
proliferation of TAMs to impact tumorigenesis (Xie et al., 2022).
M2 macrophages may be polarized to influence metastasis and
excessive proliferation of PCa cells via the IL17/CTSK/EMT axis
(Wu et al., 2022). Referring to previous studies, Tregs have been
shown to inhibit TME in various cancers, and to induce bone
metastasis in PCa, which portends a poor prognosis (Liu et al.,
2023; Meng et al., 2021; Alvisi et al., 2022; Boucher et al., 2023).
Tregs are known to utilize the GIT/PAK/PIX complex to downgrade
the anti-tumor response (Pedros et al., 2017). Clinical analysis has
also corroborated the positive correlation between patient mortality

TABLE 3 The biological functions and potential roles of CARMRs.

Gene name Main function Signaling pathways Role in prostate cancer progression

ALYREF Involved in mRNA export from the nucleus CDK13/NSUN5/ACC1 pathway inducing

DNMT1 Maintains DNA methylation patterns during DNA
replication

PI3K-Akt signaling pathway inducing

DNMT3B Responsible for de novo DNA methylation PI3K-Akt signaling pathway inducing

EXO1 Involved in DNA repair, particularly in the 5′ to 3′
exonuclease activity

P53 signaling pathway inducing

HNRNPA2B1 Involving in mRNA processing and transport TGF-β and FOXO pathways inducing

TRDMT1 Catalyzes the methylation of tRNAs — inducing
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rate and the degree of M2 macrophage and Tregs infiltration
(Erlandsson et al., 2019). In conclusion, we reasoned that the
study of TME may provide new ideas for regulating the immune
status of tumor tissues, inhibiting tumor growth, and achieving a
better prognosis.

To some extent, IC50 values had the capacity to characterize the
natural response of PCa cells to chemotherapy agents (Xu et al.,
2022). Our drug sensitivity analysis showed that doxorubicin and
docetaxel may achieve better healing efficacy when applied to high-
risk PCa subgroups. In an animal experiment, docetaxel was
confirmed to remodel TME and enhance lymphocyte infiltration
through activating the cGAS/STING pathway in PCa (Ma et al.,
2022). Additionally, by conducting clinical trials, we found that
doxorubicin and docetaxel combined with epirubicin demonstrated
favorable efficacy in patients with advanced hormone-refractory
PCa (Petrioli et al., 2008; Tannock et al., 2004; Petrylak et al., 2004).
ALYRFE, functioning as a binding protein, can participate in diverse
regulatory mechanisms, consisting of pre-mRNA processing,
mRNA stability and mRNA methylation and facilitate the
emergence of malignant phenotypes and the development of
drug resistance (Zhao Y. et al., 2024; Zhong et al., 2024).
Furthermore, across various tumor types, it has been observed
that the increased transformation of ALYRFE into the nucleus
leads to the elevated levels of 5-methylcytosine methylation,
thereby promoting the drug resistance through the activation of a
distinct molecular pathways (Shi et al., 2025; Huang et al., 2025; Xu
et al., 2020). Similarly, TRDMT1 is capable of methylate both tRNA
and mRNA, thereby promoting the stability of RNA and enhancing
protein synthesis (Lewinska et al., 2023). An increase in expression
of TRDMT1 and corresponding methylation levels results in the
heightened resistance observed in multiple cancer cells (Lewińska
et al., 2022; Lai et al., 2025). Conclusively, the CARMRs contribute to
the therapeutic failure through enhancing the methylation levels.
Furthermore, these findings may offer novel perspectives for
addressing resistance issues in advanced PCa, potentially leading
to the development of more effective treatment strategies.

We explored the relationship between prognostic genes and
TME at the single-cell level. Our findings showed that most of the
enriched genes were expressed in epithelial cells and T cells, which
constitute the majority of tumor tissue and play an important role in
the progression of PCa. The analysis of cell-cell interactions
illustrated the strong interactions between T cells and others,
which indicated that the heterogeneity of T cells could guide
immunotherapy and determine patient prognosis. We subdivided
T cells and modeled the developmental trajectory of T cells. CD8+ T
effector cells and CD4+ T regulatory cells evolved from CD4+ T
conventional cells and CD8+ T naïve cells. Therefore, we
hypothesized that the expression of prognostic genes may
promote the transition to CD4+ T regulatory cells and contribute
to the poor prognosis. According to the results of our functional
enrichment analysis, prognostic genes may be crucial in the
differentiation of immune cells. Referring to other studies, we
acknowledge that immune cell differentiation may cause
immunosuppressive phenotypes. When monocytes transform to
dendritic cells via tumor stroma-derived factors, the expression
of CD14 and PD-L1 may elevate and hinder the destruction of
immune cells in PCa (Spary et al., 2014). Alternatively, inhibiting the
differentiation of MDSC and enhancing the proliferation of T cells

may reverse its immune phenotype (Peng et al., 2022). Further, we
noticed that target genes comprising CIITA, HSF2, KLF3 and
MORC2 are strongly linked with RNA methylation (Mishra
et al., 2010; Zhu J. et al., 2023; Tan et al., 2023; Chen F. et al.,
2021). Of note, HSF2 impacts cell-cell adhesion and is positively
correlated with a favorable prognosis (Björk et al., 2016). These
observations are consistent with our GSEA results. Our current
findings show that CARMRs may reshape TME by affecting the
differentiation of immune cells. Eventually, this leads to
enhancement of an invasive phenotype in PCa.

However, our study has some limitations. First, our analysis was
based on a secondary analysis of public database data. These
retrospective data were subject to selection biases, and this may
have affected the accuracy of our analytical results. Additionally,
there was a lack of a sufficient number of PCa samples to validate the
applicability of the model, and the specific mechanisms by which the
model genes may regulate PCa development remain elusive.
Selection and sample biases may have been generated in our
study since the clinical samples were selected from variously
sourced datasets. Therefore, further in vitro and in vivo
experimentation is needed to validate our results. Utilizing cell
line experimentation, we would be able to compare the
expression of prognostic genes of different invasive capacities in
PCa cells to support our results.

5 Conclusion

To summarize, we have identified a correlation between RNA
methylation and cuproptosis and were able to select six CARMRs to
construct a risk stratification model for patients with PCa.
Additionally, the relationship between TME and risk subgroups
was analyzed by integrating single cell and bulk sequencing data to
enable individualized immunotherapy. Through an in-depth
investigation, we believe that our study has revealed a potential
mechanism of PCa tumorigenesis that will support a higher efficacy
therapeutic program.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

Author contributions

JW: Conceptualization, Data curation, Resources, Software,
Writing–original draft. WW: Formal Analysis, Investigation,
Methodology, Writing–original draft. JQ: Resources, Software,
Supervision, Validation, Writing–review and editing. ZC: Formal
Analysis, Investigation, Methodology, Writing–original draft. RZ:
Writing–review and editing, Resources, Validation. PG: Funding
acquisition, Resources, Writing–review and editing, Methodology,
Software, Validation. SF: Funding acquisition, Resources,
Writing–review and editing, Conceptualization, Formal Analysis,
Investigation, Project administration.

Frontiers in Pharmacology frontiersin.org14

Wu et al. 10.3389/fphar.2025.1573611

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1573611


Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This workwas supported by
the Natural Science Foundation of Anhui Province (2208085MH208),
the Key Research and Development Program of Anhui Province
(2022e07020037) and the Scientific Research and Practical Innovation
Project of Postgraduates of Anhui Medical University (YJS20230188).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2025.1573611/
full#supplementary-material

SUPPLEMENTARY FIGURE S1
Integrating single-cell data of PCa cells, intercellular communication analysis
and the alteration of genes in pseudotime analysis. (A-B) The single-cell
atlas of PCa before and after harmony processes. (C-F)Heatmaps depicting
the network centrality scores and potential roles of the top four signaling. (G)
Heatmaps manifesting the expression of differentially expressed genes
(DEGs) with the timing changes.

References

Agarwal, S., Amin, K. S., Jagadeesh, S., Baishay, G., Rao, P. G., Barua, N. C., et al.
(2013). Mahanine restores RASSF1A expression by down-regulating DNMT1 and
DNMT3B in prostate cancer cells. Mol. cancer 12 (1), 99. doi:10.1186/1476-4598-
12-99

Alvisi, G., Termanini, A., Soldani, C., Portale, F., Carriero, R., Pilipow, K., et al. (2022).
Multimodal single-cell profiling of intrahepatic cholangiocarcinoma defines
hyperactivated Tregs as a potential therapeutic target. J. Hepatol. 77 (5), 1359–1372.
doi:10.1016/j.jhep.2022.05.043

An, Y., and Duan, H. (2022). The role of m6A RNA methylation in cancer
metabolism. Mol. cancer 21 (1), 14. doi:10.1186/s12943-022-01500-4

Bach, C., Pisipati, S., Daneshwar, D., Wright, M., Rowe, E., Gillatt, D., et al. (2014).
The status of surgery in the management of high-risk prostate cancer. Nat. Rev. Urol. 11
(6), 342–351. doi:10.1038/nrurol.2014.100

Barbieri, I., and Kouzarides, T. (2020). Role of RNAmodifications in cancer.Nat. Rev.
Cancer 20 (6), 303–322. doi:10.1038/s41568-020-0253-2

Barros-Silva, D., Lobo, J., Guimarães-Teixeira, C., Carneiro, I., Oliveira, J., Martens-
Uzunova, E. S., et al. (2020). VIRMA-dependent N6-methyladenosine modifications
regulate the expression of long non-coding RNAs CCAT1 and CCAT2 in prostate
cancer. Cancers (Basel) 12 (4), 771. doi:10.3390/cancers12040771

Baumfalk, D. R., Opoku-Acheampong, A. B., Caldwell, J. T., Ade, C. J., Copp, S. W.,
Musch, T. I., et al. (2019). Effects of prostate cancer and exercise training on left
ventricular function and cardiac and skeletal muscle mass. J. Appl. Physiol. 126 (3),
668–680. doi:10.1152/japplphysiol.00829.2018

Bian, X., Wang, W., Abudurexiti, M., Zhang, X., Ma, W., Shi, G., et al. (2024).
Integration analysis of single-cell multi-omics reveals prostate cancer heterogeneity.
Adv. Sci. 11 (18), e2305724. doi:10.1002/advs.202305724

Björk, J. K., Åkerfelt, M., Joutsen, J., Puustinen, M. C., Cheng, F., Sistonen, L., et al.
(2016). Heat-shock factor 2 is a suppressor of prostate cancer invasion. Oncogene 35
(14), 1770–1784. doi:10.1038/onc.2015.241

Boucher, Y., Posada, J. M., Subudhi, S., Kumar, A. S., Rosario, S. R., Gu, L., et al.
(2023). Addition of losartan to FOLFIRINOX and chemoradiation reduces
immunosuppression-associated genes, Tregs, and FOXP3+ cancer cells in locally
advanced pancreatic cancer. Clin. Cancer Res. 29 (8), 1605–1619. doi:10.1158/1078-
0432.CCR-22-1630

Campbell, K. J., and Leung, H. Y. (2021). Evasion of cell death: a contributory factor in
prostate cancer development and treatment resistance. Cancer Lett. 520, 213–221.
doi:10.1016/j.canlet.2021.07.045

Chen, F., Fan, Y., Liu, X., Zhang, J., Shang, Y., Zhang, B., et al. (2021b). Pan-cancer
integrated analysis of HSF2 expression, prognostic value and potential implications for
cancer immunity. Front. Mol. Biosci. 8, 789703. doi:10.3389/fmolb.2021.789703

Chen, L., Min, J., and Wang, F. (2022). Copper homeostasis and cuproptosis in
health and disease. Signal Transduct. Target. Ther. 7 (1), 378. doi:10.1038/s41392-
022-01229-y

Chen, T., Ueda, Y., Dodge, J. E., Wang, Z., and Li, E. (2003). Establishment and
maintenance of genomic methylation patterns in mouse embryonic stem cells by
Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23 (16), 5594–5605. doi:10.1128/mcb.23.16.
5594-5605.2003

Chen, X. Y., Zhang, J., and Zhu, J. S. (2019). The role of m(6)A RNA methylation in
human cancer. Mol. cancer 18 (1), 103. doi:10.1186/s12943-019-1033-z

Chen, Y. S., Yang, W. L., Zhao, Y. L., and Yang, Y. G. (2021a). Dynamic
transcriptomic m5C and its regulatory role in RNA processing. Wiley Interdiscip. Rev.
RNA. 12 (4), e1639. doi:10.1002/wrna.1639

Craven, K. E., Gökmen-Polar, Y., and Badve, S. S. (2021). CIBERSORT analysis of
TCGA and METABRIC identifies subgroups with better outcomes in triple negative
breast cancer. Sci. Rep. 11 (1), 4691. doi:10.1038/s41598-021-83913-7

Ding, L., Wang, R., Zheng, Q., Shen, D., Wang, H., Lu, Z., et al. (2022). circPDE5A
regulates prostate cancer metastasis via controlling WTAP-dependent N6-
methyladenisine methylation of EIF3C mRNA. J. Exp. Clin. Cancer Res. 41 (1), 187.
doi:10.1186/s13046-022-02391-5

Erlandsson, A., Carlsson, J., Lundholm, M., Fält, A., Andersson, S. O., Andrén, O.,
et al. (2019). M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate
79 (4), 363–369. doi:10.1002/pros.23742

Fizazi, K., Foulon, S., Carles, J., Roubaud, G., McDermott, R., Fléchon, A., et al. (2022).
Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de
novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-
label, randomised, phase 3 study with a 2 × 2 factorial design. Lancet 399 (10336),
1695–1707. doi:10.1016/S0140-6736(22)00367-1

Gao, X., Zhao, H., Liu, J., Wang, M., Dai, Z., Hao, W., et al. (2024). Enzalutamide
sensitizes castration-resistant prostate cancer to copper-mediated cell death.Adv. Sci. 11
(30), e2401396. doi:10.1002/advs.202401396

Guo, X., Zhang, Y., Zheng, L., Zheng, C., Song, J., Zhang, Q., et al. (2018). Global
characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat.
Med. 24 (7), 978–985. doi:10.1038/s41591-018-0045-3

Gupte, A., and Mumper, R. J. (2009). Elevated copper and oxidative stress in cancer
cells as a target for cancer treatment. Cancer Treat. Rev. 35 (1), 32–46. doi:10.1016/j.ctrv.
2008.07.004

Haigh, D. B.,Woodcock, C. L., Lothion-Roy, J., Harris, A. E., Metzler, V.M., Persson, J. L.,
et al. (2022). The METTL3 RNA methyltransferase regulates transcriptional networks in
prostate cancer. Cancers (Basel) 14 (20), 5148. doi:10.3390/cancers14205148

Hawley, J. E., Obradovic, A. Z., Dallos, M. C., Lim, E. A., Runcie, K., Ager, C. R., et al.
(2023). Anti-PD-1 immunotherapy with androgen deprivation therapy induces robust
immune infiltration in metastatic castration-sensitive prostate cancer. Cancer Cell 41
(11), 1972–1988.e5. doi:10.1016/j.ccell.2023.10.006

He, R., Man, C., Huang, J., He, L., Wang, X., Lang, Y., et al. (2022). Identification of
RNA methylation-related lncRNAs signature for predicting hot and cold tumors and
prognosis in colon cancer. Front. Genet. 13, 870945. doi:10.3389/fgene.2022.870945

Frontiers in Pharmacology frontiersin.org15

Wu et al. 10.3389/fphar.2025.1573611

https://www.frontiersin.org/articles/10.3389/fphar.2025.1573611/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2025.1573611/full#supplementary-material
https://doi.org/10.1186/1476-4598-12-99
https://doi.org/10.1186/1476-4598-12-99
https://doi.org/10.1016/j.jhep.2022.05.043
https://doi.org/10.1186/s12943-022-01500-4
https://doi.org/10.1038/nrurol.2014.100
https://doi.org/10.1038/s41568-020-0253-2
https://doi.org/10.3390/cancers12040771
https://doi.org/10.1152/japplphysiol.00829.2018
https://doi.org/10.1002/advs.202305724
https://doi.org/10.1038/onc.2015.241
https://doi.org/10.1158/1078-0432.CCR-22-1630
https://doi.org/10.1158/1078-0432.CCR-22-1630
https://doi.org/10.1016/j.canlet.2021.07.045
https://doi.org/10.3389/fmolb.2021.789703
https://doi.org/10.1038/s41392-022-01229-y
https://doi.org/10.1038/s41392-022-01229-y
https://doi.org/10.1128/mcb.23.16.5594-5605.2003
https://doi.org/10.1128/mcb.23.16.5594-5605.2003
https://doi.org/10.1186/s12943-019-1033-z
https://doi.org/10.1002/wrna.1639
https://doi.org/10.1038/s41598-021-83913-7
https://doi.org/10.1186/s13046-022-02391-5
https://doi.org/10.1002/pros.23742
https://doi.org/10.1016/S0140-6736(22)00367-1
https://doi.org/10.1002/advs.202401396
https://doi.org/10.1038/s41591-018-0045-3
https://doi.org/10.1016/j.ctrv.2008.07.004
https://doi.org/10.1016/j.ctrv.2008.07.004
https://doi.org/10.3390/cancers14205148
https://doi.org/10.1016/j.ccell.2023.10.006
https://doi.org/10.3389/fgene.2022.870945
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1573611


Heidegger, I., Fotakis, G., Offermann, A., Goveia, J., Daum, S., Salcher, S., et al. (2022).
Comprehensive characterization of the prostate tumor microenvironment identifies
CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate
cancer. Mol. Cancer 21 (1), 132. doi:10.1186/s12943-022-01597-7

Huang, S., Shi, D., Dai, S., Jiang, X., Wang, R., Yang, M., et al. (2025).
RNF31 induces paclitaxel resistance by sustaining ALYREF cytoplasmic-nuclear
shuttling in human triple-negative breast cancer. Clin. Transl. Med. 15 (2),
e70203. doi:10.1002/ctm2.70203

Jain, S., Lyons, C. A., Walker, S. M., McQuaid, S., Hynes, S. O., Mitchell, D. M., et al.
(2018). Validation of a Metastatic Assay using biopsies to improve risk stratification in
patients with prostate cancer treated with radical radiation therapy. Ann. Oncol. 29 (1),
215–222. doi:10.1093/annonc/mdx637

Jairath, N. K., Farha, M. W., Srinivasan, S., Jairath, R., Green, M. D., Dess, R. T., et al.
(2020). Tumor immune microenvironment clusters in localized prostate
adenocarcinoma: prognostic impact of macrophage enriched/plasma cell non-
enriched subtypes. J. Clin. Med. 9 (6), 1973. doi:10.3390/jcm9061973

Kench, J. G., Amin, M. B., Berney, D. M., Compérat, E. M., Cree, I. A., Gill, A. J., et al.
(2022). WHOClassification of Tumours fifth edition: evolving issues in the
classification, diagnosis, and prognostication of prostate cancer. Histopathology 81
(4), 447–458. doi:10.1111/his.14711

Kfoury, Y., Baryawno, N., Severe, N., Mei, S., Gustafsson, K., Hirz, T., et al. (2021).
Human prostate cancer bone metastases have an actionable immunosuppressive
microenvironment. Cancer Cell 39 (11), 1464–1478.e8. doi:10.1016/j.ccell.2021.
09.005

Lai, J., Chen, L., Li, Q., Zhao, G., Li, X., Guo, D., et al. (2025). tRNA methyltransferase
DNMT2 promotes hepatocellular carcinoma progression and enhances Bortezomib
resistance through inhibiting TNFSF10. Cell. Signal. 127, 111533. doi:10.1016/j.cellsig.
2024.111533

Lamboley, C. R., Xu, H., Dutka, T. L., Hanson, E. D., Hayes, A., Violet, J. A., et al.
(2018). Effect of androgen deprivation therapy on the contractile properties of type I
and type II skeletal muscle fibres in men with non-metastatic prostate cancer. Clin.
Exp. Pharmacol. Physiol. 45 (2), 146–154. doi:10.1111/1440-1681.12873

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., and Storey, J. D. (2012). The sva
package for removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics 28 (6), 882–883. doi:10.1093/bioinformatics/bts034

Lewinska, A., Adamczyk-Grochala, J., and Wnuk, M. (2023). TRDMT1-mediated
RNA C-5 methylation as a novel target in anticancer therapy. Biochimica Biophys. Acta
Rev. Cancer 1878 (6), 188964. doi:10.1016/j.bbcan.2023.188964

Lewińska, A., Wróbel, K., Błoniarz, D., Adamczyk-Grochala, J., Wołowiec, S., and
Wnuk, M. (2022). Lapatinib- and fulvestrant-PAMAM dendrimer conjugates promote
apoptosis in chemotherapy-induced senescent breast cancer cells with different receptor
status. Biomater. Adv. 140, 213047. doi:10.1016/j.bioadv.2022.213047

Li, D., Shi, Z., Liu, X., Jin, S., Chen, P., Zhang, Y., et al. (2023). Identification and
development of a novel risk model based on cuproptosis-associated RNA methylation
regulators for predicting prognosis and characterizing immune status in hepatocellular
carcinoma. Hepatol. Int. 17 (1), 112–130. doi:10.1007/s12072-022-10460-2

Li, J., Xie, H., Ying, Y., Chen, H., Yan, H., He, L., et al. (2020). YTHDF2 mediates the
mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-
methyladenosine-dependent way in prostate cancer. Mol. Cancer 19 (1), 152. doi:10.
1186/s12943-020-01267-6

Li, M., Tao, Z., Zhao, Y., Li, L., Zheng, J., Li, Z., et al. (2022a). 5-methylcytosine RNA
methyltransferases and their potential roles in cancer. J. Transl. Med. 20 (1), 214. doi:10.
1186/s12967-022-03427-2

Li, Y., Lu, F., and Yin, Y. (2022b). Applying logistic LASSO regression for the
diagnosis of atypical Crohn’s disease. Sci. Rep. 12 (1), 11340. doi:10.1038/s41598-022-
15609-5

Liu, S., Tao, Z., Lou, J., Li, R., Fu, X., Xu, J., et al. (2023). CD4(+)CCR8(+) Tregs in
ovarian cancer: a potential effector Tregs for immune regulation. J. Transl. Med. 21 (1),
803. doi:10.1186/s12967-023-04686-3

Liu, T. T., Li, R., Huo, C., Li, J. P., Yao, J., Ji, X. L., et al. (2021). Identification of CDK2-
related immune forecast model and ceRNA in lung adenocarcinoma, a pan-cancer
analysis. Front. Cell Dev. Biol. 9, 682002. doi:10.3389/fcell.2021.682002

Liyanage, C., Fernando, A., Chamberlain, A., Moradi, A., and Batra, J. (2024). RNA
m6a methylation regulator expression in castration-resistant prostate cancer
progression and its genetic associations. Cancers (Basel) 16 (7), 1303. doi:10.3390/
cancers16071303

Long, S., Yan, Y., Xu, H., Wang, L., Jiang, J., Xu, Z., et al. (2023). Insights into the
regulatory role of RNAmethylation modifications in glioma. J. Transl. Med. 21 (1), 810.
doi:10.1186/s12967-023-04653-y

Ma, X., Guo, J., Liu, K., Chen, L., Liu, D., Dong, S., et al. (2020). Identification of a
distinct luminal subgroup diagnosing and stratifying early stage prostate cancer by
tissue-based single-cell RNA sequencing. Mol. Cancer 19 (1), 147. doi:10.1186/s12943-
020-01264-9

Ma, Z., Zhang, W., Dong, B., Xin, Z., Ji, Y., Su, R., et al. (2022). Docetaxel remodels
prostate cancer immune microenvironment and enhances checkpoint inhibitor-based
immunotherapy. Theranostics 12 (11), 4965–4979. doi:10.7150/thno.73152

Makowska, K. A., Hughes, R. E., White, K. J., Wells, C. M., and Peckham, M.
(2015). Specific myosins control actin organization, cell morphology, and migration
in prostate cancer cells. Cell Rep. 13 (10), 2118–2125. doi:10.1016/j.celrep.2015.
11.012

Meng, F., Han, X., Min, Z., He, X., and Zhu, S. (2021). Prognostic signatures
associated with high infiltration of Tregs in bone metastatic prostate cancer. Aging
13 (13), 17442–17461. doi:10.18632/aging.203234

Mishra, D. K., Chen, Z., Wu, Y., Sarkissyan, M., Koeffler, H. P., and Vadgama, J. V.
(2010). Global methylation pattern of genes in androgen-sensitive and androgen-
independent prostate cancer cells. Mol. Cancer Ther. 9 (1), 33–45. doi:10.1158/1535-
7163.MCT-09-0486

Mortensen, M. M., Høyer, S., Lynnerup, A. S., Ørntoft, T. F., Sørensen, K. D., Borre,
M., et al. (2015). Expression profiling of prostate cancer tissue delineates genes
associated with recurrence after prostatectomy. Sci. Rep. 5, 16018. doi:10.1038/
srep16018

Nulali, J., Zhang, K., Long, M., Wan, Y., Liu, Y., Zhang, Q., et al. (2024). ALYREF-
Mediated RNA 5-methylcytosine modification promotes hepatocellular carcinoma
progression via stabilizing EGFR mRNA and pSTAT3 activation. Int. J. Biol. Sci. 20
(1), 331–346. doi:10.7150/ijbs.82316

Pedros, C., Canonigo-Balancio, A. J., Kong, K. F., and Altman, A. (2017).
Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing
tumor immunity. JCI insight. 2 (23), e95692. doi:10.1172/jci.insight.95692

Peng, S., Hu, P., Xiao, Y. T., Lu, W., Guo, D., Hu, S., et al. (2022). Single-cell analysis
reveals EP4 as a target for restoring T-cell infiltration and sensitizing prostate cancer to
immunotherapy. Clin. Cancer Res. 28 (3), 552–567. doi:10.1158/1078-0432.CCR-21-
0299

Petrioli, R., Fiaschi, A. I., Francini, E., Pascucci, A., and Francini, G. (2008). The role of
doxorubicin and epirubicin in the treatment of patients with metastatic hormone-
refractory prostate cancer. Cancer Treat. Rev. 34 (8), 710–718. doi:10.1016/j.ctrv.2008.
05.004

Petrylak, D. P., Tangen, C. M., Hussain, M. H., Lara, P. N., Jr., Jones, J. A., Taplin, M.
E., et al. (2004). Docetaxel and estramustine compared with mitoxantrone and
prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 351 (15),
1513–1520. doi:10.1056/nejmoa041318

Pritchard, C. C., Mateo, J., Walsh, M. F., De Sarkar, N., Abida, W., Beltran, H., et al.
(2016). Inherited DNA-repair gene mutations in men with metastatic prostate cancer.
N. Engl. J. Med. 375 (5), 443–453. doi:10.1056/NEJMoa1603144

Qi, F., Shen, W., Wei, X., Cheng, Y., Xu, F., Zheng, Y., et al. (2023). CSNK1D-
mediated phosphorylation of HNRNPA2B1 induces miR-25-3p/miR-93-5p
maturation to promote prostate cancer cell proliferation and migration through
m(6)A-dependent manner. Cell. Mol. life Sci. 80 (6), 156. doi:10.1007/s00018-023-
04798-5

Qing, J., Li, C., Hu, X., Song, W., Tirichen, H., Yaigoub, H., et al. (2022).
Differentiation of T Helper 17 cells may mediate the abnormal humoral immunity
in IgA nephropathy and inflammatory bowel disease based on shared genetic effects.
Front. Immunol. 13, 916934. doi:10.3389/fimmu.2022.916934

Qiu, S. Q., Waaijer, S. J. H., Zwager, M. C., de Vries, E. G. E., van der Vegt, B., and
Schröder, C. P. (2018). Tumor-associated macrophages in breast cancer: innocent
bystander or important player? Cancer Treat. Rev. 70, 178–189. doi:10.1016/j.ctrv.2018.
08.010

Rocha-Rodrigues, S., Matos, A., Afonso, J., Mendes-Ferreira, M., Abade, E., Teixeira,
E., et al. (2021). Skeletal muscle-adipose tissue-tumor Axis: molecular mechanisms
linking exercise training in prostate cancer. Int. J. Mol. Sci. 22 (9), 4469. doi:10.3390/
ijms22094469

Rollins, K. S., Esau, P. J., Gittemeier, E. M., Opoku-Acheampong, A. B., Behnke, B. J.,
Copp, S. W., et al. (2017). Prostate Cancer Reduces Endurance Exercise Capacity in the
Rat: Possible Roles of Reduced Cardiac Mass and Function. The FASEB Journal, 31.
doi:10.1096/fasebj.31.1_supplement.1020.14

Sekhoacha, M., Riet, K., Motloung, P., Gumenku, L., Adegoke, A., and Mashele, S.
(2022). Prostate cancer review: genetics, diagnosis, treatment options, and alternative
approaches. Molecules 27 (17), 5730. doi:10.3390/molecules27175730

Shi, C. J., Pang, F. X., Lei, Y. H., Deng, L. Q., Pan, F. Z., Liang, Z. Q., et al. (2025). 5-
methylcytosine methylation of MALAT1 promotes resistance to sorafenib in
hepatocellular carcinoma through ELAVL1/SLC7A11-mediated ferroptosis. Drug
Resist. Updat 78, 101181. doi:10.1016/j.drup.2024.101181

Sokoloff, M. H., Rinker-Schaeffer, C. W., Chung, L. W., and Brendler, C. B. (2004).
Adjunctive therapy for men with high risk localized and locally advanced prostate
cancer: targeting disseminated tumor cells. J. Urol. 172 (6 Pt 2), 2539–2544. doi:10.1097/
01.ju.0000145044.97177.09

Spary, L. K., Salimu, J., Webber, J. P., Clayton, A., Mason, M. D., and Tabi, Z. (2014).
Tumor stroma-derived factors skew monocyte to dendritic cell differentiation toward a
suppressive CD14(+) PD-L1(+) phenotype in prostate cancer. Oncoimmunology 3 (9),
e955331. doi:10.4161/21624011.2014.955331

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71 (3), 209–249. doi:10.
3322/caac.21660

Frontiers in Pharmacology frontiersin.org16

Wu et al. 10.3389/fphar.2025.1573611

https://doi.org/10.1186/s12943-022-01597-7
https://doi.org/10.1002/ctm2.70203
https://doi.org/10.1093/annonc/mdx637
https://doi.org/10.3390/jcm9061973
https://doi.org/10.1111/his.14711
https://doi.org/10.1016/j.ccell.2021.09.005
https://doi.org/10.1016/j.ccell.2021.09.005
https://doi.org/10.1016/j.cellsig.2024.111533
https://doi.org/10.1016/j.cellsig.2024.111533
https://doi.org/10.1111/1440-1681.12873
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1016/j.bbcan.2023.188964
https://doi.org/10.1016/j.bioadv.2022.213047
https://doi.org/10.1007/s12072-022-10460-2
https://doi.org/10.1186/s12943-020-01267-6
https://doi.org/10.1186/s12943-020-01267-6
https://doi.org/10.1186/s12967-022-03427-2
https://doi.org/10.1186/s12967-022-03427-2
https://doi.org/10.1038/s41598-022-15609-5
https://doi.org/10.1038/s41598-022-15609-5
https://doi.org/10.1186/s12967-023-04686-3
https://doi.org/10.3389/fcell.2021.682002
https://doi.org/10.3390/cancers16071303
https://doi.org/10.3390/cancers16071303
https://doi.org/10.1186/s12967-023-04653-y
https://doi.org/10.1186/s12943-020-01264-9
https://doi.org/10.1186/s12943-020-01264-9
https://doi.org/10.7150/thno.73152
https://doi.org/10.1016/j.celrep.2015.11.012
https://doi.org/10.1016/j.celrep.2015.11.012
https://doi.org/10.18632/aging.203234
https://doi.org/10.1158/1535-7163.MCT-09-0486
https://doi.org/10.1158/1535-7163.MCT-09-0486
https://doi.org/10.1038/srep16018
https://doi.org/10.1038/srep16018
https://doi.org/10.7150/ijbs.82316
https://doi.org/10.1172/jci.insight.95692
https://doi.org/10.1158/1078-0432.CCR-21-0299
https://doi.org/10.1158/1078-0432.CCR-21-0299
https://doi.org/10.1016/j.ctrv.2008.05.004
https://doi.org/10.1016/j.ctrv.2008.05.004
https://doi.org/10.1056/nejmoa041318
https://doi.org/10.1056/NEJMoa1603144
https://doi.org/10.1007/s00018-023-04798-5
https://doi.org/10.1007/s00018-023-04798-5
https://doi.org/10.3389/fimmu.2022.916934
https://doi.org/10.1016/j.ctrv.2018.08.010
https://doi.org/10.1016/j.ctrv.2018.08.010
https://doi.org/10.3390/ijms22094469
https://doi.org/10.3390/ijms22094469
https://doi.org/10.1096/fasebj.31.1_supplement.1020.14
https://doi.org/10.3390/molecules27175730
https://doi.org/10.1016/j.drup.2024.101181
https://doi.org/10.1097/01.ju.0000145044.97177.09
https://doi.org/10.1097/01.ju.0000145044.97177.09
https://doi.org/10.4161/21624011.2014.955331
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1573611


Tan, Y., Zheng, T., Su, Z., Chen, M., Chen, S., Zhang, R., et al. (2023). Alternative
polyadenylation reprogramming of MORC2 induced by NUDT21 loss promotes KIRC
carcinogenesis. JCI insight 8 (18), e162893. doi:10.1172/jci.insight.162893

Tannock, I. F., de Wit, R., Berry, W. R., Horti, J., Pluzanska, A., Chi, K. N., et al.
(2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced
prostate cancer. N. Engl. J. Med. 351 (15), 1502–1512. doi:10.1056/nejmoa040720

Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S., et al.
(2010). Integrative genomic profiling of human prostate cancer. Cancer Cell 18 (1),
11–22. doi:10.1016/j.ccr.2010.05.026

Teo, M. Y., Rathkopf, D. E., and Kantoff, P. (2019). Treatment of advanced prostate
cancer. Annu. Rev. Med. 70, 479–499. doi:10.1146/annurev-med-051517-011947

Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al.
(2022). Copper induces cell death by targeting lipoylated TCA cycle proteins. Science
375 (6586), 1254–1261. doi:10.1126/science.abf0529

Tuong, Z. K., Loudon, K. W., Berry, B., Richoz, N., Jones, J., Tan, X., et al. (2021).
Resolving the immune landscape of human prostate at a single-cell level in health and
cancer. Cell Rep. 37 (12), 110132. doi:10.1016/j.celrep.2021.110132

Uygur, B., Leikina, E., Melikov, K., Villasmil, R., Verma, S. K., Vary, C. P. H., et al.
(2019). Interactions with muscle cells boost fusion, stemness, and drug resistance of
prostate cancer cells. Mol. Cancer Res. 17 (3), 806–820. doi:10.1158/1541-7786.MCR-
18-0500

Vietri, M. T., D’Elia, G., Caliendo, G., Resse, M., Casamassimi, A., Passariello, L., et al.
(2021). Hereditary prostate cancer: genes related, target therapy and prevention. Int.
J. Mol. Sci. 22 (7), 3753. doi:10.3390/ijms22073753

Wang, H., Liu, J., Zhu, X., Yang, B., He, Z., and Yao, X. (2023). AZGP1P2/UBA1/
RBM15 cascade mediates the fate determinations of prostate cancer stem cells and
promotes therapeutic effect of docetaxel in castration-resistant prostate cancer via
TPM1 m6A modification. Research. 6, 0252. doi:10.34133/research.0252

Wang, Z., Chao, Z., Wang, Q., Zou, F., Song, T., Xu, L., et al. (2024). EXO1/P53/
SREBP1 axis-regulated lipid metabolism promotes prostate cancer progression.
J. Transl. Med. 22 (1), 104. doi:10.1186/s12967-023-04822-z

Wen, H., Qu, C., Wang, Z., Gao, H., Liu, W., Wang, H., et al. (2023). Cuproptosis
enhances docetaxel chemosensitivity by inhibiting autophagy via the DLAT/mTOR
pathway in prostate cancer. FASEB J. 37 (9), e23145. doi:10.1096/fj.202300980r

Wu, N., Wang, Y., Wang, K., Zhong, B., Liao, Y., Liang, J., et al. (2022). Cathepsin K
regulates the tumor growth and metastasis by IL-17/CTSK/EMT axis and mediates
M2 macrophage polarization in castration-resistant prostate cancer. Cell death and Dis.
13 (9), 813. doi:10.1038/s41419-022-05215-8

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler 4.0: a
universal enrichment tool for interpreting omics data. Innov. Camb. 2 (3), 100141.
doi:10.1016/j.xinn.2021.100141

Xie, T., Fu, D. J., Li, Z. M., Lv, D. J., Song, X. L., Yu, Y. Z., et al. (2022).
CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between
prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/
CCR6 signaling. Mol. Cancer 21 (1), 173. doi:10.1186/s12943-022-01630-9

Xu, Q., Chen, S., Hu, Y., and Huang, W. (2021). Landscape of immune
microenvironment under immune cell infiltration pattern in breast cancer. Front.
Immunol. 12, 711433. doi:10.3389/fimmu.2021.711433

Xu, Y., Pachnikova, G., Wang, H., Wu, Y., Przybilla, D., Schäfer, R., et al. (2022).
IC50: an unsuitable measure for large-sized prostate cancer spheroids in drug
sensitivity evaluation. Bosnian J. Basic Med. Sci. 22 (4), 580–592. doi:10.17305/
bjbms.2022.7279

Xu, Z., Li, X., Li, H., Nie, C., Liu, W., Li, S., et al. (2020). Suppression of DDX39B
sensitizes ovarian cancer cells to DNA-damaging chemotherapeutic agents via
destabilizing BRCA1 mRNA. Oncogene 39 (47), 7051–7062. doi:10.1038/s41388-020-
01482-x

Yang, B., Wang, J. Q., Tan, Y., Yuan, R., Chen, Z. S., and Zou, C. (2021). RNA
methylation and cancer treatment. Pharmacol. Res. 174, 105937. doi:10.1016/j.phrs.
2021.105937

Ye, L., Zhang, T., Kang, Z., Guo, G., Sun, Y., Lin, K., et al. (2019). Tumor-infiltrating
immune cells act as a marker for prognosis in colorectal cancer. Front. Immunol. 10,
2368. doi:10.3389/fimmu.2019.02368

Ye, S., Wang, H., He, K., Shen, H., Peng, M., Nian, Y., et al. (2020). Gene set based
systematic analysis of prostate cancer and its subtypes. Future Oncol. 16 (2), 4381–4393.
doi:10.2217/fon-2019-0459

Yu, L., Shen, N., Shi, Y., Shi, X., Fu, X., Li, S., et al. (2022). Characterization of cancer-
related fibroblasts (CAF) in hepatocellular carcinoma and construction of CAF-based
risk signature based on single-cell RNA-seq and bulk RNA-seq data. Front. Immunol.
13, 1009789. doi:10.3389/fimmu.2022.1009789

Zaidi, S., Park, J., Chan, J. M., Roudier, M. P., Zhao, J. L., Gopalan, A., et al. (2024).
Single-cell analysis of treatment-resistant prostate cancer: implications of cell state
changes for cell surface antigen-targeted therapies. Proc. Natl. Acad. Sci. U. S. A. 121
(28), e2322203121. doi:10.1073/pnas.2322203121

Zhang, J., Wei, J., Sun, R., Sheng, H., Yin, K., Pan, Y., et al. (2023a). A lncRNA from
the FTO locus acts as a suppressor of the m(6)A writer complex and p53 tumor
suppression signaling. Mol. Cell 83 (15), 2692–2708.e7. doi:10.1016/j.molcel.2023.
06.024

Zhang, Q., Liu, F., Chen, W., Miao, H., Liang, H., Liao, Z., et al. (2021). The role of
RNA m(5)C modification in cancer metastasis. Int. J. Biol. Sci. 17 (13), 3369–3380.
doi:10.7150/ijbs.61439

Zhang, Y., Chen, X. N., Zhang, H., Wen, J. K., Gao, H. T., Shi, B., et al. (2023b).
CDK13 promotes lipid deposition and prostate cancer progression by stimulating
NSUN5-mediated m5C modification of ACC1 mRNA. Cell death Differ. 30 (12),
2462–2476. doi:10.1038/s41418-023-01223-z

Zhao, Y., Sun, H., Zheng, J., and Shao, C. (2021). Analysis of RNAm(6)A methylation
regulators and tumour immune cell infiltration characterization in prostate cancer.
Artif. Cells, Nanomedicine, Biotechnol. 49 (1), 407–435. doi:10.1080/21691401.2021.
1912759

Zhao, Y., Xing, C., and Peng, H. (2024c). ALYREF (Aly/REF export factor): a potential
biomarker for predicting cancer occurrence and therapeutic efficacy. Life Sci. 338,
122372. doi:10.1016/j.lfs.2023.122372

Zhao, Z., Miao, Z., Hou, Y., Zhong, Y., Zhang, X., and Fang, X. (2024a). A novel
signature constructed by cuproptosis-related RNA methylation regulators suggesting
downregulation of YTHDC2 may induce cuproptosis resistance in colorectal cancer.
Int. Immunopharmacol. 139, 112691. doi:10.1016/j.intimp.2024.112691

Zhao, Z., Zhou, Y., Lv, P., Zhou, T., Liu, H., Xie, Y., et al. (2024b). NSUN4 mediated
RNA 5-methylcytosine promotes the malignant progression of glioma through
improving the CDC42 mRNA stabilization. Cancer Lett. 597, 217059. doi:10.1016/j.
canlet.2024.217059

Zhong, L., Wu, J., Zhou, B., Kang, J., Wang, X., Ye, F., et al. (2024). ALYREF recruits
ELAVL1 to promote colorectal tumorigenesis via facilitating RNAm5C recognition and
nuclear export. NPJ Precis. Oncol. 8 (1), 243. doi:10.1038/s41698-024-00737-0

Zhu, A., Hopkins, K. M., Friedman, R. A., Bernstock, J. D., Broustas, C. G., and
Lieberman, H. B. (2021). DNMT1 and DNMT3B regulate tumorigenicity of human
prostate cancer cells by controlling RAD9 expression through targeted methylation.
Carcinogenesis 42 (2), 220–231. doi:10.1093/carcin/bgaa088

Zhu, J., Teng, H., Zhu, X., Yuan, J., Zhang, Q., and Zou, Y. (2023b). Pan-cancer
analysis of Krüppel-like factor 3 and its carcinogenesis in pancreatic cancer. Front.
Immunol. 14, 1167018. doi:10.3389/fimmu.2023.1167018

Zhu, M., Liu, D., Liu, G., Zhang, M., and Pan, F. (2023a). Caspase-linked programmed
cell death in prostate cancer: from apoptosis, necroptosis, and pyroptosis to
PANoptosis. Biomolecules 13 (12), 1715. doi:10.3390/biom13121715

Frontiers in Pharmacology frontiersin.org17

Wu et al. 10.3389/fphar.2025.1573611

https://doi.org/10.1172/jci.insight.162893
https://doi.org/10.1056/nejmoa040720
https://doi.org/10.1016/j.ccr.2010.05.026
https://doi.org/10.1146/annurev-med-051517-011947
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1016/j.celrep.2021.110132
https://doi.org/10.1158/1541-7786.MCR-18-0500
https://doi.org/10.1158/1541-7786.MCR-18-0500
https://doi.org/10.3390/ijms22073753
https://doi.org/10.34133/research.0252
https://doi.org/10.1186/s12967-023-04822-z
https://doi.org/10.1096/fj.202300980r
https://doi.org/10.1038/s41419-022-05215-8
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1186/s12943-022-01630-9
https://doi.org/10.3389/fimmu.2021.711433
https://doi.org/10.17305/bjbms.2022.7279
https://doi.org/10.17305/bjbms.2022.7279
https://doi.org/10.1038/s41388-020-01482-x
https://doi.org/10.1038/s41388-020-01482-x
https://doi.org/10.1016/j.phrs.2021.105937
https://doi.org/10.1016/j.phrs.2021.105937
https://doi.org/10.3389/fimmu.2019.02368
https://doi.org/10.2217/fon-2019-0459
https://doi.org/10.3389/fimmu.2022.1009789
https://doi.org/10.1073/pnas.2322203121
https://doi.org/10.1016/j.molcel.2023.06.024
https://doi.org/10.1016/j.molcel.2023.06.024
https://doi.org/10.7150/ijbs.61439
https://doi.org/10.1038/s41418-023-01223-z
https://doi.org/10.1080/21691401.2021.1912759
https://doi.org/10.1080/21691401.2021.1912759
https://doi.org/10.1016/j.lfs.2023.122372
https://doi.org/10.1016/j.intimp.2024.112691
https://doi.org/10.1016/j.canlet.2024.217059
https://doi.org/10.1016/j.canlet.2024.217059
https://doi.org/10.1038/s41698-024-00737-0
https://doi.org/10.1093/carcin/bgaa088
https://doi.org/10.3389/fimmu.2023.1167018
https://doi.org/10.3390/biom13121715
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1573611

	Exploring the impact of cuproptosis on prostate cancer prognosis via RNA methylation regulation based on single cell and bu ...
	1 Introduction
	2 Materials and methods
	2.1 Datasets acquisition and preprocessing
	2.2 Identification of prognostic CARMRs
	2.3 Construction and validation of a prognostic model and nomogram
	2.4 Function enrichment analysis
	2.5 Drug sensitivity and immune infiltration analysis
	2.6 Quality control and annotation of single-cell RNA sequencing data
	2.7 Cell-cell communication and pseudotime analysis
	2.8 Quantitative real-time PCR (qRT-PCR)
	2.9 Statistical analysis

	3 Results
	3.1 Identification of cuproptosis-associated RNA methylation regulators (CARMRs) and construction of a prognostic model inv ...
	3.2 Nomogram based on independent prognostic factors in patients with PCa and correlation between the CARMR signature genes ...
	3.3 Functional enrichment analysis and drug sensitivity analysis
	3.4 Immune cell infiltration and correlation analysis
	3.5 Distribution of prognostic genes in single-cell landscape
	3.6 Intracellular interactions, pseudotime, and function enrichment analysis revealing the role of T cells

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


