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reduce hepatic steatosis but
enhance initiation and
progression of hepatocellular
carcinoma by inhibiting
GST-pi-MAPK axis in mice
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Introduction: Accumulating evidence indicates that antioxidants promote tumor
growth and metastasis after tumor onset in several cancer types. However,
whether antioxidants prevent or accelerate hepatic tumorigenesis during
steatosis remains unknown. Therefore, we investigated the effects of
resveratrol (RES) and N-acetylcysteine (NAC) on hepatocellular carcinoma
(HCC) development using two fatty liver mouse models.

Methods: High-fat diet (HFD) plus diethylnitrosamine (DEN)- and AKT/Ras-
induced primary HCC mouse models were used. The weight, liver weight ratio
and the number of HCC tumors were calculated and histological features of
mouse HCC tissues were analyzed using immumohistochemical staining such as
hematoxylin and eosin staining. Proteomic analysis was used to screen for
differences in liver cancer progression between antioxidant-treated HCC and
models. Protein inhibitor recovery experiments in mice and in vitro cells validate
the targets screened by proteomic analysis. The expression of GST-pi, p-JNK and
p-p38 signaling molecules in HCC were investigated using Western blotting.

Results: RES and NAC enhance HCC formation in both DEN/HFD and AKT/Ras
mice. RES and NAC alleviate hepatosteatosis, and reduce ROS and DNA damage
in mice. Proteomic analysis and protein inhibitor recovery assay demonstrated
that GST-pi is a therapeutic target for antioxidant-induced hepatocellular
carcinoma growth. Mechanistically, RES and NAC decreased p-JNK and
p-p38, the two major mitogen-activated protein kinases, in HCC cells.
Blockade of GST-pi abrogated the reduction in p-JNK and p-p38 levels and
increased apoptosis of HCC cells.
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Conclusion: Antioxidants may increase the incidence of HCC in a population with
fatty liver, despite reduction in ROS production, by inhibiting GST-pi-MAPK axis.
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1 Introduction

Hepatocellular carcinoma (HCC) accounts for 75%-85% of
primary liver cancers and is the third leading cause of cancer-
related mortality worldwide (Sung et al., 2021). The primary risk
factors associated with HCC are chronic hepatitis B/C virus (HBV/
HCV) infection and non-alcoholic fatty liver disease (NAFLD)
(Calle and Kaaks, 2004; Taubes, 2012). In recent years, NAFLD
has become the most important pathogenic factor of HCC owing to
increasing incidence of NAFLD and decreasing incidence of new
HBV/HCV infections (Vernon et al., 2011; Huang et al., 2021). The
cellular and molecular mechanisms underlying NAFLD-induced
HCC are complex and include inflammation, immune response,
DNA damage, and oxidative stress (Anstee et al., 2019). NAFLD-
related steatosis produces a large number of reactive oxygen species
(ROS) that cause hepatocyte damage, liver tissue inflammation, and
occurrence of apoptosis and liver regeneration, thus contributing to
HCC development (Kawada and Otogawa, 2007; Cohen et al., 2011;
Podrini et al.,, 2013).

Antioxidants have long been used as natural dietary agents to
prevent aging and cancer because of their ability to eliminate ROS or
other free radicals that cause DNA damage (Morselli et al., 20105
Chandrashekara and Shakarad, 2011; Liu et al., 2018; Russo et al.,
2017; Willcox et al., 2004). In the late 1980s to mid-1990s, several
studies suggested that consuming a diet rich in vitamin E, vitamin C,
or B-carotene could lead to increased plasma concentrations of these
vitamins and prevent cancers (Eichholzer et al., 1992; Zhang et al.,
1999; Tamimi et al., 2005; Sablina et al., 2005; Godic et al., 2014;
Westerlund et al., 2011). Despite the initial indications of potential
benefits, large-scale randomized clinical trials have yielded
unexpected negative outcomes, and some studies have even
suggested that antioxidants could increase the risk of cancer
development  (Alpha-Tocopherol ~ Beta  Carotene  Cancer
Prevention Study Group, 1994; van Zandwijk et al., 2000; Klein
etal, 2011). Studies conducted in mice have indicated that vitamin E
and N-acetylcysteine (NAC) accelerate human lung cancer cell
growth by reducing ROS, DNA damage, and p53 (Sayin et al,
2014). In mice, the vitamin E analog Trolox and NAC enhanced the
invasion and migration of human melanoma cells (Le Gal et al,
2015). These studies indicate that tumor cells may benefit from low
ROS levels induced by dietary antioxidants.
that
antioxidants, such as NAC and Trolox, prevented hepatic

Wang et al. found non-mitochondria-targeting
tumorigenesis, whereas mitochondria-targeting antioxidants, such
as SS-31 and Mito-Q, accelerated HCC (Wang B. B. et al., 2018).
However, they examined the effects of these antioxidants in
chemical carcinogen-induced HCC mouse models without
steatosis. Whether the preventive use of antioxidants would
accelerate or delay HCC formation in a fatty liver context is still
unknown. Hepatic steatosis is a known risk factor for HCC, and

some antioxidants have been reported to inhibit lipid accumulation
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in the liver. Therefore, we investigated whether these antioxidants
prevented or delayed HCC formation by reducing lipid
accumulation in the liver. Antioxidants, including NAC and
resveratrol (RES), reduce lipid accumulation and peroxidation in
the liver (Ma et al., 2016; Llovet et al., 2015). Given that fatty liver is
associated with the development of HCC, we speculate whether
antioxidants would prevent the development of NAFLD-related
HCC. Therefore, this study aimed to investigate the effects of
NAC and RES on HCC initiation and progression in an obesity-

related setting.

2 Materials and methods
2.1 Materials

NAC (purity >99%, CAS No. 616-91-1) was obtained from
Sigma-Aldrich (St. Louis, MO, United States), and RES
(purity >=99%, CAS No. 501-36-0) was obtained from Zhejiang
Great Forest Biomedical Ltd. (Hangzhou, Zhejiang, China). High-
fat diet (HFD) chow (CAS No. H10060), normal chow (CAS No.
H10010), and RES mixed with normal chow and HFD chow were
procured from Beijing Huafukang Bioscience Technology (Beijing,
China). The feed formulas used in the experiments are listed in
Supplementary Table S1. The glutathione-S-transferase-pi (GST-pi)
inhibitor ethacrynic acid (EA) was purchased from BioVision
(Milpitas, CA, United States). Sodium carboxymethylcellulose
(CMC-Na) was obtained from Sinopharm (Shanghai, China).
Unless otherwise specified, all other reagents were purchased
from Sigma-Aldrich.

2.2 Mice

The Hubei
Prevention provided C57BL/6] mice, and the Beijing Huafukang

Provincial Center for Disease Control and

Bioscience Technology supplied the FVB mice (age: 6-week, weight:
16 g). The protocols for the maintenance, feeding, and handling of
all mice were approved by the Animal Experiments Ethical
Committee of Huazhong University of Science and Technology.
Mice were sacrificed using CO, asphyxiation and subsequent
cervical dislocation to reduce animal suffering according to
ethical guidelines approved by the Animal Experiments Ethical
Committee of Huazhong University of Science and Technology.

2.3 DEN/HFD-induced HCC model
and treatment

To establish a diethylnitrosamine (DEN)/HFD-induced HCC
model, male C57BL/6] mice aged 18 days were first administered
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DEN (25 mg/kg) via i.p. injection and then repeatedly injected with a
second dose of DEN 1 week later (25 mg/kg) (Park et al., 2010). The
mice were switched to HFD 3 weeks after the injection and
randomized into four groups with 11 mice in each group:
normal, DEN/HFD + vehicle, DEN/HFD + RES, and DEN/HFD
+ NAC. Vehicle-treated HCC model mice were fed HFD chow and
drinking water. The DEN/HFD + RES group received RES mixed
with HED chow at 0.4% w/w (Soyoung et al., 2011). The DEN/HFD
+ NAC group received NAC dissolved in drinking water at 1 g/L
(Sayin et al., 2014). The mice were fed HFD chow for 24 weeks and
weighed every 2 weeks. Finally, the mice were euthanized, and their
livers were weighed, photographed, and collected for subsequent
analysis. The number and size of tumor nodules were determined;
tumor volume was calculated using the following formula: V =
length x width® x 0.5.

2.4 AKT/Ras-induced HCC mouse model
and treatment

AKT/Ras mouse model was established through tail vein
hydrodynamic injection as previously described (Lee et al., 2008;
Ho et al.,, 2012; Chen and Calvisi, 2014). One week after plasmid
(pT3-EFla-myr-AKT: pCaggs-NRasV12: pCMV-SB = 5:5:1 g per
mouse) injection, the mice were fed normal chow and randomized
into four groups with four mice in each group: normal, AKT/Ras +
vehicle, AKT/Ras + RES, and AKT/Ras + NAC. Vehicle-treated mice
were fed normal chow and drinking water. In another AKT/Ras
induced HCC mouse model experiment, the AKT/Ras mice were fed
normal chow and randomized into five groups with seven mice in
each group: AKT/Ras + vehicle, AKT/Ras + RES, AKT/Ras + RES +
EA, AKT/Ras + NAC and AKT/Ras + NAC + EA. The AKT/Ras +
RES group received RES mixed with normal chow at 0.4% w/w, and
the AKT/Ras + NAC group received NAC dissolved in drinking
water at 1 g/L. The mice were treated with the GST-pi inhibitor EA
(25 mg/kg/day) (Zhang et al., 2021; Madala et al., 2017) in 0.5%
CMC-Na by gavage daily until the end of the study. The mice were
weighed every 4 days and sacrificed 5 weeks after plasmid injection.

2.5 Histological and
immunohistochemical analyses

The experimental mice were euthanized in a humane manner,
and their livers were dissected and extracted. The livers were washed
twice with phosphate-buffered saline by immersion. Liver samples
were preserved for protein extraction by snap-freezing on dry ice.
The samples were fixed overnight in 4% paraformaldehyde or
Tissue-Tek OCT compound (Sakura Finetek, Tokyo, Japan) to
prepare paraffin or frozen blocks, respectively. The paraffin-
embedded tissues were cut into 5-pm sections for hematoxylin
and eosin (H&E), Ki67 (1:100; Cell Signaling, Danvers, MA,
United States), and yH2AX (1:800; Abcam,
United Kingdom) following previously described
methods (Sjogren et al, 2007). Frozen tissue sections were
stained with Oil Red O (ORO; Biosharp, Hefei, Anhui, China)
for lipid detection and dihydroethidine (DHE; Sigma-Aldrich) for
ROS detection, following the manufacturer’s instructions, and the

Cambridge,
staining,
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images were captured and analyzed using inverted microscopy
(CKX53; Olympus, Shinjuku-ku, Tokyo, Japan).

2.6 Serum biochemical and lipid
peroxidation assays

The blood samples were collected from the heart and kept at 4°C
for 2 h. Next, the blood was centrifuged at 3,000 revolutions per
minute (rpm) for 10 min and stored at —80°C. The concentrations of
(TG), total (TC),
aminotransferase (ALT), and aspartate aminotransferase (AST)

serum triglyceride cholesterol alanine
were assessed using an automatic biochemical analyzer (Cobas-
8,000; Roche, Basel, Switzerland). The lipid peroxidation indexes of
malondialdehyde (MDA, A003-4), ROS (E004), lipid peroxidation
(LPO, A106-1), total antioxidant capacity (T-AOC, A015-1), and
GSH/GSSG (A016-1) were assayed using the respective Kkits
(Nanjing Jiancheng Bioengineering Institute, Nanjing, Jiangsu,
China) in accordance with the manufacturer’s instructions.

2.7 Cell culture, cell viability, EdU assay and
TUNEL assay

The human HCC cell line HepG2 was purchased from the China
Center for Type Culture Collection (Shanghai, China). The
HepG2 cell line was authenticated by single-tandem repeat
profiling and tested for mycoplasma contamination. The cells
modified Eagle
supplemented with 10% fetal bovine serum (Gibco), 100 pg/mL
streptomycin, and 100 U/mL penicillin in a humidified incubator at

were cultured in  Dulbecco’s medium

37°C in the presence of 5% CO,. For cell viability analysis, a total of
5,000 cells were seeded into 96-well plates in quadruplicate and
cultured for 24 h. Then, the cells were treated with oleic acid (OA;
0.8 mM) for 24 h with or without 25 pM RES (Park et al.,, 2012;
Zhang et al., 2015) or 250 uM NAC (Sayin et al., 2014) and/or GST-
pi inhibitor 20 uM EA. After the treatment, cell viability was
(CCK-8;
Kumamoto Prefecture, Japan). 5-ethynyl-2'-deoxyuridine (EdU)

determined using cell counting kit-8 Dojindo,
assay was performed using BeyoClick™ EdU cell proliferation
kits with Alexa Fluor 488 labeling (Beyotime, Shanghai, China).
Terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) was performed using Click-iT™ TUNEL colorimetric
detection kit (Thermo Fisher Waltham, MA,

United States). All experiments were repeated three times.

Scientific,

2.8 Western blot analysis

HCC tissue nuclear protein extraction was performed using a
nuclear protein extraction kit (Beyotime). RIPA buffer (R0278;
Sigma-Aldrich) was used to extract proteins from the liver or
HCC tissue via whole cell lysis. The resulting lysates were
centrifuged at 12,000 rpm for 10 min, and the supernatants were
collected quantitatively. BCA protein assay kit (Beyotime) was used
to measure the protein concentration in the lysates. Subsequently,
proteins of different molecular sizes were separated on a 10%
polyacrylamide gel and electrotransferred onto a polyvinylidene
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difluoride (PVDF) membrane. After blocking for 1.5 h using 5%
skim milk or TBST (TBS with 0.1% Tween-20) containing 5%
bovine serum albumin, the membrane was incubated with
monoclonal antibodies, washed thrice with TBST, and incubated
with the secondary antibodies for 1 h at room temperature. Finally,
the membrane was rinsed and developed using an enhanced
chemiluminescence  system  following the manufacturer’s
instructions (Perkin Elmer, Waltham, MA, United States). The
antibodies listed in

used in the experiment are

Supplementary Table S2.

2.9 Proteomic analysis

Liver or tumor tissues were mixed with SDT buffer containing
100 Mm Tris (hydroxymethyl)aminomethane hydrochloride (Tris-
HCI), 4% Sodium dodecyl sulfate (SDS), and 1 mM dithiothreitol
(DTT) at pH 7.6. The mixture was then transferred to 2-mL tubes
with quartz sand and homogenized twice using an MP homogenizer
for 60 s at a speed of 6.0 m/s. After homogenization, the mixture was
sonicated and boiled at 100°C for 15 min. The resulting mixture was
then centrifuged at 14,000 x g for 40 min, and the supernatant was
removed and filtered through a 0.22-um filter. After filtration, the
protein content in the supernatant was quantified using BCA
protein assay kit, and the samples were stored at —80°C until
further use. For additional analysis, 20 pg of protein was mixed
with loading buffer and heated at 95°C in a water bath for 5 min. To
separate the proteins, 12.5% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis was performed at a constant current of 14 mA for
90 min. Protein bands were visualized by staining with Coomassie
Blue R-250. Finally, all samples were subjected to filter aided sample
preparation process following an established protocol (Wisniewski
et al,, 2009), and the resulting peptides were collected as filtrates.
Subsequently, the peptide mixture from each sample (100 ug) was
labeled with tandem mass tag (TMT) reagent according to the
instructions provided by the manufacturer (Thermo Fisher
Scientific). The digested samples labeled with TMT were
fractionated into 10 parts using the Pierce High pH Reversed-
Phase Fractionation Kit (Thermo Fisher Scientific), using a
method that involves increasing acetonitrile step-gradient elution.
The obtained peptides were introduced into a trap column of
reverse-phase  chromatography (Thermo Scientific ~Acclaim
PepMap100, 100 um x 2 c¢cm, nanoViper C18) that was linked to
the analytical column of Cl8-reversed phase chromatography
(Thermo Scientific Easy Column, 10 ¢cm in length, 3 um resin)
using buffer A consisting of 0.1% formic acid. The peptides were
subjected to gradient elution with buffer B consisting of 84%
acetonitrile and 0.1% formic acid. Gradient elution was
performed in three steps: 0%-55% over 80 min, 55%-100% over
5 min, and 100% for 5 min. Using Easy-nLC system (Thermo Fisher
Scientific), eluted peptides were introduced into Q Exactive mass
spectrometer (Thermo Fisher Scientific) for 90 min. The mass
spectrometer was operated in data-dependent mode, with one
MS scan followed by 20 MS/MS scans per cycle. Peptides were
searched using the MASCOT engine (version 2.2) integrated into
Proteome Discoverer (version 1.4; Thermo Fisher Scientific) to
query the database. For bioinformatics analysis, gene ontology
(GO) annotation, Kyoto Encyclopedia of Genes and Genomes

Frontiers in Pharmacology

10.3389/fphar.2025.1574039

(KEGG) pathway annotation, functional enrichment analysis, and
hierarchical clustering were performed.

2.10 Statistical analysis

All statistical analyses were performed using GraphPad Prism
7.0. Data were expressed as the mean + SD, and the groups were
compared for significant differences using ANOVA followed by
Dunnett’s t-test. P < 0.01 and P < 0.05 were considered very
significant and significant, respectively.

3 Results

3.1 RES and NAC accelerate HCC initiation
and development in both DEN/HFD and
AKT/Ras mice

To evaluate the effects of antioxidants on HCC formation during
steatosis, we administered RES and NAC to DEN/HFD and AKT/Ras
mice, respectively. DEN/HFD mice serve as a steatosis- and
carcinogen-induced HCC model, and AKT/Ras mice represent a
steatosis- and oncogene-induced HCC model because AKT drives
lipogenesis in the mouse liver. RES and NAC were chosen for two
reasons. First, these two antioxidants have been reported to alleviate
mouse hepatosteatosis (Ma et al., 2016; Jeon et al., 2012). Second, RES
and NAC are different types of antioxidants. RES is fat-soluble,
functions as a superoxide and metal-induced radical scavenger
(Neves et al, 2012; Leonard et al, 2003) and exerts caloric
restriction effect (Tennen et al., 2012). NAC is water-soluble and
participates in GSH metabolism (Sadowska, 2012; Samuni et al., 2013).
DEN/HFD mice were fed vehicle, 0.4% w/w RES, or 1 g/L NAC diet for
24 weeks after DEN injection (Figure 1A). RES was mixed with HFD
chow at 0.4% w/w. NAC was administered to mice in drinking water at
a concentration of 1 g/L. At the end of the experiment, vehicle-treated
mice had an average of four nodules on the liver surface (Figures 1B,C).
In contrast, RES- and NAC-treated mice had an average of six and
seven nodules, respectively. The average maximal tumor volume in
vehicle-treated mice was 1 mm?, whereas that in RES- and NAC-
treated mice were 2 and 3 mm’, respectively (Figure 1D). RES and
NAC led to 2.1- and 1.7-fold increased tumor burden compared with
the vehicle group, respectively. Interestingly, both RES and NAC
reduced the body and liver weights of mice fed HFD since the
fourth week (Figures 1EF). Ki67 staining showed that RES and
NAC increased proliferation in the liver of treated mice
(Figure 1G). AKT/Ras mice were fed vehicle, 0.4% w/w RES, or
1 g/L NAC diet for 5 weeks after AKT/Ras plasmid injection
(Figure 2A). RES was mixed with HFD chow at 0.4% w/w. NAC
was administered to the mice in drinking water at a concentration of
1 g/L. Mouse liver was found covered with tumor nodules at the fifth
week after plasmid injection (Figure 2B). RES or NAC administration
significantly increased the body weight and liver/body weight ratio of
mice, indicating that both agents increased HCC formation in AKT/
Ras mice (Figures 2C,D). Similar to that in DEN/HFD mice, RES or
NAC treatment increased the proliferation of HCC cells in AKT/Ras
mice (Figure 2E). These results indicated that both RES and NAC
enhanced HCC initiation in mice with steatosis.
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RES and NAC enhance HCC formation in DEN/HFD mice. (A) DEN/HFD-induced HCC development in mice and the experimental design. (B)
Representative images of the liver of mice treated with vehicle, 0.4% w/w RES, or 1 g/L NAC. Black arrows indicate HCC nodules. (C—F) Tumor number (C),
maximum tumor volume (D), body weight (E), and liver weight (F) of each group. (G) H&E and IHC staining of mouse HCC tissues, and the percentages of
Ki67-positive cells. Scale bar = 50 pm. Data are presented as mean + SD (n = 11), with statistical significance denoted as *P < 0.05.

3.2 RES and NAC alleviate hepatosteatosis
in mice

In both DEN/HFD and AKT/Ras mice, HCC is partially
attributed to lipogenesis or lipid accumulation causing liver
damage (Ho et al, 2012; Park et al, 2010). In addition, we
observed that fatty liver or lipoma formed earlier than HCC in
the DEN/HFD and AKT/Ras mouse HCC models (Supplementary
Figure S1). To examine whether RES and NAC accelerate HCC by
regulating lipid metabolism, we performed ORO staining and
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transmission electron microscopy (TEM). The result showed that
both RES and NAC treatment led to smaller cytoplasmic lipid
droplets in mouse hepatocytes than those in the vehicle group
(Figures 3A,B). Consistent with the reduced ORO staining, RES
and NAC treatment reduced the serum levels of TG and TC
(Figure 3C). Furthermore, serum ALT and AST levels decreased
after RES or NAC treatment (Figure 3D). This implied that RES and
NAC mitigated lipid accumulation in mice with HCC induced by
both DEN/HFD and AKT/Ras, although they accelerated HCC
development.
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H&E and IHC staining of mouse HCC tissues, and the percentages of Ki67-positive cells. Scale bar = 50 um. Data are presented as mean + SD (n = 4), with

statistical significance denoted as *P < 0.05, **P < 0.01, ***P < 0.001.

3.3 Antioxidants reduce ROS and DNA
damage and increase tumor cell
proliferation in vivo

Studies have shown that NAC and vitamin E reduce ROS and
DNA damage in lung tumor cells, thereby facilitating the
proliferation of tumor cells (Sayin et al, 2014). NAC and
Trolox alleviated DNA damage in DEN-treated primary
hepatocytes (Wang B. B. et al., 2018). Thus, we examined ROS
levels and DNA damage responses in the liver tissues of RES- and
NAC-treated mice. Staining with the redox-sensitive probe DHE
showed that ROS levels in HCC mouse tissues were reduced by
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RES and NAC (Figure 4A). Immunohistochemistry (IHC) analyses
of yH2AX indicated that RES and NAC alleviated ROS-induced
DNA damage as well (Figure 4B). We subsequently investigated
the effect of antioxidants on lipid peroxidation activity and found
that antioxidant treatment significantly reduced MDA and LPO
activities in the serum of mice compared to those in untreated
model group mice (Figure 4C). In contrast, antioxidant treatment
increased the levels of T-AOC and GSH/GSSG in the serum of
mice compared to those in untreated HCC mice (Figure 4D).
Taken together, these data indicate that antioxidants reduce ROS
and DNA damage, although they accelerate tumor formation or
growth in vivo.
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RES and NAC reduce lipid accumulation in DEN/HFD- and AKT/Ras-induced HCC mice. (A) Representative ORO staining of mouse liver sections,
and the percentage of ORO-positive area. Scale bar = 50 ym. (B) TEM images of lipid droplets in mouse liver slices, and the percentage of lipid droplet
area. Scale bar = 500 nm. (C) Serum levels of TG and TC in HCC mice. (D) Serum levels of ALT and AST in HCC mice. The data are presented as mean + SD

(n = 4). Statistical significance is denoted as *P < 0.05, **P < 0.01.

3.4 Antioxidants increase the expression of
GST-pi in HCC

We investigated how antioxidants enhance HCC growth while
blocking ROS production and DNA damage. To this end, we performed
longitudinal, unbiased, quantitative proteomics using liver tissues from
RES-treated and vehicle-treated DEN/HFD mice (Figure 5A). A total of
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4,927 proteins were detected, of which 551 showed significant (>2-fold
change) upregulation or downregulation in the liver tissues of RES-
treated mice compared to that of vehicle-treated mice (Figure 5B).
Pathway enrichment analysis revealed enrichment of the GSH
metabolic pathway (Figure 5C). Consistently, KEGG analysis showed
that the GSH metabolic pathway was enriched (Figure 5D). We
screened differentially expressed proteins between the vehicle-treated
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RES and NAC reduce ROS accumulation, DNA damage, and lipid peroxidation in DEN/HFD- and AKT/Ras-induced HCC mice. (A) ROS detection
using DHE staining in HCC mouse liver sections and the percentage of DHE-positive cells. Scale bar = 50 pm. (B) yH2AX staining of HCC mouse liver
sections, and the percentages of yH2AX-positive cells. Scale bar = 50 pm. (C) Serum MDA and LPO levels in HCC mice. (D) Serum total antioxidant
capacity (T-AOC) and GSH/GSSG ratio in HCC mice. Data are presented as mean + SD (n = 4); *P < 0.05, **P < 0.01

and RES-treated groups and found that GST showed 2.76-fold higher ~ consists of at least seven classes, with the most abundant in mammals
expression in the RES-treated group than in the vehicle-treated group ~ being the alpha, mu, and pi classes of enzymes (Hayes and Pulford,
(Figure 5E). GSTs are a group of phase II detoxification enzymes that ~ 1995; Townsend and Tew, 2003). Recent studies have shown that GST-
facilitate the binding of GSH to different types of endogenous and  pi is highly expressed in liver tumor cells (Su et al., 2003) and is closely
exogenous electrophilic molecules. The cytoplasmic GST superfamily  related to carcinogenesis, tumor formation (Dang et al., 2005) and the
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1.2 are shown in pink (n = 3). (C) GO enrichment analysis of the upregulated proteins using Fisher's exact test. The top nine enriched biological pathways
and top four molecular function pathways are shown (n = 3). (D) The top 10 KEGG pathways enriched in RES-treated mouse HCC tissues (n = 3). (E)
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blue indicates lower abundance (n = 3). (F) Western blot analysis of yH2AX and GST-pi in mouse liver tissues treated with antioxidants. Histone H3 was
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annual survival rate of various tumors (Yasuno et al, 1999). We
therefore performed Western blot to detect GST-pi, and found that
GST-pi expression was increased in the liver tissues of both the RES- or
NAC-treated mice, whereas nucleoprotein YH2AX was decreased
(Figure 5F). Taken together, these results indicate that GST-pi is
involved in the promotion of HCC growth by antioxidants.
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3.5 RES and NAC accelerate HCC initiation
and progression via GST-pi

GST-pi plays a critical role in promoting tumorigenesis and drug

resistance of tumor cells (Crawford and Weerapana, 2016). Next, we
tested whether RES and NAC accelerated tumor progression through the
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RES and NAC inhibit HCC cell apoptosis but do not accelerate cell proliferation in vitro. (A) Morphology of HepG2 cells. HepG2 cells treated with OA

(0.8 mM) for 24 h with and without 25 uM RES or 250 uM NAC or/and 20 uM EA. (B) The viability of HepG2 cells was determined using the CCK-8 assay. (C)
TUNEL staining of HepG2 cells, and the percentage of TUNEL-positive cells. Scale bar = 50 um. (D) EdU staining of HepG2 cells, and the percentage of
EdU-positive cells. Scale bar = 50 pm. Data are presented as mean + SD (n = 3), n.s., not significant; *P < 0.05, **P < 0.01, ***P < 0.005

activation of GST-pi. Since the primary hepatocytes can only be cultured
for a short time and cannot grow in vitro, we chose HCC cell lines to
evaluate the roles of RES and NAC in HCC development in vitro. We
treated HepG2 cells with 0.8 mM OA and subsequently with 25 uM RES
or 250 uM NAC. We found that RES or NAC significantly restored cell
morphology (Figure 6A), increased cell viability (Figure 6B), and reduced
apoptosis caused by OA treatment (Figure 6C), but did not restore
proliferation at a series of concentrations (Figure 6D; Supplementary
Figure S2). We then treated HepG2 cells with 20 uM EA, a well-
characterized GST family inhibitor (Hansson et al, 1991). Following
concomitant EA treatment, RES and NAC failed to reduce apoptosis in
HepG2 cells. These results suggested that the promoting effect of
antioxidants on HCC was dependent on GST-pi in vitro.

We explored the effects of EA administration on the growth of AKT/
Ras-induced HCC cells treated with RES or NAC. Treatment with
25 mg/kg/day EA abrogated the promoting effects of 0.4% w/w RES and
1 g/L NAC on HCC progression (Figure 7A). EA treatment also reduced
the body weight and liver/body weight ratio of mice (Figures 7B,C).
Moreover, EA treatment decreased tumor cell proliferation and
increased DNA damage, apoptosis, and ROS levels (Figures 7D-G).
Collectively, these results indicate that GST-pi mediates the promoting
effect of antioxidants in HCC initiation and progression.
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3.6 RES and NAC enhance tumor growth by
inhibiting MAPK pathway

Next, we investigated the mechanism by which GST-pi accelerates
HCC progression. Recent studies have reported that GST-pi regulates
the mitogen-activated protein kinase (MAPK) pathway, which is
frequently activated in HCC (Sciskalska and Milnerowicz, 2020;
Moon and Ro, 2021). To date, six groups of MAPKs have been
identified, of which ERK1/2, JNK, and p38 are the three major ones
(Suietal., 2014). Thus, we assessed the activation of ERK1/2, JNK, and
p38, and found that the ERK1/2, JNK, and p38 pathways were all
inhibited, along with increased GST-pi in DEN/HFD-induced HCC
treated with RES or NAC (Figure 8A). This result is consistent with
the reported regulation of p38 (Sciskalska and Milnerowicz, 2020),
ERK1/2 (Wang et al, 2019), and JNK by GST-pi (Thevenin et al,
2011; Townsend and Tew, 2003). In addition, in AKT/Ras-induced
HCC model, antioxidants increased GST-pi protein levels and
inhibited the EA
significantly reduced GST-pi protein levels and activated MAPK

activation of MAPK pathway proteins.
pathway proteins (Figures 8B,C). The MAPK pathway is an

important signaling pathway that promotes apoptosis (Sui et al.,
2014; Wang J. et al, 2018). As expected, the expression of the
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FIGURE 7

GST-pi inhibitor abrogates the promoting effects of antioxidants on HCC progression. AKT/Ras mice were treated with vehicle, 0.4% w/w RES, 0.4%
w/w RES + 25 mg/kg/day EA, 1 g/L NAC, or 1 g/L NAC + 25 mg/kg/day EA. (A) Liver morphology of mice (n = 7). (B) Body weight gain during tumor
development. (C) Liver-to-body ratio (n = 7). (D) HE or IHC staining showing HCC histology and AKT, Ras, and Ki67 expression. Scale bar = 50 pm (n = 7).

(E) Western blot of yH2AX and GST-pi in the liver tissues (n = 2). Histone H3 was used as the internal reference for nucleoproteins. Tubulin was used
as the loading control. (F) TUNEL staining of HCC mouse liver sections, and the percentage of TUNEL-positive cells. Scale bar = 50 pm (n =

). (G) ROS

detection by DHE staining of HCC mouse liver sections. Scale bar = 50 um. Data are presented as mean + SD (n = 7); *P < 0.05, **P < 0.01, ***P <0.005.

anti-apoptotic protein Bcl2 increased and that of the pro-apoptotic

pi inhibitor. Taken together, these results indicate that antioxidants

protein Bax decreased upon RES or NAC treatment. Conversely,  inhibit apoptosis via the GST-pi-MAPK axis and play tumor-
Bcl2 was inhibited, whereas Bax increased in the presence of the GST-  promoting role in HCC.
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RES and NAC inhibit the MAPK pathway through GST-pi. (A) Western blotting of GST-pi, p-p38, p-ERK1/2, ERK1/2, p-INK, JNK, Bcl2, and Bax in the
liver tissues of DEN/HFD model mice fed HFD + vehicle, HFD + RES, or HFD + NAC. (B, C) Western blotting of proteins in the liver tissues of AKT/Ras mice

fed normal chow plus EA plus RES (B) or NAC (C), respectively.

4 Discussion

Antioxidants, including vitamins, carotenes, and minerals, have
long been used for cancer prevention and treatment because of their
ability to neutralize ROS (Willcox et al, 2004; Giorgio, 2015).
However, the antitumor effects of antioxidants have never been
validated in clinical trials. Accumulating evidence has confirmed
that antioxidants may accelerate tumor growth and metastasis.
However, whether antioxidants can be used as daily supplements
for prevention has not been fully addressed at both the whole-body
and molecular levels. In this study, we demonstrated that RES and
NAC enhanced HCC formation in both DEN/HFD- and AKT/Ras-
induced HCC mouse models. In terms of mechanism, RES and NAC
were found to upregulate GST-pi expression, inhibit the MAPK
pathway, and reduce ROS, DNA damage, and apoptosis of HCC cells.

The promoting effect of antioxidants on HCC progression in our
study is consistent with the results obtained in other tumor models in
previous studies. In mouse lung cancer, NAC and vitamin E increased
cell proliferation by reducing ROS and DNA damage and disrupting the
ROS-p53 axis (Sayin et al, 2014). Similarly, in human malignant
melanoma cells, NAC and the soluble vitamin E analog Trolox
enhanced migration and invasion without affecting cell proliferation.
in DEN-induced HCC mouse model,
mitochondria-targeting antioxidants NAC and Trolox prevented

In contrast, the non-
tumorigenesis, whereas the mitochondria-targeting antioxidants Mito-
Q and SS-31 promoted tumorigenesis (Wang B. B. et al., 2018). Together
with our study, these findings suggest that patients with HCC should
avoid taking antioxidants or use antioxidant supplements with caution.
However, whether the data obtained from mice can be generalized to
humans needs to be confirmed in clinical trials or cohort studies.

Fat accumulation was reportedly correlated with increased ROS in
humans and mice, and increased ROS levels promote cell proliferation
and differentiation (Boonstra and Post, 2004; Schafer and Buettner,
2001; Furukawa et al., 2004). Moreover, the risk of developing HCC
can be further increased through the synergistic effects of HCV
infection and NAFLD (Li et al., 2009; Parekh and Anania, 2007).
Therefore, people may hold that antioxidants may delay or prevent
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cancer initiation in patients with NAFLD. However, our results
indicate that RES and NAC can enhance tumor formation and
development in mice, even with a high-fat diet or lipogenesis.
Indeed, inhibition of hepatic lipogenesis in mice treated with DEN
increased tumor incidence (Nelson et al., 2017). Inhibiting lipogenesis
results in a significant increase in the levels of endogenous
antioxidants such as NADPH and reduced GSH. This finding
supports our conclusion that liver tumorigenesis in mice treated
with DEN or driver oncogenes does not depend on lipogenesis.
Our results suggest that NAC and RES enhance the initiation and
development of HCC in mice. However, further investigations are
needed to determine whether all antioxidants that can reduce lipid
accumulation or inhibit hepatic steatosis, such as vitamin C, vitamin E
(Shin, 2003), and puerarin flavonoids (Sun et al., 2023), can enhance
the development of HCC. Whether all antioxidants enhance HCC
formation requires further investigation, particularly because some
antioxidants do not reduce lipid accumulation or inhibit hepatic
steatosis. Therefore, their roles in blocking HCC formation and
progression in the context of fatty liver warrant further investigation.

Our study highlighted the pivotal role of GST-pi in ROS scavenging
and HCC. It has been reported that GST-pi is upregulated in pre-
neoplastic lesions observed in animal cancer models induced by
chemicals (Satoh et al,, 1985) and a wide range of human tumors
(Shea et al,, 1988). When colon cancer cells are cultured under growth-
limiting conditions, a deficiency in GST-pi expression leads to increased
cellular oxidative stress, leading to apoptosis (Dang et al, 2005).
Subsequent in vivo experiments showed that GST-pi had a
significant impact on the initial stages of cancer development. In
breast cancer, tumors that express GST-pi have been shown to be
more aggressive and had worse prognosis compared to tumors that do
not express GST-pi (Huang et al., 2003). GST-pi expression was found
in 62.4% of ovarian tumors and directly affected the chemosensitivity of
ovarian tumor cell lines to platinum drugs (Ikeda et al., 2003; Sawers
et al,, 2014). The pivotal role of GST-pi in carcinogenesis may depend
on the regulation of several critical kinases in cancer cells. When
exposed to chemical or oxidative stress, the dissociation of the GST-
pi-JNK complex led to the release of GST-pi for oligomerization.
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Released JNK was then activated, triggering apoptosis (Adler et al., 1999;
Davies et al., 2001). MAPK kinase and ERK1/2 kinase signaling in colon
cancer was dependent on the presence of GST-pi, in line with our
observations in this study (Dang et al., 2005).

Our findings provide further evidence supporting the
controversial role of MAPK in HCC. ERK1/2, JNK, and p38 are
the three major MAPK proteins (Sui et al., 2014). ERK1/2 is mainly
activated by growth signals and promotes HCC cell growth (Moon
and Ro, 2021), while JNK and p38 are mainly activated by
environmental stress and play dual roles in various cancers (Sui
et al., 2014). Inhibition of ERK can lead to apoptosis, whereas the
inhibition of JNK and p38 can prevent apoptosis (Huynh et al.,
2003). In this study, we found that RES and NAC increased GST-pi
expression and subsequently inhibited the activation of JNK and
P38, suggesting that JNK and p38 promoted cell apoptosis in HCC.
In addition, JNK and p38 are capable of balancing autophagy and
apoptosis (Sui et al., 2014). Whether autophagy is involved in the
pro-tumoral role of antioxidants merits further investigation.

Notably, the conclusion that NAC and RES enhance HCC
incidence only applies to the liver with aberrant lipid metabolism.
Whether NAC and RES accelerate HCC along with other risk factors
remains controversial. Several studies have shown that NAC and RES
inhibit DEN-induced HCC and that elevated ROS level is required for
tumor development (Bishayee et al., 2010; Lin et al., 2013). However,
other studies have demonstrated that NAC promotes tumor growth
(Sayin et al., 2014; Schafer et al., 2009). A prospective cohort study
conducted from 1998 to 2009 showed that total urinary RES
metabolite concentration was not associated with cancer mortality
(Semba et al., 2014). In addition, in vitro experiments demonstrated
that RES and NAC reduced the apoptosis of HCC cells pre-treated
with OA but did not enhance cell proliferation, which was not fully
consistent with the in vivo results. These results suggest that the
stimulatory effects of antioxidants on HCC growth depend on the
tumor microenvironment (TME). HCC TME contains many stromal
and immune cell types, including fibroblasts, endothelial cells (Wang
et al,, 2022), regulatory T cells (Zhang et al., 2022), myeloid-derived
suppressor cells (Hoechst et al., 2009), neutrophils (Geh et al., 2023),
and tumor-associated macrophages (TAM) (Cheng et al,, 2022). For
instance, TAM can be repolarized by antioxidants to M1 in bladder
cancer, enhancing the efficacy of anti-PD-L1 immunotherapy (Ma
et al, 2022). Therefore, we speculate that antioxidants may also
enhance HCC by directly regulating the TME, in addition to their
roles in HCC cells, and we will further investigate these effects in
future studies.
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