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Background: Glioma is a highly aggressive brain tumor with limited therapeutic
options and poor prognosis. While immune checkpoint inhibitors and molecular
therapies have emerged, effective biomarkers for patient stratification remain
scarce. Long non-coding RNAs (lncRNAs) associated with lysine crotonylation
(LCRlncRNAs) have been implicated in cancer progression, but their role in glioma
remains largely unexplored.

Methods: Transcriptomic and clinical data from The Cancer Genome Atlas
(TCGA) glioma cohort were analyzed to identify prognostic LCRlncRNAs. A
multigene risk score model was constructed using univariate Cox, LASSO, and
multivariate Cox regression analyses. Functional enrichment analyses (GO, KEGG,
GSEA) and immune landscape profiling (CIBERSORT, ssGSEA, ESTIMATE) were
performed to explore potential mechanisms. Associations with immune
checkpoint expression, tumor mutational burden (TMB), and microsatellite
instability (MSI) were also assessed. In addition, RT-qPCR, EdU, Transwell, and
xenograft experiments, as well as qPCR, Western blot, serum ELISA, and
immunohistochemistry (IHC) analyses, were conducted to validate the
functional and mechanistic roles of the representative LCRlncRNA POLR2J4.

Results: Six LCRlncRNAs were identified as independent prognostic factors, and
the risk scoremodel stratified patients into high- and low-risk groupswith distinct
survival outcomes. The high-risk group exhibited enriched immunosuppressive
features, including increased regulatory T cells, M2 macrophages, and elevated
expression of immune checkpoints (e.g., PD-L1, CTLA4). TIDE analysis indicated
poor immunotherapy response in high-risk patients. Drug sensitivity analysis
revealed that high-risk patients were more sensitive to DNA-damaging agents
such as cisplatin. Functional assays confirmed that POLR2J4 promotes glioma
proliferation, migration, and cisplatin resistance. Mechanistically,
POLR2J4 knockdown reduced the expression of drug resistance genes
(ABCB1, ABCC1, BCL2), decreased serum levels of IL-6 and TGF-β1, and
downregulated TGF-β1 and PD-L1 in tumor tissues, highlighting its role in
establishing an immunosuppressive, drug-resistant microenvironment.
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Conclusion:Our study demonstrates that LCRlncRNAs are closely linked to glioma
prognosis, immune microenvironment remodeling, and therapeutic response. The
LCRlncRNA-based risk model provides a promising tool for prognostic evaluation
and personalized therapy design in glioma.
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Introduction

Glioma is the most prevalent type of primary intracranial tumor,
accounting for approximately 30% of all brain neoplasms. Based on
malignancy, gliomas are classified into low-grade gliomas (LGG)
and glioblastomas (GBM), the latter being highly aggressive and
associated with a median survival of less than 15 months despite
maximal surgical resection and chemoradiotherapy (Ostrom et al.,
2023; Dymova et al., 2021; Rong et al., 2022). The poor prognosis of
GBM is largely attributed to its extensive inter- and intra-tumoral
heterogeneity, acquired resistance to temozolomide (TMZ), and an
immunosuppressive tumor microenvironment (Goenka et al., 2021;
Tan et al., 2020). While targeted therapies and immune checkpoint
inhibitors such as anti–PD-1/PD-L1 antibodies have shown promise
in certain glioma subsets, their clinical efficacy remains inconsistent,
underscoring the urgent need for novel prognostic biomarkers and
therapeutic targets.

Long non-coding RNAs (lncRNAs), defined as transcripts
exceeding 200 nucleotides without protein-coding potential, are
increasingly recognized as critical regulators of glioma biology. They
participate in chromatin remodeling, transcriptional control, and post-
transcriptional gene regulation, thereby influencing tumor proliferation,
invasion, immune evasion, and drug resistance (Ahmad et al., 2024; Zhu
et al., 2022). Recent studies have revealed that lncRNAs can modulate
treatment response by affecting the tumor immune landscape and key
signaling pathways such as PI3K/Akt and NF-κB (Yang et al., 2023).
However, the epigenetic mechanisms linking lncRNAs to immune
modulation and chemoresistance in glioma remain poorly understood.

Lysine crotonylation (Kcr), a recently discovered post-
translational modification, adds a crotonyl group to lysine
residues and has emerged as a key epigenetic mark associated
with active transcription, metabolic regulation, and immune
response (Zhang et al., 2022; Westerveld et al., 2025; Yang S.
et al., 2024). Dysregulated crotonylation has been implicated in
tumor progression by altering oncogenic signaling and immune
cell activity. In glioma, components of the crotonylation
machinery—such as crotonyltransferases and de-crotonylases
(e.g., SIRT3)—have been associated with tumorigenic pathways
and immune checkpoint expression (Yuan et al., 2023). Despite
growing interest, the interaction between crotonylation-related
regulatory mechanisms and lncRNAs in glioma remains largely
unexplored.

In this study, we aimed to investigate lysine
crotonylation–related lncRNAs (LCRlncRNAs) and their
roles in glioma prognosis, immune modulation, and
chemotherapeutic response. By integrating transcriptomic and
clinical data from TCGA, we identified six LCRlncRNAs with
significant prognostic value and established a robust risk score
model. Notably, one representative lncRNA—POLR2J4—was

selected for in-depth experimental validation. We
demonstrated that POLR2J4 promotes glioma cell
proliferation, migration, and resistance to cisplatin both
in vitro and in vivo. Moreover, immune cell infiltration
analysis and drug sensitivity prediction revealed that high-risk
patients exhibit a distinct immunosuppressive phenotype and
enhanced responsiveness to DNA-damaging agents. Our findings
highlight the clinical significance of LCRlncRNAs as novel
biomarkers and potential therapeutic targets in glioma, and
provide new insights into the epigenetic–immune axis
underlying treatment resistance, as confirmed by qPCR,
ELISA, and IHC analyses.

Materials and methods

Data sources and preprocessing

Gene expression datasets and comprehensive clinical data for
glioma were obtained from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/) (Tomczak et al., 2015). The
dataset included gene expression profiles for 429 glioma patients and
3 normal tissue samples. The corresponding clinical-pathological
information is provided in Supplementary Table 1 and includes
details such as Age, Gender, Grade, IDH status, 1p/19q codeletion,
MGMT promoter status, and overall survival (OS) time and status.
All data used in this study were standardized to Transcripts Per
Million (TPM) units, and their distribution was confirmed to be
approximately normal. Data visualization and exploration were
carried out using R software (v4.4.1) with the “ggplot2” package,
and gene expression data matrices were constructed for further
analysis. A Wilcoxon test was applied for differential expression
analysis. Additionally, 18 lysine crotonylation-related genes
(LCRGs) identified in previous studies were used for further
analysis, as outlined in Supplementary Table 2 (Jiang et al., 2023).

Lysine crotonylation-related
lncRNA detection

After extracting mRNA and lncRNA expression data from the
TCGA database, Pearson correlation coefficients were used to
analyze the relationships between the expression levels of
lncRNAs and the identified LCRGs. Correlation thresholds were
set at >0.55 and p < 0.001. The “limma” R package was used for
identifying significant associations between LCRGs and lncRNAs,
and the co-expression data were visualized using “ggplot2” and
“ggalluvial” tools for better understanding of the relationships
between the lncRNAs and LCRGs.
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FIGURE 1
Flowchart of the present study.
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Construction and Validation of the
prognostic model based on LCRlncRNAs

To identify LCRlncRNAs associated with patient survival,
univariate Cox regression was performed with a significance
threshold of p < 0.05, and the results were visualized using forest
plots. Further refinement of the selected LCRlncRNAs was conducted
through LASSO-Cox regression analysis, using 10-fold cross-validation
and a significance threshold of p < 0.05. This process was repeated
1,000 times to prevent overfitting. The expression of LCRGs and
lncRNAs was used to select 6 LCRlncRNAs significantly correlated
with patient survival. The results were visualized using the “ggplot2”
package. R packages used in this analysis included “survival,” “caret,”
“glmnet,” “survminer,” and “timeROC.” Based on the multivariate Cox
regression analysis, a risk score for each patient was calculated using the
following formula: Riskscore = ∑i Cofficient (LCRlncRNAsi) ×
Expression (LCRlncRNAsi). The dataset was randomly divided into
a training cohort and a testing cohort in a 1:1 ratio, with corresponding
survival data for each patient. Glioma patients from TCGA were
categorized into low-risk and high-risk subtypes based on the
average risk score. Kaplan-Meier survival analysis was then
performed to compare the overall survival rates between these two

subtypes, followed by time-dependent ROC analysis to assess the
accuracy of the predictive model. Additionally, clinical tissue
samples (n = 24) were used as an independent validation set to
evaluate the accuracy of the prognostic risk model. These analyses
were conducted using R packages such as “survival,” “survminer,”
and “pheatmap.”

Prognostic nomogram construction and
validation

Univariate and multivariate Cox regression analyses were
performed to identify prognostic factors, with the results displayed
using forest plots generated by the “forestplot” R package, which
includes hazard ratios (HRs), 95% confidence intervals (CIs), and
p-values for each variable. To further evaluate the predictive
performance of the LCRlncRNA-based risk score, the model’s
performance was compared with clinical features (e.g., Age, Gender,
Grade, IDH status, 1p/19q codeletion, MGMT promoter status). The
receiver operating characteristic (ROC) curves for 1-year, 3-year, and 5-
year survival were generated, along with time-dependent AUC curves
and the concordance index (C-index). These clinical variables were also

FIGURE 2
Identification of Prognostic-Related LCRlncRNAs and Construction of Prognostic Features. (A) Co-expression analysis of lysine crotonylation-
related genes and lncRNAs. (B) Prognostic value of DRlncRNAs based on univariate Cox regression analysis (P < 0.05). (C) LASSO coefficient plot for
prognostic LCRlncRNAs. (D) Cross-validation error rate plot (10-fold). (E) Correlation heatmap between LCRlncRNAs and LCRGs.
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used in subgroup survival analysis to assess their influence on prognosis.
Based on the results from the multivariate Cox proportional hazards
analysis, a nomogram was developed to predict 1-year, 3-year, and 5-

year overall survival (OS) for glioma patients. The nomogram was then
validated by plotting calibration curves for each time point to evaluate
the consistency between predicted and observed outcomes.

FIGURE 3
Establishment and Validation of Prognostic Features for LCRlncRNAs. (A–C) Distribution of risk scores for each patient in the TCGA-glioma cohort,
training cohort, and testing cohort. (D–F) Distribution of overall survival status for each patient in the TCGA-glioma cohort, training cohort, and testing
cohort. (G–I) Heatmap showing the expression of six prognostic LCRlncRNAs in the TCGA-glioma cohort, training cohort, and testing cohort. (J–L)
Kaplan-Meier survival curves for high- and low-risk groups in the TCGA-glioma cohort, training cohort, and testing cohort. (M–O) Time-dependent
ROC curves for 1-, 3-, and 5-year OS in the TCGA-glioma cohort, training cohort, and testing cohort.

Frontiers in Pharmacology frontiersin.org05

Song et al. 10.3389/fphar.2025.1573694

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1573694


Additionally, ROC curves for 1-year, 3-year, and 5-year survival were
constructed to assess the model’s predictive accuracy. The R packages
utilized in these analyses included “survival,” “survminer,” “timeROC,”
“dplyr,” “rms,” “regplot,” “survcomp,” and “pec.”

Functional enrichment analysis

Differentially expressed genes (DEGs) between high- and
low-risk groups were identified using the “limma” package in
R. The analysis was conducted on adjusted p-values to correct for
false positive results, with a significance threshold of “Adjusted

P < 0.05” and a fold change threshold of “|log2FC| ≥ 1” to define
differentially expressed genes. To explore the functional roles of
the DEGs, Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis were performed using the “clusterProfiler”
R package (Yu et al., 2012). GO analysis categorized the DEGs
into three main categories: Biological Process (BP), Cellular
Component (CC), and Molecular Function (MF). KEGG
analysis provided insights into the biological pathways that
were enriched in the high- and low-risk groups. Additionally,
Gene Set Enrichment Analysis (GSEA) was performed using the
GSEA tool (http://software.broadinstitute.org/gsea/index.jsp)

FIGURE 4
Construction and Validation of a Predictive Nomogram. (A,B) Univariate and multivariate Cox regression analyses for clinical variables in glioma. (C)
ROC curves for risk score and different clinical parameters (Age, Gender, Grade, IDH status, 1p/19q codeletion, MGMT promoter status). (D) Time-
dependent AUC curve showing the OS prediction performance of the risk score. (E) Concordance index values for the risk score and other clinical
variables. (F) Nomogram predicting 1-, 3-, and 5-year OS in glioma patients. (G) Calibration curve for the OS nomogram model in the discovery
group (diagonal dotted line represents the ideal nomogram). (H) ROC curves for predicting 1-, 3-, and 5-year OS.
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(Powers et al., 2018) to identify potential biological pathways
associated with the high- and low-risk groups.

Immune cell infiltration analysis

To investigate the relationship between LCRlncRNAs and immune
cell infiltration, the ssGSEA (single-sample Gene Set Enrichment
Analysis) and CIBERSORT algorithms were employed to compute
immune cell infiltration levels. These analyses were visualized using the
“ggplot2” R package. The immune cell infiltration levels between the
high-risk and low-risk groups were compared using the Wilcoxon test.

For immune scoring, the “immunedeconv” R package and the
CIBERSORT algorithm (Newman et al., 2015) were used to evaluate
the degree of immune cell infiltration in both high- and low-risk groups.
In addition, ssGSEA (Hänzelmann et al., 2013) implemented in the
“GSVA” R package (version 1.46.0) was used to quantify the infiltration
levels of various immune cell types, as well as the accumulation of
24 common immune cell types. The Wilcoxon rank-sum test was
applied to assess the differences in immune cell infiltration between the
two groups. Finally, the “estimate” R package (version 1.0.13) was used
to calculate immune cell abundance (immune score), stromal cell
infiltration (stromal score), and the overall ESTIMATE score for
each patient.

FIGURE 5
Functional Enrichment Analysis Between Low- and High-Risk Groups. (A) GO enrichment results. (B) KEGG pathways. (C) GSEA analysis.
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FIGURE 6
Relationship Between Risk Score and Immune Infiltration in the Tumor Microenvironment. (A) Percentage abundance of tumor-infiltrating immune
cells between high and low expression groups of the six prognostic LCRlncRNAs; different colors represent different immune cell types, with the x-axis
representing samples and the y-axis representing the immune cell content percentage in each sample. (B) Correlation analysis between risk score and
immune infiltration based on the CIBERSORT algorithm. (C) Correlation analysis between risk score and immune infiltration based on the ssGSEA
algorithm. (D) Differences in ESTIMATE scores between high and low-risk score groups. (E) Correlation analysis between risk score and ESTIMATE.
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Immunotherapy response analysis

To evaluate the potential for immunotherapy response in
glioma patients, a correlation analysis was performed between
the risk score and various immune checkpoint-related genes. The
expression levels of immune checkpoint genes between high and
low-risk groups were compared, as well as the relationship
between prognostic LCRlncRNAs and immune checkpoint
genes. Genes of interest in this study included CD274 (PD-
L1), CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT,
and SIGLEC15. These immune checkpoint-related genes were
visualized using the “ggplot2” and “pheatmap” R packages.
Further, the prognostic significance of the combination of the
risk score with three key immune checkpoints (CD274, CTLA4,
PDCD1) was analyzed to predict patient outcomes. The Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm was
employed to predict the potential immune checkpoint-
blocking response, and the results were visualized using the
“ggplot2” package in R. The TIDE data distribution was also
compared between high and low-risk groups to assess the
potential for immune checkpoint blockade therapy in
glioma patients.

Biomarker prediction and potential drug
screening for immunotherapy

The tumor mutation burden (TMB) and microsatellite
instability (MSI) were analyzed between high and low-risk groups
in the TCGA cohort using the Wilcoxon rank-sum test.
Additionally, the correlation between the risk score and human
leukocyte antigen (HLA) genes, as well as DNA mismatch repair
(MMR) genes, was evaluated using Spearman’s method. The
“survminer” R package’s “surv_cutpoint” function was used to
calculate the optimal TMB and MSI cutoff values, which were
then used to divide glioma patients into high and low TMB and
MSI subgroups. Prognostic analysis was conducted via Kaplan-
Meier survival curves to assess the impact of these features on
overall survival (OS). Subsequently, the OS of patients in the high-
risk and low-risk groups was compared across the four subgroups
(high TMB, low TMB, high MSI, and low MSI) using Kaplan-Meier
survival analysis. Additionally, drug sensitivity was assessed between
the high-risk and low-risk groups using the “limma,” “ggpubr,” and
“pRRophetic” R packages (Geeleher et al., 2014). This analysis aimed
to identify potential drugs for glioma treatment and compare the
sensitivity of high-risk and low-risk groups to these drugs.

FIGURE 7
Clinical Sample and Cell Experiment Validation. (A) Relative expression of LCRlncRNAs in normal tissues and glioma tissues. (B)Overall survival curve
for high- and low-risk glioma patients. (C) Time-dependent ROC curves for LCRlncRNAs at 1, 3, and 5 years. (D) Time-dependent AUC curves. (E)
Decision curve analysis for 3-year OS in clinical samples. (F) Differential expression of LCRlncRNAs in glioma cell lines and corresponding normal
cell lines.
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FIGURE 8
Experimental validation of POLR2J4 function in glioma drug resistance and tumor progression. (A) RT-qPCR confirming knockdown efficiency of
POLR2J4 in U87 and U251 cells using three shRNAs. (B)Dose–response curves showing increased sensitivity to Cisplatin (CDDP) in POLR2J4 knockdown
cells. (C)Relative cell viability in four groups after treatmentwith 8 μMCDDP for 48 h. (D,E) EdU staining and quantification of proliferative cells across four
groups. (F–H) Transwell assays evaluating cell migration and invasion, with quantification of migrated and invaded cells. (I–K) In vivo tumor growth
analysis in nudemice (sh-N.C. vs. sh-POLR2J4) using U87 cells, with representative images (I), growth curves (J, n = 3), and final tumor weights (K). (L) RT-
qPCR analysis of chemoresistance-related genes (ABCB1, ABCC1, BCL2) in U87 cells, demonstrating significant downregulation in the
POLR2J4 knockdown group. (M) Serum ELISA analysis of pro-tumorigenic cytokines IL-6 and TGF-β1 in tumor-bearing nude mice, indicating reduced
circulating levels after POLR2J4 knockdown. (N,O) IHC staining and semi-quantitative analysis (IOD/mm2) of TGF-β1 and PD-L1 in xenografts, indicating
decreased expression in knockdown tumors. *p < 0.05, **p < 0.01, ***p < 0.001.
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Human sample collection

All tissue samples for this study were provided by Chaohu
Hospital of Anhui Medical University, and included 24 pairs of
glioma tissues and adjacent normal tissues, along with follow-up
data for each patient. The tissue samples were embedded in 10%
formalin for preservation. Pathological examination was performed
on all samples to confirm the diagnosis of glioma. This study was
approved by the Ethics Committee of Chaohu Hospital of Anhui
Medical University (Approval No. KYXM202410008), and all
patients provided informed consent. The experiments were
conducted in accordance with the relevant guidelines and
regulations.

Cell culture and transfection

Normal human astrocytes (NHA) and glioblastoma cell lines
(U87, U251, and T98G) were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, United States). Cells
were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
with the following formulations: NHA in DMEM (Gibco, Cat#
11965–092), and glioblastoma cells in DMEM (Gibco, Cat#
11995–065). All media were supplemented with 10% fetal
bovine serum (FBS; Gibco, Cat# 10099–141) and 1%
penicillin-streptomycin (PS; Gibco, Cat# 15140–122). U87 and
U251 cells were seeded in six-well plates and grown to 60%–70%
confluency. To silence POLR2J4, a long non-coding RNA
(lncRNA), cells were transfected with short hairpin RNAs
(shRNAs) targeting POLR2J4 (GeneRulor, Zhuhai, China)
using Lipofectamine 3,000 (Invitrogen, United States),
following the manufacturer’s protocol. Total RNA was
extracted 48 h after transfection for RT-qPCR to assess
knockdown efficiency. All experiments were performed in
triplicate.

RNA extraction and RT-qPCR

Total RNA was extracted using the Quick-RNA MiniPrep Kit
(Zymo Research, R1054). Target gene expression was detected using
the miScript SYBR Green PCR Kit (Qiagen, Germany) on a
LightCycler 96 real-time PCR system (Roche Diagnostics GmbH,
Mannheim, Germany). Relative expression levels were quantified
using the 2-△△CT method, with GAPDH as the reference gene.

EdU staining

Cells were seeded in 24-well plates and incubated with 10 μM
EdU for 30 min at 37°C using the Click-iT™ EdU Alexa Fluor™
488 Imaging Kit (Invitrogen, United States). Following incubation,
cells were fixed with 4% paraformaldehyde for 20 min and
permeabilized with 0.5% Triton X-100 for 10 min at room
temperature. Nuclei were counterstained with DAPI (1 μg/mL)
for 5 min. Fluorescent images were captured using a Leica TCS
SP8 confocal microscope, and EdU-positive cells were quantified
using ImageJ.

Transwell migration and invasion assays

Cell migration and invasion assays were performed using 24-well
Transwell chambers with 8-μm pore size inserts (Corning, Cat# 3422)
coated with or without Matrigel (Corning, Cat# 354480). For each
assay, 5 × 104 cells suspended in serum-free DMEMwere added to the
upper chamber, while medium containing 10% FBS was placed in the
lower chamber as a chemoattractant. After 24 h of incubation at 37°C,
non-migrated cells on the upper surface were gently removed. The
cells that migrated or invaded to the lower surface were fixed with
methanol, stained with 0.1% crystal violet, and counted under a
microscope at ×100 magnification in five randomly selected fields.

Xenograft mouse model

A total of 1 × 106 U87 cells stably transduced with either sh-
POLR2J4 or control shRNA (sh-N.C.) were suspended in 100 μL of
serum-free DMEM and subcutaneously injected into the flanks of 4-
week-old male BALB/c nude mice (n = 3 per group). Tumor growth
was monitored every 3 days, and tumor volume was calculated using
the formula V = (length × width2)/2. After 21 days, all mice were
euthanized, and tumors were harvested, photographed, and weighed
for analysis. All animal procedures were approved by the
Institutional Animal Care and Use Committee (IACUC) of
Shenzhen Peking University–The Hong Kong University of
Science and Technology Medical Center, and conducted in
accordance with institutional and national ethical guidelines.

Serum ELISA analysis

Blood samples were collected from tumor-bearing nude mice by
cardiac puncture at the endpoint of the experiment. Serum was
separated by centrifugation at 3,000 rpm for 10 min and stored
at −80°C until analysis. The concentrations of interleukin-6 (IL-6)
and transforming growth factor-β1 (TGF-β1) in the serum were
measured using commercially available mouse ELISA kits (Multi
Sciences Biotech, Hangzhou, China; catalog nos. EK206/3 and
EK183/3, respectively) according to the manufacturer’s instructions.
Briefly, serum samples and standards were added to 96-well plates pre-
coated with target-specific antibodies, followed by incubation with
horseradish peroxidase–conjugated detection antibodies. After
adding the TMB substrate solution, the colorimetric reaction was
stopped with 2M sulfuric acid, and absorbance was measured at
450 nm using a microplate reader (Bio-Rad). Cytokine
concentrations were calculated based on standard curves generated
using known concentrations of recombinant proteins.

Immunohistochemistry (IHC) analysis

Tumor tissues were harvested from xenograft-bearingmice, fixed in
10% neutral-buffered formalin, embedded in paraffin, and sectioned at
4 μm thickness. For antigen retrieval, tissue sections were heated in
citrate buffer (pH 6.0) using a microwave oven for 15 min. Endogenous
peroxidase activity was blocked by incubation with 3% hydrogen
peroxide for 10 min. Sections were then blocked with 5% bovine
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serum albumin (BSA) for 30 min at room temperature. Primary
antibodies against TGF-β1 (1:200, Abcam, ab215715) and PD-L1 (1:
100, Cell Signaling Technology, #13684) were applied overnight at 4°C.
After washing, sections were incubated with HRP-conjugated
secondary antibodies (Servicebio, China) for 30 min at room
temperature. Immunoreactivity was visualized using a DAB substrate
kit (Servicebio, China) and counterstained with hematoxylin. Images
were captured using an Olympus BX51 microscope, and semi-
quantitative analysis of immunostaining intensity was performed
using ImageJ software by calculating the integrated optical density
(IOD) per unit area (IOD/mm2).

Statistical analysis

All statistical analyses were conducted using R software (https://
www.r-project.org/). Each section of the study was analyzed with
specific datasets, R packages, and databases. A p-value of less than 0.
05 was considered statistically significant (*p < 0.05, **p < 0.01,
***p < 0.001). The statistical methodologies employed included
survival analysis, correlation analysis, and comparison tests to
assess the significance of the observed relationships and predictions.

Results

Identification of prognostic LCRlncRNAs and
construction of prognostic features

The flowchart of this study is shown in Figure 1. We analyzed
the expression levels of 18 LCRGs from the TCGA-glioma dataset,
which included 429 glioma patient samples and 3 normal tissue
samples. Co-expression analysis was performed to identify LCRG-
related lncRNAs (Figure 2A), resulting in 115 lncRNAs significantly
associated with lysine crotonylation (Supplementary Table 3). Six
LCRG-lncRNAs significantly correlated with the survival prognosis
of glioma patients (P < 0.05) were identified through univariate Cox
regression (Figure 2B). A prognostic model was then constructed
using LASSO Cox regression based on these LCRG-lncRNAs
(Figures 2C,D). Multivariate Cox regression analysis was
conducted, and the correlation between the six identified LCRG-
lncRNAs was visualized in a heatmap (Figure 2E). Risk scores were
determined based on the expression levels of these six LCRlncRNAs.
The OS (Overall Survival) analysis for glioma patients yielded the
following risk score formula:

RiskScore � AL590666.2 p( − 0.239) + POLR2J4 p 0.919

+ SNHG16 p 0.635 + AL359541.1p( − 0.716)
+ AC004943.2 p 0.531 + SOX21 − AS1p( − 0.304).

Expression and prognostic value of
LCRlncRNAs

To validate the expression and diagnostic utility of prognostic
LCRlncRNAs in glioma, we analyzed TCGA transcriptome data.

Compared to normal tissues, the expression levels of AL590666.2,
POLR2J4, SNHG16, AL359541.1, AC004943.2, and SOX21-AS1
were significantly upregulated in glioma tissues (Supplementary
Figure 1A). ROC curve analysis demonstrated that all these
lncRNAs exhibited high diagnostic accuracy, with AUC values
greater than 0.8 (Supplementary Figure 1B). Kaplan-Meier
survival analysis showed that high expression of POLR2J4,
SNHG16, and AC004943.2 was significantly associated with
poorer survival outcomes in terms of PFI (Progression-Free
Interval) and DSS (Disease-Specific Survival) (P < 0.001)
(Supplementary Figure 1C,D). Conversely, low expression of
AL590666.2, AL359541.1, and SOX21-AS1 was associated with
worse outcomes (P < 0.001) (Supplementary Figure 1C,D).
Therefore, these LCRlncRNAs exhibit significant expression
abnormalities in glioma tissues and are closely associated with
patient prognosis, making them potential biomarkers and
therapeutic targets for early glioma diagnosis and treatment.

LCRlncRNAs-based risk model
demonstrates robust prognostic power
in glioma

The 418 TCGA-glioma samples were randomly divided into a
training set and a validation set. Patients were grouped into high-risk
and low-risk groups based on the median risk score in all, training,
and testing sets. As the risk score increased, patients’ mortality risk
and the likelihood of shorter survival time increased (Figures 3A–F).
The heatmap displayed the distinct expression patterns of lncRNAs
between the high-risk and low-risk groups (Figures 3G–I). Kaplan-
Meier survival curves revealed that glioma patients with high-risk
scores had significantly lower overall survival rates than those with
low-risk scores in all, training, and testing groups (P < 0.05) (Figures
3J–L). The ROC curves for predicting OS at 1, 3, and 5 years in all
groups had AUC values of 0.859, 0.925, and 0.862, respectively
(Figure 3M). Similarly, in the training set, the AUC values were
0.834, 0.919, and 0.882 at 1, 3, and 5 years, respectively (Figure 3N).
In the testing set, the AUC values were 0.881, 0.928, and 0.857 at 1, 3,
and 5 years, respectively (Figure 3O). These findings confirm the
efficacy of our risk score model, which can effectively predict glioma
OS. Thus, the LCRlncRNAs prognostic features hold strong
potential for clinical application in glioma prognosis.

Analysis of the association between clinical
pathological features and risk score

We categorized the patients from the TCGA-glioma cohort
based on clinical features such as age, gender, grade, IDH status,
1p/19q co-deletion, and MGMT promoter status. As shown in
Supplementary Figure 2A and Supplementary Table 4, we
analyzed the association between the risk score and these
clinicopathological characteristics. The risk score was significantly
correlated with age, grade, IDH status, 1p/19q co-deletion, and
MGMT promoter status. Subgroup survival analysis indicated that
the high-risk group had a significantly shorter overall survival time
across all categories (age, grade, IDH status, 1p/19q co-deletion, and
MGMT promoter status) (Supplementary Figure 2B). These
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findings suggest that these factors play a crucial role in determining
survival outcomes for glioma patients and should be considered in
treatment strategy development.

Development and validation of a
prognostic nomogram

We first performed both univariate and multivariate Cox
regression analyses to construct a nomogram incorporating the
risk score and other prognostic clinical factors. In the univariate
Cox regression analysis, age (p < 0.001, HR = 1.066 [1.045–1.086]),
gender (p < 0.001, HR = 3.219 [1.836–5.643]), IDH status (p < 0.001,
HR = 8.450 [5.021–14.220]), 1p/19q co-deletion (p < 0.001, HR =
0.274 [0.139–0.541]), MGMT promoter status (p < 0.001, HR =
3.050 [1.807–5.148]), and risk score (p < 0.001, HR =
1.399 [1.301–1.504]) were found to be significantly associated
with the overall survival (OS) of glioma patients. In the
multivariate Cox regression analysis, age (p < 0.001, HR =
1.069 [1.044–1.094]), gender (p = 0.025, HR =
2.031 [1.091–3.782]), 1p/19q co-deletion (p < 0.001, HR =
0.255 [0.115–0.569]), and risk score (p = 0.001, HR =
1.209 [1.077–1.357]) were identified as independent prognostic
factors for OS(Figures 4A,B). The ROC curve analysis showed
that the risk score model had the highest AUC (0.892) for
predicting OS (Figure 4C). We also plotted time-dependent AUC
curves for all indicators in the TCGA cohort, demonstrating their
predictive performance for OS (Figure 4D). Furthermore, the
concordance index (C-index) for the risk score was significantly
higher than that of other clinical factors (Figure 4E). We then
integrated the risk score with the clinical factors to develop a
nomogram for predicting the 1-, 3-, and 5-year OS of glioma
patients (Figure 4F). The calibration curve of the nomogram
showed good consistency between predicted and actual observed
values (Figure 4G). The ROC AUC values for 1-, 3-, and 5-year
predictions were 0.952, 0.931, and 0.891, respectively (Figure 4H).
These results highlight the clinical value of the nomogram in
predicting survival rates.

Functional enrichment analysis of high and
low-risk LCRlncRNAs

Following the selection criteria, we identified 3,042 DEGs
between high-risk and low-risk LCRlncRNA groups. GO analysis
revealed that these DEGs were predominantly enriched in BP,
including leukocyte-mediated immunity, extracellular matrix
organization, lymphocyte-mediated immunity, B cell-mediated
immunity, humoral immune response, and regulation of T cell
activation. CC were mainly enriched in the collagen-containing
extracellular matrix, external side of plasma membrane,
endoplasmic reticulum lumen, basement membrane, collagen
trimer, and MHC protein complex. MF included extracellular
matrix structural constituent, antigen binding, collagen binding,
growth factor binding, immunoglobulin receptor binding, and
immune receptor activity (Figure 5A). KEGG pathway analysis
showed significant enrichment in pathways such as the cell cycle,
TNF signaling, NF-kappa B signaling, PI3K-Akt signaling, IL-17

signaling, NOD-like receptor signaling, Toll-like receptor signaling,
Fanconi anemia pathway, and chemokine signaling (Figure 5B).
Additionally, GSEA revealed that genes in the high-risk group were
mainly associated with embryonic skeletal system morphogenesis,
immunoglobulin production, collagen trimer formation,
immunoglobulin complex formation, and antigen binding. In
contrast, genes in the low-risk group were primarily involved in
glutamate receptor signaling, modulation of excitatory postsynaptic
potential, regulation of presynaptic membrane potential, excitatory
synapses, and GABAergic synapses (Figure 5C).

Immune cell infiltration analysis

We performed a correlation analysis between the risk score and
immune cell infiltration using different algorithms: CIBERSORT,
ssGSEA, and ESTIMATE. The stacked bar chart (Figure 6A)
illustrates the distribution of immune infiltration scores between
high and low expression groups of six prognostic LCRlncRNAs. The
CIBERSORT algorithm revealed that memory B cells, monocytes,
and eosinophils were significantly more expressed in the low-risk
group, while CD4 memory resting T cells, regulatory T cells (Tregs),
follicular helper T cells, gamma-delta T cells, resting NK cells, and
M2 macrophages showed higher expression in the high-risk
group. Correlation analysis further demonstrated that the risk
score was positively correlated with Tregs and M2 macrophages,
but negatively correlated with monocytes, eosinophils, and memory
B cells (Figure 6B). The ssGSEA method indicated that mast cells,
NK CD56bright cells, pDC, central memory T cells (Tcm), effector
memory T cells (Tem), follicular helper T cells (TFH), and gamma-
delta T cells (Tgd) were more highly expressed in the low-risk group,
whereas macrophages and Tregs were more prevalent in the high-
risk group. The risk score showed positive correlations with
macrophages and Tregs and negative correlations with pDC,
Tcm, Tgd, CD8 T cells, Tem, and TFH (Figure Figure6C).
Additionally, we analyzed the relationship between the risk score
and the three ESTIMATE scores. The results indicated significantly
higher ImmuneScore, StromalScore, and ESTIMATEscore in
the high-risk group compared to the low-risk group (P < 0.001)
(Figure 6D). This suggests that the high-risk group is characterized
by a more active immune microenvironment (Figure 6E).

Immune therapy response analysis

The immune checkpoint gene expression differences between
high-risk and low-risk groups were analyzed based on eight genes
selected for their established or emerging relevance to glioma
immunotherapy. These genes—CD274 (PD-L1), CTLA4, PDCD1
(PD-1), PDCD1LG2 (PD-L2), HAVCR2 (TIM-3), LAG3,
SIGLEC15, and ITPRIPL1—represent both classical and next-
generation immunotherapeutic targets. CD274, PDCD1, and
CTLA4 are widely used clinical markers, with evidence showing
that PD-L1–positive patients benefit from PD-1 and CTLA4 co-
inhibition. LAG3 and HAVCR2 are linked to immunotherapy
resistance, while SIGLEC15 and ITPRIPL1 are novel targets
associated with TAM polarization and T cell suppression.
PDCD1LG2 (PD-L2) has been implicated in immune escape via

Frontiers in Pharmacology frontiersin.org13

Song et al. 10.3389/fphar.2025.1573694

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1573694


a compensatory mechanism with PD-L1, supporting the rationale
for dual checkpoint blockade. Expression analysis revealed that all
eight genes were significantly upregulated in the high-risk group
(Supplementary Figure 3A). Correlation analysis showed a positive
association between the risk score and expression levels of these
checkpoints (Supplementary Figure 3B). Furthermore, patients with
high expression of these immune checkpoint genes had significantly
worse survival outcomes (Supplementary Figure 3C). To evaluate
the potential response to immune checkpoint blockade (ICB), TIDE
analysis indicated that the high-risk group exhibited higher TIDE
scores, suggesting reduced responsiveness to ICB therapy
(Supplementary Figure 3D). Additionally, the high-risk group
had increased abundance of MDSCs, CAFs, and M2 TAMs
(Supplementary Figure 3E–G), reinforcing its immunosuppressive
phenotype. These findings suggest that high-risk patients may be
more likely to exhibit immune evasion and poor response to ICB,
highlighting the clinical importance of incorporating risk scores into
immunotherapy decision-making.

Immune therapy biomarker prediction

The high-risk group exhibited significantly higher TMB and
MSI scores compared to the low-risk group (Supplementary Figure
4A). Prognostic analysis revealed that patients with higher TMB and
MSI scores had a poorer survival outcome than those with lower
TMB and MSI scores (Supplementary Figure 4B). Furthermore, we
conducted a survival analysis combining the risk score with TMB
and MSI. Patients were divided into four subgroups, and survival
assessment indicated that the overall survival (OS) was significantly
worse in the high TMB/MSI + high risk score group compared to the
low TMB/MSI + low risk score group (P < 0.001) (Supplementary
Figure 4C). Additionally, we evaluated the correlation between the
risk score and human leukocyte antigen (HLA) and mismatch repair
(MMR) genes. The results showed a significant positive correlation
between the risk score and both HLA and MMR genes
(Supplementary Figure 4D).

Drug sensitivity analysis

Drug sensitivity analysis revealed that the high-risk group
exhibited significantly lower IC50 values for a wide range of
chemotherapy drugs compared to the low-risk group. Drugs with
notably lower IC50 values in the high-risk group included 5-
Fluorouracil, Alpelisib, Bortezomib, Cisplatin, Gemcitabine,
Irinotecan, and many others (Supplementary Figure 5). These
results suggest that patients with high-risk scores may be more
sensitive to these chemotherapeutic agents, which could potentially
inform treatment strategies for glioma patients.

Validation via cell experiments and
clinical samples

We utilized RT-qPCR to assess the expression of six prognostic
LCRlncRNAs in 24 glioma tissue samples and matched adjacent
normal tissues, with detailed clinical characteristics summarized in

Supplementary Table 5. The results revealed that AL590666.2,
POLR2J4, SNHG16, AL359541.1, AC004943.2, and SOX21-AS1
were significantly upregulated in glioma tissues compared to
normal tissues (Figure 7A). Based on the prognostic model
constructed from the TCGA glioma dataset, we validated the
model’s predictive performance using clinical tissue samples from
our institution. After calculating the risk scores using the
aforementioned formula, patients were classified into high-risk
and low-risk groups. Survival analysis demonstrated that the
high-risk group had a significantly lower overall survival (OS)
compared to the low-risk group (P = 0.020, HR =
3.29 [1.21–8.93]) (Figure 7B). The area under the ROC curve
(AUC) for 1-year, 3-year, and 5-year survival rates were 0.713,
0.692, and 0.647, respectively (Figure 7C). Additionally, a time-
dependent AUC curve was plotted, indicating that the prognostic
model demonstrated good predictive performance for OS in the
clinical sample validation cohort (Figure 7D). We performed
decision curve analysis (DCA) to evaluate the clinical utility of
the LCRlncRNAs prognostic model, which showed that the model
has clinical value in predicting survival outcomes (Figure 7E).
Finally, the expression levels of AL590666.2, POLR2J4, SNHG16,
AL359541.1, AC004943.2, and SOX21-AS1 were significantly
elevated in glioma cell lines compared to corresponding normal
cell lines (Figure 7F). Collectively, these findings consistently
validate the predictive performance of the constructed prognostic
model, demonstrating its superior reliability and effectiveness in
predicting the prognosis of glioma patients.

Functional validation of POLR2J4 in glioma
progression and chemoresistance

Among the six prognostic LCRlncRNAs identified by our risk
model, POLR2J4 was selected for functional validation due to its
strong association with poor prognosis, high expression in glioma
tissues and cell lines, and robust correlation with immune
checkpoint activation and chemoresistance-related signatures. To
explore its biological function, we first confirmed efficient
knockdown of POLR2J4 using three independent shRNAs in
U87 and U251 cell lines (Figure 8A). Given that Cisplatin
(CDDP), a DNA-damaging chemotherapeutic agent, exhibited
significantly higher predicted sensitivity in the high-risk group
(p < 2.22e−16), we selected it for downstream drug response
validation. CCK-8 assays demonstrated that
POLR2J4 knockdown significantly enhanced CDDP sensitivity, as
evidenced by a steeper reduction in cell viability across a
concentration gradient (Figure 8B). When treated with 8 μM
CDDP for 48 h, POLR2J4-silenced cells showed a markedly
lower viability than either treatment alone, suggesting a
synergistic effect (Figure 8C). EdU incorporation assays revealed
that POLR2J4 knockdown significantly impaired glioma cell
proliferation, which was further exacerbated by CDDP exposure
(Figures 8D,E). Transwell assays confirmed that POLR2J4 silencing
suppressed cell migration and invasion, with an enhanced inhibitory
effect observed in the combination group (Figures 8F–H). In vivo,
subcutaneous xenograft models using U87 cells demonstrated that
tumors derived from POLR2J4-knockdown cells exhibited
significantly reduced volumes and final weights compared to
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controls (Figures 8I–K). Tumor growth curves further confirmed
sustained growth suppression in the sh-POLR2J4
group. Collectively, these findings establish POLR2J4 as a tumor-
promoting lncRNA in glioma that enhances cell proliferation,
invasion, and resistance to CDDP. Its silencing inhibits
malignant phenotypes both in vitro and in vivo, highlighting its
potential as a therapeutic target.

Mechanistic validation of POLR2J4-
mediated drug resistance and
immunosuppressive microenvironment

To elucidate the underlying mechanisms of POLR2J4-
mediated chemoresistance, we performed RT-qPCR analysis of
key drug resistance genes. POLR2J4 knockdown significantly
reduced the mRNA expression of ABCB1, ABCC1, and
BCL2 in U87 cells (Figure 8L). In vivo, serum ELISA analysis
of pro-tumorigenic cytokines revealed that POLR2J4 knockdown
tumors exhibited significantly decreased levels of IL-6 and TGF-
β1 (Figure 8M). Immunohistochemical staining of tumor
sections demonstrated that POLR2J4 knockdown markedly
reduced the expression of TGF-β1 and PD-L1 compared to
controls (Figure 8N). Semi-quantitative analysis of IHC
staining confirmed significantly decreased IOD/mm2 values for
both TGF-β1 and PD-L1 in the POLR2J4 knockdown group
(Figure 8O). Collectively, these findings establish POLR2J4 as
a tumor-promoting lncRNA in glioma that enhances cell
proliferation, migration, invasion, and chemoresistance
through upregulation of efflux transporters, anti-apoptotic
pathways, and immunosuppressive cytokines. Its silencing
inhibits malignant phenotypes both in vitro and in vivo and
remodels the immunosuppressive microenvironment,
highlighting its potential as a therapeutic target.

Discussion

Gliomas are highly malignant and invasive brain tumors, with
typically poor prognosis for patients. Despite advancements in
treatment methods in recent years, their efficacy remains limited.
The response of gliomas to immunotherapy is heavily influenced by
the tumor immune microenvironment, and biomarkers for
predicting immunotherapy outcomes are still unclear. With the
growing understanding of immune microenvironments and tumor
biological mechanisms, lysine crotonylation, a novel histone
modification, has attracted considerable attention (Zhang et al.,
2023). Crotonylation, by regulating gene expression, particularly
immune-related genes, may play a crucial role in tumor immune
evasion and immune microenvironment remodeling (Besermenji
and Petracca, 2024). LCRlncRNA, a downstream effector of
crotonylation, has been increasingly recognized for its close
association with tumorigenesis, progression, and modulation of
the immune microenvironment (Yang B. et al., 2024). Although
the potential clinical application of LCRlncRNA has been observed
in various tumors, its specific role in gliomas remains
underexplored. Therefore, this study aims to construct a
prognostic model based on LCRlncRNA and further investigate

its role in the glioma immune microenvironment and its predictive
value for immunotherapy responses.

In this study, we first performed expression analysis of
LCRlncRNAs in glioma samples using the TCGA database, and
constructed a risk score model based on LCRlncRNAs using
univariate and multivariate Cox regression analysis. Through
LASSO regression (with λ value determined by 10-fold cross-
validation and minimum error at 0.023), we identified six
LCRlncRNAs (AL590666.2, POLR2J4, SNHG16, AL359541.1,
AC004943.2, SOX21-AS1) associated with prognosis. These
lncRNAs may play significant roles in glioma development and
progression, consistent with existing literature. For instance, high
expression of POLR2J4 has been reported to be associated with poor
prognosis in various malignancies (Lu et al., 2019; Wu et al., 2023),
while SNHG16 promotes glioma tumorigenesis via activation of the
PI3K/AKT pathway and the miR-373/EGFR axis (Zhou et al., 2020).
LncRNA AC004943.2 may contribute to tumor progression through
regulation of the miR-135a-5p and PTK2/PI3K axis (Zhu et al.,
2024), while SOX21-AS1 enhances glioma cell proliferation and
invasion by sponging miR-144-3p to upregulate PAK7 expression
(Gai and Yuan, 2020). Our study further validates the value of these
lncRNAs as potential prognostic biomarkers and suggests that they
may influence tumor biology by modulating key signaling pathways,
such as PI3K-Akt.

To further verify the functional role of LCRlncRNAs, we
focused on POLR2J4, the most representative high-risk lncRNA
in our model. Functional assays revealed that
POLR2J4 knockdown in glioma cell lines significantly reduced
cell proliferation and DNA synthesis, as evidenced by EdU
assays, and suppressed both migration and invasion
capabilities, as shown by Transwell assays. Importantly,
silencing POLR2J4 markedly increased cellular sensitivity to
cisplatin, a DNA-damaging chemotherapeutic agent predicted
by our model to be more effective in high-risk patients. This was
reflected by steeper reductions in viability in both gradient and
fixed-dose CCK-8 assays. In vivo, xenograft models
demonstrated that tumors derived from POLR2J4-silenced
cells exhibited significantly decreased growth and weight,
confirming its tumor-promoting effect in glioma. These
findings strongly support the oncogenic role of POLR2J4 and
highlight its potential as both a prognostic biomarker and a
therapeutic target involved in proliferation and chemoresistance
regulation. Mechanistically, this may be linked to the activation
of the PI3K-Akt and DNA repair pathways, though further
mechanistic validation is warranted.

Using these lncRNAs, we established a risk score model. To
validate the model’s clinical feasibility, we performed external
validation on 24 clinical glioma samples, showing that patients in
the high-risk group had significantly lower overall survival
compared to those in the low-risk group (p = 0.020). Moreover,
the risk score model demonstrated high predictive accuracy for 1-
year, 3-year, and 5-year survival (AUC >0.8), and the prognostic
nomogram (C-index = 0.892) further enhanced its clinical utility.
This finding is consistent with previous studies on prognostic
models based on other molecular markers, such as m6A-related
lncRNAs (Xu et al., 2024; Qin et al., 2023a), indicating the universal
applicability of multi-omics models in glioma prognosis
stratification.
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Functional enrichment analysis revealed potential mechanisms
underlying LCRlncRNAs. Differentially expressed genes (DEGs) in
the high-risk group were significantly enriched in biological
processes related to leukocyte-mediated immune response,
extracellular matrix organization, and T-cell activation regulation.
KEGG pathway analysis highlighted the activation of the cell cycle,
PI3K-Akt, and TNF signaling pathways. The cell cycle and PI3K-Akt
pathways are particularly associated with tumor cell proliferation,
migration, and survival (Ren et al., 2022; Mohamed et al., 2022),
while NF-kappa B and TNF signaling pathways are linked to
immune responses and inflammation (Zhao et al., 2022; Lei
et al., 2020; Qin et al., 2024a). Thus, the activation of these
signaling pathways may drive malignant progression in glioma
and promote immune evasion. Notably, although the immune
score was higher in the high-risk group, the prognosis was
poorer, possibly due to the accumulation of immunosuppressive
cells (e.g., Tregs, M2 macrophages) (Zhang and Zhang, 2020; Qin
et al., 2023b; Han et al., 2023). For example, M2 macrophages
suppress antitumor immune responses by secreting IL-10 and TGF-
β (Han et al., 2023), while Tregs facilitate immune evasion by
inhibiting effector T-cell function (Qin et al., 2023b). This
paradox suggests that the level of immune cell infiltration alone
cannot reflect the functional status of the immune
microenvironment and necessitates further analysis of immune
cell subtypes. Additionally, the high expression of immune
checkpoint genes (CD274, CTLA4, LAG3) in the high-risk group
further supports the immunosuppressive phenotype, potentially
impairing immunotherapy responses via pathways like PD-1/PD-
L1 (Zhang and Zhang, 2020).

The PD-L1/PD-1 axis (CD274/PDCD1) and CTLA4 are
currently considered core targets in glioma immunotherapy.
Clinical studies have demonstrated that PD-L1–positive patients
benefit significantly from combination therapy with PD-1 inhibitors
(such as pembrolizumab) and CTLA4 inhibitors (such as
ipilimumab), which markedly improves survival in recurrent
glioblastoma (Duerinck et al., 2024). LAG3 and HAVCR2 (TIM-
3) have emerged as important targets in the context of
immunotherapy resistance in glioma (Mair et al., 2021; Ding
et al., 2022). Preclinical studies have shown that dual blockade of
LAG3 and PD-1 can significantly suppress glioma progression (Liu
et al., 2020). Recent research indicates that SIGLEC15 is specifically
overexpressed in the immunosuppressive microenvironment of
glioma and is associated with the polarization of tumor-
associated macrophages (TAMs), making it a promising pan-
cancer immunotherapeutic target (Wang J. et al., 2023). Although
ITPRIPL1 has been less studied in glioma, it has been reported in
breast and lung cancers to influence therapeutic response by
regulating immune checkpoint molecules, synergizing with PD-
L1 to suppress T cell function, and recruiting M2 macrophages
(Deng et al., 2023; Krasnyi et al., 2023). This suggests ITPRIPL1 as a
novel target for overcoming immunotherapy resistance in glioma,
for example, through the development of ITPRIPL1/PD-
L1 bispecific antibodies. PDCD1LG2 (PD-L2) mediates immune
suppression through TAMs and forms a compensatory resistance
axis with PD-L1 (Sumitomo et al., 2022; Umezu et al., 2019); its
expression is significantly associated with poor patient survival and
immune checkpoint blockade (ICB) resistance. Therefore, targeting
PD-L2 may help overcome the therapeutic limitations of PD-1/PD-

L1 monotherapy and provide a new avenue for combination
immunotherapy.

Regarding the prediction of immunotherapy response, this study
is the first to combine LCRlncRNA risk scores with biomarkers such
as TMB and MSI. The results showed that high-risk patients had
higher TMB and MSI scores, but their prognosis was worse. This
phenomenon may be related to the mechanism of “high mutational
burden associated with immune escape through immune editing”
(Qin et al., 2024b; Qin et al., 2024c), in which tumors evade T-cell
recognition by accumulating mutations. Moreover, the positive
correlation between LCRlncRNA risk score and HLA and MMR
genes (r = 0.62, p < 0.001) suggests that LCRlncRNA may influence
immune surveillance by modulating antigen presentation and DNA
repair pathways (Aptsiauri and Garrido, 2022; Fu et al., 2023). Taken
together, these results highlight the intricate and sometimes
paradoxical relationship between tumor immunogenicity and
immune evasion, underscoring the complexity of the immune
microenvironment in gliomas. This complexity emphasizes the
need to integrate multi-omics features for precise risk
stratification. Indeed, these findings are consistent with previous
studies that constructed lncRNA-based prognostic signatures in
various cancers, such as hepatocellular carcinoma and triple-
negative breast cancer (He et al., 2025; Ye et al., 2023).
Moreover, the PI3K-Akt signaling axis and sphingolipid
metabolism, which are enriched in our high-risk group, have
been implicated in both cardiotoxicity alleviation and
immunotherapeutic response modulation in GBM (Wang L.
et al., 2023; Wang et al., 2024). Consistent with our observation
of an immunosuppressive microenvironment in high-risk gliomas,
recent work has further underscored the interplay between immune
checkpoint expression and TME remodeling in GBM (Huang et al.,
2023). Together, these studies support the translational potential of
integrating lncRNA-based models and immunogenomic profiling to
inform precision therapy strategies in glioma and other cancers.

Despite the integrative multi-omics analysis and functional
validation, this study has several limitations. First, the glioma
samples used for model construction were derived from the
TCGA cohort, which predominantly represents Western
populations; thus, external validation in multi-center, ethnically
diverse cohorts is needed. Second, although immune cell
infiltration was assessed using three established algorithms
(CIBERSORT, ssGSEA, ESTIMATE), direct experimental
validation in terms of comprehensive immune cell profiling was
not performed. However, we did perform IHC analysis of key
immunosuppressive markers (PD-L1, TGF-β1) in xenograft
tissues, as well as serum ELISA analysis of IL-6 and TGF-β1,
which partially supports the predicted immunosuppressive
microenvironment. Future studies should incorporate
immunocompetent or humanized models and perform flow
cytometry or immunofluorescence to fully validate immune cell
infiltration patterns. Third, while our EdU, Transwell, CCK-8, and
xenograft assays confirmed that POLR2J4 promotes glioma
proliferation, migration, and chemoresistance, the molecular
mechanisms—such as its regulation of PI3K–Akt signaling or
immune checkpoints—remain to be elucidated. Finally, although
high-risk patients appeared more responsive to cisplatin and other
agents, the underlying mechanisms, including potential links to
DNA repair or MGMT methylation, require further investigation.
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Conclusion

This study integrates multi-omics analysis with clinical sample
validation and functional experiments, revealing the critical role of
lysine crotonylation–related lncRNAs (LCRlncRNAs) in glioma
prognosis and immune regulation. Six prognostic LCRlncRNAs
(AL590666.2, POLR2J4, SNHG16, AL359541.1, AC004943.2, and
SOX21-AS1) were identified and used to construct a robust risk
model, which stratified patients into distinct prognostic groups and
was independently validated in a clinical cohort (1-/3-/5-year
AUC >0.7; HR = 3.29, p = 0.020). High-risk patients exhibited
immunosuppressive features, including increased Tregs,
M2 macrophage infiltration, and elevated PD-L1 expression,
suggesting these lncRNAs contribute to therapeutic resistance via
PI3K–Akt signaling and immune checkpoint regulation. Functional
assays confirmed that POLR2J4 promotes glioma progression and
cisplatin resistance, while mechanistic studies showed that
POLR2J4 knockdown downregulates key drug resistance genes
(ABCB1, ABCC1, BCL2), reduces serum levels of IL-6 and TGF-
β1, and suppresses TGF-β1 and PD-L1 expression in tumor tissues,
underscoring its role in shaping an immunosuppressive, drug-
resistant microenvironment. Although further mechanistic
exploration and multi-center validation are warranted, our
findings provide a solid foundation for LCRlncRNA-based
precision prognostication and targeted therapy in glioma.
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