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Indroduction: Ara-C (cytarabine) resistance remains a significant contributor to
the poor clinical outcomes in adult acute myeloid leukemia (AML). However,
predicting Ara-C resistance and developing effective targeted therapies remain
challenging.

Methods: In this study, we integrated transcriptional data from Ara-C-resistant
cell lines in the GEO database and the TCGA-LAML cohort to establish an Ara-C
resistancerelated gene risk score (ARRGRS). Kaplan-Meier survival analysis
revealed that AML patients with high ARRGRS had significantly worse
prognosis compared to those with low ARRGRS in both cohorts. Additionally,
ARRGRS effectively predicted chemotherapy response in AML patients across
both cohorts. To further elucidate the mechanisms underlying Ara-C resistance,
we constructed Ara-C-resistant AML cell lines and validated our findings using
qPCR, Western blotting, flow cytometry (FCM), and in vivo experiments.

Results: We discovered that high expression of S100A4 promotes Ara-C
resistance in AML. Mechanistically, we identified that the transcription factor
NR6A1 directly binds to the S100A4 promoter, enhancing its transcriptional
activity. Subsequently, S100A4 upregulates p53 expression, thereby promoting
AML cell proliferation and resistance to Ara-C.

Discussion: In summary, our comprehensive investigation of the ARRGRS not
only deepens the understanding of Ara-C resistance mechanisms but also
provides promising insights for targeting S100A4 to inhibit tumor growth and
overcome chemotherapy resistance in AML.
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Introduction

Acute myeloid leukemia (AML) is a malignant hematological
disease that poses significant threats to patients’ lives and imposes a
substantial economic burden on society (Carter et al., 2020).
Currently, the diagnosis and treatment of AML rely on various
methods, including chemotherapy with cytarabine (Ara-C)
(Forsberg and Konopleva, 2024). Ara-C is a cytosine nucleoside
analog that inhibits cell proliferation by interfering with DNA
synthesis, thus exerting an anticancer effect (DiNardo et al.,
2020a). Ara-C acts mainly in the S phase of the cell cycle,
preventing the elongation of the DNA strand by inhibiting the

activity of DNA polymerase (Wang et al., 2022). In recent years,
research on Ara-C in the treatment of AML has made significant
strides, both in understanding its mechanisms and in improving
clinical outcomes. Ara-C remains a cornerstone of AML therapy,
often used in combination with anthracyclines in the “7 +
3”regimen, which has been the standard of care for decades
(Kantarjian H. et al., 2024). Nevertheless, the emergence of drug
resistance presents a formidable obstacle, particularly in the context
of long-term cure rates, which are notably less than satisfactory
(Kantarjian et al., 2021; Bazinet and Kantarjian, 2023). This
challenge is further compounded by the fact that AML cells can
develop resistance to Ara-C following extended exposure. This
resistance is intricately linked to the regulation of the cell cycle.
If AML cells are able to reduce their residence time in S phase or
accelerate cell cycle progression by modulating cell cycle-related
genes then they could reduce the duration of action of Ara-C,
thereby decreasing the killing effect of the drug (Ling et al.,
2023). In addition, some studies have found that drug-resistant
AML cells may resist the induction of apoptosis by Ara-C by
upregulating certain genes associated with cell cycle arrest, such
as TP53 (Bruserud et al., 2024, Holtan et al., 2023, Pei et al., 2020,
Selheim et al., 2024). Thus, cell cycle regulation plays a key role in the
development of cytarabine resistance in AML cells. However, the
development of cytarabine resistance remains a major challenge,
limiting the efficacy of treatment. Previous studies have identified
some genes associated with Ara-C resistance, but the underlying
mechanisms are not fully understood.

This study aims to establish a prognostic diagnostic model for
acute myeloid leukemia based on Ara-C resistance-related genes
and investigate the mechanism by which the key gene
S100A4(S100 calcium binding protein A4), activated by the
transcription factor NR6A1 (nuclear receptor subfamily
6 group A member 1), mediates Ara-C resistance in acute
myeloid leukemia cells through the p53 cell cycle signaling
pathway. S100A4, which is also referred to as FSP1, MTS1, or
metastasis, is a widely recognized oncoprotein that promotes
metastasis and possesses strong tumor-promoting properties
(Liu et al., 2021). It is a member of the S100 superfamily of
Ca2+-binding proteins and is expressed not only by cancer cells
but also by a variety of stromal cells (Liu et al., 2019). It has been
shown that exosomes secreted by bone marrow mesenchymal
stem cells can promote the proliferation, migration and drug
resistance of AML cells by up-regulating the expression of
S100A4 in AML cells (Lyu et al., 2021). By comparing the
nuclear proteome and transcriptome of AML progenitor cells
with those of normal human CD34 cells, some researchers have
found that knockdown of S100A4 affects the survival of AML cell
lines, but not normal hematopoietic stem cell progenitors
(Alanazi et al., 2020). This suggests that S100A4 is critical for
AML survival and may be a therapeutic target for AML. However,
the molecular mechanism by which S100A4 affects AML disease
progression and drug resistance has not yet been clarified.
NR6A1 also called RTR, NR61, homodimerizes and binds to
DNA. Existing studies have reported that NR6A1 is aberrantly
expressed in a variety of solid tumors, e.g., hepatocellular
carcinoma (Lin et al., 2022), gastric carcinoma (Zhou et al.,
2020), and that aberrant expression is closely associated with
tumor progression. The DNA methylation indicator of

TABLE 1 Correlation between S100A4 expression and clinical parameters of
30 AML patients.

Variabies Cases S100A4 expression P value

High Median

Sex 0.6756

Female 14 9 5

Male 16 8

Age 0.4612

<60 15 7 8

≥60 15 10 5

WBC(*10̂9/L) 0.3328

<10 19 9 10

≥10 11 8 3

Blasts in bone marrow (%) 0.7489

<50 39 26 13

≥50 29 10 19

FAB classificatopn 0.7754

M0 2 2 0

M1 7 4 3

M2 4 2 2

M4 10 5 5

M5 7 4 3

Cytogentics 0.8079

Favorable 10 5 5

Intermediate 6 4 2

Unfavorable 14 8 6

PLT (*10̂9/L) 0.8215

<50 12 6 6

≥50 18 11 7

CR 0.0580

No 14 11 3

Yes 16 6 10
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NR6A1 was found to be prognostic in a validation study of
potential prognostic DNA methylation biomarkers in patients
with acute myeloid leukemia (Šestáková et al., 2022).

The novelty of this study stems from its comprehensive
investigation into the role of S100A4 in AML, offering insights
that could pave the way for the development of innovative
therapeutic strategies targeting this gene. While previous
research has highlighted the significance of Ara-C in AML
treatment, the emergence of drug resistance poses a persistent
challenge. To tackle this issue, we explored the potential Ara-C-
resistance mechanisms by culturing Ara-C-resistant cell lines and

performing bioinformatics analysis. Molecular subtypes and an
Ara-C-resistance-related gene risk score (ARRGRS) were
constructed to predict the overall survival of AML patients
and to classify AML patients who could benefit from
chemotherapy and immune therapy. We further identified
S100A4 as the putative gene participating in the process of
Ara-C resistance using functional analysis and experimental
assays. Specifically, we sought to elucidate the mechanism
through which the transcription factor NR6A1 activates the
key gene S100A4, which mediates Ara-C resistance in AML
cells through the P53 signaling pathway.

FIGURE 1
Workflow of the study design.
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FIGURE 2
Establishing Ara-C-resistant Cell Lines (A,B) Cell viability assay was applied to confirm the establishment of the Ara-C-resistant cell lines. (C,D)
Apoptosis assay was applied to confirm the establishment of the Ara-C-resistant cell lines. 10 μMAra-Cwas used for 24 h for the further experiments. (E,F)
EDU staining for assessing cell viability. Again, 10 μM Ara-C was used for 24 h for the further experiments. Scale bars, 100 μm. Data are shown as mean ±
SD representing three biological replicates. *p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Pharmacology frontiersin.org04

Wang et al. 10.3389/fphar.2025.1574759

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1574759


FIGURE 3
Identifying Hub Genes of Ara-C Resistance and Cluster Analysis; Establishing a Prognostic Risk Score Model. (A,B) Ara-C-resistant hub genes were
identified. The criterion (|log2 FC| > 1 and adjusted p-value <0.05) was used. *** means p < 0.001. (C)GO/KEGG analysis of differential expression genes.
(A) Consensus clustering heat map was constructed with k = 2. (D) Heatmap of consensus clustering matrix when K = 2. (E) CDF curve and Delta area
curve for K = 2–9. (F) LASSO coefficients of four prognostic Ara-C -resistance-related genes in the TCGA-LAML cohort. (G) Turning parameter
selection via minimum criteria were used for cross-verification in the LASSO regressionmodel. (H) The forest plot displays the hazard ratios (HR) and 95%
confidence intervals (CI) for each variable included in the multivariate Cox regression model.
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FIGURE 4
Construction and Validation of an AML Risk Prognostic Model Based on Ara-C-Resistance-Related Genes. (A) KM survival curves in the high-
ARRGRS and low- ARRGRS risk groups. (B) ROC curves of the risk prognostic model predicting the prognosis of AML patients. (C,D) Validation of the risk
prognostic models in the validation set. (E) GSEA analysis of differentially expressed genes in high ARRGRS groups. (F) GSEA analysis of differentially
expressed genes in low ARRGRS groups. ARRGRS: Ara-C-resistance-related gene risk score.
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FIGURE 5
Expression Profiles of Hub Genes in AML and Differential mRNA Levels Across Cell Lines. (A) Box plots showing differences in the expression of the
10 Hub-genes in normal and AML patient samples. (B)Heatmap of the DEGs expression levels in the normal and AML patient groups. (C) The relationship
of S100A4 (a), PDE4A (b), SHANK1 (c), ASCC3 (d), MPO (e), NET1 (f), CSPG4 (g), TEX30 (h), RASAL3 (i) and EPB41L2 (j) with OS in AML patients in TCGA
database. (D) the mRNA expression level of S100A4 (a), ASCC3 (b), EPB41L2 (c), NET1 (d), TEX30 (e), CSPG4 (f), MPO (g), PDE4A (h), RASAL3 (i) and
SHANK1 (j) in sensitive and Ara-C-resistant cell lines. Data are shown as mean ± SD representing three biological replicates. *p < 0.05, **p < 0.01, ***p <
0.001, ns, no significant difference.
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FIGURE 6
Expression Profile and Functional Analysis of S100A4 in Ara-C-Resistant Cell Lines. (A) S100A4 was highly expressed in Ara-C resistant cell lines
confirmed by Western blotting. (B) The relative gray values were shown in histogram. (C) S100A4 was overexpressed or silenced in THP-1 and U937 cell
lines determined by western blotting analyses. (D,E) The relative gray values were shown in histogram. (F,G) Dose-response curves of Ara-C of LV-
S100A4 and sh-S100A4 in THP-1 and U937. CCK-8 assay after 24 h of drug exposure determined Cell viability. (H–J) The percentage of apoptotic
cells was demonstrated by flow cytometry in both cell lines following the overexpressed or silenced of S100A4. Data are shown as mean ± SD
representing three biological replicates. *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significant difference.

Frontiers in Pharmacology frontiersin.org08

Wang et al. 10.3389/fphar.2025.1574759

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1574759


FIGURE 7
Expression Profile and Functional Analysis of S100A4 in Vivo and Association of S100A4with the Poor AML Prognosis. (A) The general view of tumors
(EV1, LV-S100A4, EV2 and sh-S100A4 groups). (B) Tumor volume curves. (C) The tumor weights of EV1, LV-S100A4, EV2 and sh-S100A4 groups. (D) The
expression of S100A4 was examined in xenograft tumor tissue sections using immunohistochemistry. Scale bars: 50 μm. (E,F) The protein expression of
S100A4 in the “normal donors group” (n = 4), “newly diagnosed group” (n = 4) and “relapse group” (n = 4). Grey values of S100A4. (G) The mRNA
expression of S100A4 in the “normal donors group” (n = 10), “newly diagnosed group” (n = 10) and “relapse group” (n = 10). Data are shown as mean ± SD
representing three biological replicates. *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significant difference.
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FIGURE 8
Activation of S100A4 by Transcription Factor NR6A1 and Its Role in Mediating Cytarabine Resistance via the p53 Signaling Pathway. (A) Protein-
protein interaction network of S100A4 and TP53 (STRING). (B) The protein expression levels of S100A4, p53, cyclin D1, CDK4 was evaluated by western
blotting analysis in the EV1, LV-S100A4, EV2 and sh-S100A4 groups. (C, D) The relative gray values were shown in histogram. (E) Dual luciferase assays
were performed to detect the binding of the transcription factor NR6A1 to the promoter sequence region of the target gene S100A4 in order to
investigate the regulation of the target gene by the transcription factor. (F) Luciferase experiments with the wild-type and the mutated 3′ UTR of
KIAA1522. (G) The protein expression of S100A4 and NR6A1 in the “NR6A1-NC + S100A4-NC”. “NR6A1-Overexpression + S100A4-NC” and “NR6A1-

(Continued )
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Methods

Clinical samples

The clinical samples were bone marrow samples collected from
patients with AML and normal donors in the Department of
Hematology, The Affiliated Hospital of Guizhou Medical
University from 2022 to 2024. The patient’s condition was
diagnosed using morphological, cytochemical, and
immunotyping. Patients with AML were classified as “newly
diagnosed” and “relapse” by diagnosis. Therefore, the clinical
samples were divided into three groups: “normal donors” (n =
14), “newly diagnosed” (n = 14) and “relapse” (n = 14). Detailed data
are shown in Table 1. Written informed consent was obtained from
the individuals for the publication of any potentially identifiable
images or data included in this article. The clinical samples in this
paper were approved by the Ethics Committee of the Affiliated
Hospital of Guizhou Medical University for basic research
(Approval No. 2023–253).

Establishment of Ara-C-resistant cell lines

The construction of Ara-C-resistant cell lines was validated
using IC50. Following a 24-hour exposure to Ara-C, the cell

survival was assessed via a CCK-8 assay. The IC50 values for
THP-1 (IC50 = 6.34 μM), U937 (IC50 = 13.15 μM), THP-1/R
(IC50 = 36.01 μM), and U937/R (IC50 = 90.40 μM) were
determined. The IC50 values of THP-1/R and U937/R were
considerably higher than those of THP-1 and U937, indicating
the success of the Ara-C-resistant strain construction.

Datastes

AML clinical samples were retrieved from TCGA (https://www.
cancer.gov/ccg/research/genome-sequencing/tcga) database as the
training set, while data from the Beat AML (https://github.com/
radivot/AMLbeatR) database were utilized as the validation set. Ara-
C relate different expression genes were downloaded from the Gene
Expression Omnibus (GEO: GSE52919) database (https://
cancergenome.nih.gov/, accessed on 2 JUN 2024) to function as
independent external verification queues.

Data visualization and differentially
expressed genes (DEGs) analysis

The packages in R language mentioned below were employed for
data visualization. The differential expression of mRNAs was

FIGURE 9
Decoding Ara-C resistance through ARRGRS: The oncogenic circuitry of NR6A1-Driven S100A4/p53 activation in AML.

FIGURE 8 (Continued)

Overexpression + sh-S100A4” groups. (H, I) The relative gray values were shown in histogram. (J, K, L) After treated with 10 μM Ara-C for 24 h, the
percentage of apoptotic cells was demonstrated by flow cytometry in the “NR6A1-NC + S100A4-NC”, “NR6A1-Overexpression + S100A4-NC” and
“NR6A1- Overexpression + sh-S100A4” groups. Data are shown asmean ± SD representing three biological replicates. *p < 0.05, **p < 0.01, ***p < 0.001,
ns, no significant difference.
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evaluated using the “Limma” package in R language, with thresholds
of p < 0.05 and log2|fold change| >1. The expression levels and
distributions of DEGs between C1 and C2 were analyzed using the
“Pheatmap” package in the R language.

Survival analysis

The survival analysis was conducted using the “survival”
package in the R language, and the OS of patients belonging to
different clusters (C1 and C2) were analyzed and evaluated.
Furthermore, a comparison was made between the 1-,3-and
5 years OS of high- and low-risk groups in both the training and
validation sets.

Functional enrichment analysis

GO and KEGG were conducted using the “Cluster Profilter”
package in R language, false discovery rate (FDR) < 0.05. The
DEGs was subjected to pathway enrichment analysis using GSEA:
(https://www.broadinstitute.org/gsea/). Normalize enrichment
score (NES): The normalized enrichment score after
correction was normalized by the data of the gene set; NOM
p-val: The p-value obtained by statistical analysis of ES value
represents the reliability of the result; FDR q-val: The p-value
after multiple hypothesis testing correction represents the
probability of false positive results, The, the smaller the
p-value, the more significant. |NES|>1, FDR <0.25, p < 0.
05 was considered statistically significant.

Identification of Ara-C related
prognostic genes

Univariate Cox regression analysis was adopted to obtain Ara-C
related genes that exhibited significant associations with OS in AML
patients (hazard ratio, HR = 95%, p < 0.05). The “ggforest” package in R
language was utilized to construct Figure 3A. LASSO Cox regression
analysis was performed on Ara-C related genes to eliminate any false
positive Ara-C related genes that may be associated with prognosis. The
“glmnet” package in R language was utilized to generate Figure 3 Ara-C
related genes were selected according to the minimum λ value for
constructing the risk prognostic model.

Characterization of immune landscape

The CIBERSORT (https://cibersortx.stanford.edu/) in
conjunction with the LM22 feature matrix was applied to analyze
the differences in immune infiltration of 22 immune cells among
different groups. The Pearson product-moment correlation
coefficient was utilized to compute the correlation among
immune cells, while the Mantel test was employed to statistically
analyze the correlation between the risk score matrix and the
immune cell matrix. r = 0–1 represents correlation, with higher
values indicating stronger correlation, and p < 0.05 was considered
statistically significant.

Construction of the Ara-C related risk
prognostic model

The risk scoring formula is as follows:
Risk score � ∑n

i�1coefipxi. The term “Coefi” denotes the
coefficient, while “Xi” represents the normalized count of each
core gene. Receiver Operating characteristic (ROC) curve was
generated using the R language package “time ROC”. The
accuracy of the prognostic model in predicting the 1 -, 3 - and
5-year OS of AML patients was assessed by calculating the Area
Under Curve (AUC) in both the training and validation datasets.

Extraction of bone marrow mononuclear
cells from clinical samples

5 mL of bone marrow from AML patients or normal donors was
collected by bone marrow puncture under routine sterile conditions
and preserved with EDTA anticoagulation. Bone marrow was
diluted 1:1 in equal volume with saline and was slowly added
along the wall to a centrifuge tube pre-loaded with Ficoll
(Solarbio Technologies, Beijing, China) separation solution, and
Ficoll was 1:1 with diluted bone marrow. After centrifugation at
2,000 rpm for 15 min at room temperature, the intermediate white
cell layer was aspirated and transferred to a new centrifuge tube.
After centrifugation at 1,500 rpm for 5 min, the supernatant was
discarded. The remaining precipitate, namely, bone marrow
mononuclear cells, was retained after being washed three times
with saline and subsequent discarding of the supernatant.

Cell culture

The authenticity of THP-1 and U937 human leukemia cell lines
was confirmed by STR analysis, and they were cultured in a 5% CO2

incubator at 37°C using RPMI1640 medium containing 10% fetal
bovine serum. Drug-resistant variants, namely, THP1R and U937R,
were generated by supplementing 1% penicillin (100 units/mL) and
streptomycin (100 mg/mL) to the medium along with increasing
concentrations of Ara-C. The drug concentration was gradually
escalated, repeating this process three to five times at each
concentration after the cells have proliferated to a normal shape.
The drug induction was maintained for a duration of 6–8 months
until the cells achieved a stable state at the final concentration.

Real-time PCR

The extraction of total RNAs from cells was performed using
Trizol reagent (Invitrogen, Carlsbad, CA, United States). The
mixture was vigorously shaken for 15 s after the addition of
chloroform, followed by incubation at room temperature for
3 min. The samples were centrifuged at 12,000 rpm for 15 min
at 4°C, and the supernatant was retained. An equal volume of
isopropanol was added, followed by centrifugation at 12,000 rpm
for 10 min at 4°C. Subsequently, the supernatant was discarded. The
RNA precipitate was washed with 500 μL of 75% ethanol.
Subsequently, the samples were subjected to centrifugation at a
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speed of 7,500 rpm for a duration of 3 min at a temperature of 4°C,
followed by removal of the supernatant. The samples were air-dried
for 5 min at room temperature to allow ethanol evaporation,
followed by addition of DEPC water and measurement of
concentration. cDNA was extracted using a reverse transcription
kit (MedChemExpressMCE, United States of America). Real-time
PCR was performed using SYBR Green PCR Master Mix
(MedChemExpressMCE, United States) kit and PRISM
7500 realtime PCR Detection System (Thermo Fisher Scientific,
United States). Relative expression of the target genes was calculated
using β-actin as the reference through comparative cycle threshold
(CT) values (2−ΔΔCT). The following human primers were used in
Supplementary Table S1.

Western blotting

The primary antibodies against S100A4 and NR6A1 (Affinity
Biosciences, United States of America) were diluted at 1:10,000 and
1: 10,00, cyclin D1 (1:30,000, Proteintech, China), CDK4 (1:4,500,
Proteintech, China), p53 (1:20,000, Proteintech, China),
respectively, the β-actin primary antibody (Wuhan Sanying,
China) was diluted at 1:3,000. The HRP-conjugated secondary
antibody was diluted to 1:10,000 (Proteintech, China). Protein
lysates were extracted from cells by adding 1 mM PMSF to the
RIPA lysis buffer (Solarbio Science and Technology). The mixture
was vigorously shaken and incubated on ice for 30 min.
Subsequently, the supernatant was obtained by centrifugation at
12,000 rpm for 15 min at 4°C. The concentration of protein was
determined using the BCA Protein Assay kit (Pierce, Hercules, CA,
United States). The proteins were mixed with Loading buffer 1:4 and
boiled at 100°C for 10 min 40 μg of proteins were then added to a
10% SDS-PAGE gel and electrophoresed into the separation gel at a
constant voltage of 80 V followed by switching to a stable voltage of
120 V. At the end of electrophoresis, the separated proteins were
transferred onto PVDF membranes and rotated at 250 mA for 1 h.
After shaking with PBS containing 5% skim milk on a shaker for 2 h
at room temperature, the membranes were washed. The primary
antibodies were then incubated for more than 8 h at 4°C. After
washing the membranes, secondary antibodies were incubated for at
room temperature for 45 min. All protein bands were visualized
using the Enhanced Chemistry kit (7Sea Biotech, Shanghai, China).
β-actin was used as the internal reference.

Cell counting Kit-8 assay (CCK8)

CCK8 assay was used to detect the sensitivity of leukemia cell
lines to Ara-C. The cells were inoculated into individual wells of a
96-well plate at a seeding density of 3 ×104 cells/100 μL, with five
replicates per experimental group. After subjecting the cells to
various concentrations of Ara-c for a duration of 24 h, a volume
of 10 μL CCK8 reagent was added into each well, the concentrations
of Ara-c in U937 and U937R cell lines were 4, 16, 64, 192, 386, 578,
768 and 1,536 μM, meanwhile the concentrations of Ara-c inTHP-1
and THP-1R cell lines were 0.5, 4, 64, 192, 386, 578,
768 and1536 μM. The absorbance at 450 nm was quantified
using a microplate spectrophotometer after co-culturing for

1–2 h. The IC50 value was determined by employing the
GraphPad Prism 9.4 software.

Cell transfection and lentivirus infection

We obtained human S100A4-silencing RNA (sh-S100A4),
S100A4-overexpressing lentiviral particles (LV-S100A4), and
NR6A1-overexpressing lentiviral particles (NR6A1-OE) from
Genechem (Shanghai, China). The controls consisted of cells
transfected with an empty vector (EV).

Detection of viable cells by EDU staining

Cell viability was assessed using the EDU (5-ethynyl-2′-
deoxyuridine) incorporation assay. Cells were incubated with
10 μM EDU for 2 h, fixed with 4% paraformaldehyde, and
permeabilized with 0.3% Triton X-100. EDU -positive cells were
labeled with Alexa Fluor® 488 azide using the Click-iT® EDU
Imaging Kit (Thermo Fisher Scientific) and counterstained with
Hoechst 33,342. Fluorescence images were captured using a
fluorescence microscope, and the percentage of viable cells was
calculated by counting EdU-positive cells relative to total nuclei.

Apoptosis assay

After harvesting and PBS-washing, the cells were subjected to
Annexin-V/propidium iodide (PI) staining to assay the apoptotic
ratio as per the advised protocol (7Sea Pharmatech, Shanghai,
China), followed by flow cytometry (BD Biosciences, San Jose,
United States).

Immunohistochemical (IHC) staining

IHC staining with antibodies against S100A4 were performed to
detect protein expression levels following standard operating
procedures. Paraffin-embedded tissue sections (4 μm) were
dewaxed in an eco-friendly dewaxing agent (three changes,
10 min each), rehydrated through graded ethanol series (100%,
95%, 80%, 5 min each), and rinsed in distilled water. Antigen
retrieval was performed using citrate buffer (pH 6.0) under
optimized conditions to prevent tissue drying. After cooling to
room temperature, sections were washed in PBS (pH 7.4, 3 ×
5 min on a shaker). Endogenous peroxidase activity was blocked
with 3% H2O2 (25 min, room temperature, dark), followed by PBS
washes. To reduce nonspecific binding, sections were incubated with
3% bovine serum albumin (BSA) or species-matched serum (30min,
room temperature). Primary antibody against the target protein
(diluted in PBS) was applied overnight at 4°C in a humidified
chamber. After PBS washes, HRP-conjugated secondary antibody
(species-matched) was added for 50 min at room temperature.
Signal visualization was achieved using DAB chromogen under
microscopic monitoring, followed by rinsing in tap water to
terminate the reaction. Nuclei were counterstained with
hematoxylin (3 min), differentiated in acid ethanol, blued in
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ammonia water, and rinsed. Sections were dehydrated through
graded alcohols (75%, 85%, 100%, 5 min each), cleared in xylene,
and mounted with resin. Protein expression was evaluated using
bright-field microscopy.

Xenografted tumor model

NOD-SCID mice were purchased from Model Organisms
Center (Shanghai, China). Stably transfected S100A4 cells were
resuspended in PBS at a concentration of 5 × 106 cells/100 μL
and then subcutaneously injected into the 5-week-old female mice.
The mice were randomly divided into four groups: EV1, LV-
S100A4, EV2 and sh-S100A4. Once tumors were visible or
palpable, mice were treated with Ara-C (60 mg/kg/day for
5 days) by intraperitoneal injection 48 h. Mice were placed on
the platform of BLT In-Vivo Imaging System (BLT Photon Tech.,
Guangzhou, China). Tumor weight and diameter were measured
every week. All experiments on mice were approved by the
Institutional Animal Care and Use Committee of Guizhou
Medical University, China. Although there is no blinding in this
experiment, it avoids introducing bias in the evaluation of
experimental data.

Statistical analysis

All the images were digitally processed and labeled using ImageJ
and Illustrator 2021. Statistical analyses were performed using
GraphPad Prism 9 software. Statistical methods covering: T-test
(satisfies normal + homogeneous variance), Welch t’ test (satisfying
normal + not satisfying variance homogeneity), Wilcoxon rank sum
test and one-way ANOVA. The value of p < 0.05, 0.01, and 0.001 was
set for the thresholds of statistical significance. Data are shown as
the mean ± SEM.

Results

Functional characterization of Ara-C-
resistant AML cell lines

In order to explore the potential mechanisms by which AML
develops an Ara-C chemotherapy, a research protocol was
designed.The protocol is outlined in Figure 1. After we
established the stable Ara-C resistant THP-1 cell line (THP-1/R)
and U937 cell line (U937/R), the growth inhibitory effects of Ara-C
on THP-1, THP-1/R, U937 and U937/R cells were determined by
the CCK-8 assay (Figures 2A,B). Following the stimulation of Ara-C,
apoptosis in different cell lines, the apoptosis rate was detected by
FCM, and the apoptosis rates of THP-1/R and U937/R were smaller
than those of THP-1 and U937 (Figures 2C,D). Following the
incorporation of Ara-C into the four distinct cell groups, the
EDU method was employed to detect live cells. The results
demonstrated that the proportion of live cells to total cells was
higher in the THP-1/R and U937/R groups compared to the THP-1
and U937 groups (Figures 2E,F). In comparison with control cell
lines, THP-1/R and U937/R cell lines exhibited higher IC50 values

under Ara-C treatment, a greater number of live cells detected by
EDU, and a lower rate of apoptosis.

Construction of an AML risk prognostic
model using Ara-C resistant-related genes

Furthermore, we sought to identify differentially expressed
genes (DEGs) between Ara-C-resistant and sensitive cell lines
(GSE125403). Subsequently, we integrated the DEGs from AML
tumor samples (TCGA database) and normal control samples
(GTEx database), which resulted in the identification of 399 Ara-
C resistance-related genes. These genes were presented as Venn
diagrams (Figures 3A,B). These differential genes were then
subjected to Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis (Figure 3C). The results
demonstrated that these differential genes were predominantly
associated with tublin binding, catalytic activity, chromosomal
region and segregation, and cell cycle checkpoint signaling.
Subsequent cluster analysis of AML patients based on the Ara-C
resistance-related genes obtained after differential analysis showed
that AML patients could be successfully classified into two clusters
(Figures 3D,E). To further investigate the value of Ara-C resistance-
related genes in assessing the clinical prognosis of AML, we
constructed a risk-prognostic model for AML based on Ara-C
resistance-related genes. Initially, univariate Cox regression
analysis was conducted to identify 44 genes from the 357 Ara-C
resistance-associated genes that exhibited a strong association with
AML prognosis (HR = 95%, P < 0.05). To further refine the analysis
and eliminate the possibility of false-positive prognostic factors,
10 Ara-C resistance genes were subjected to LASSO Cox regression
analysis, which identified those genes that exhibited a high degree of
association with AML prognosis (HR = 95%, P < 0.05) (Figures
3F,G) (Tibshirani, 1996). The patients belonging to the AML-TCGA
cohort were assigned to high or low ARRGRS groups referring to the
median ARRGRS. The expression profiles of 10 prognostic hub
genes including S100A4, ASCC3, EPB41L2, NET1, TEX30, CSPG4,
MPO, PDE4A, RASAL3 and SHANK1 in the high/low ARRGRS
groups were exhibited in the style of a heat map (Figure 3H). In
addition, the results of the validation of the proportional risk
hypothesis for the 10 genes in the ARRGRS score showed that
the individual test p-value of the individual Schoenfeld test for the
genes was greater than 0.05, except for the EPB4IL2 gene, for which
the p-value of the test was close to the significance level (0.0289), and
the p-value of the global Schoenfeld test was 0.2784, and the
proportional risk hypothesis was not rejected as a whole, i.e., The
covariates in the overall model as a whole satisfy the proportional
risk assumption (Supplementary Figure S1).

Verification of the predictive power of the
Ara-C-related gene risk prognostic model
and association of the risk prognostic model
with TIME of AML

Next, the correlation between ARRGRS and prognosis was also
analyzed. As shown in Figure 4A, the patients belonging to the high
ARRGRS groups exhibited a poorer prognosis (p < 0.0001). To
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verify the predictive value of ARRGRS, ROC curves were drawn. The
area under the curves (AUCs) were 0.786, 0.833 and 0.853,
respectively, for 1-year, 3-year and 5-year survival (Figure 4B),
indicating that ARRGRS could favorably predict the overall
survival status of AML patients. The external validation cohort,
the Beat AML data base, also confirmed that the ARRGRS groups
were occupied with satisfactory overall survival prediction ability
(p < 0.0001) (Figure 4C). The area under the curves (AUCs) were
0.575, 0.682 and0.751, respectively, for 1-year, 3-year and 5-year
survival (Figure 4D). Next, we explored the potential mechanism of
Ara-C resistance by performing GSEA. The results of the GESA
using DEGs in the high ARRGRS groups showed that the process of
cell adhesion, chemokine signaling pathway, cytokine-cytokine
receptor interaction, hematopoietic cell lineage and intestinal
immune network for IgA production were involved in the
development of Ara-C resistance (Figure 4E). The results of the
GESA using DEGs in the low ARRGRS groups showed that the
ascorbate metabolism and glucuronate interconversions were
involved in the development of Ara-C resistance (Figure 4F).

S100A4 were closely associated with poor
prognosis of AML

In order to thoroughly examine the mechanism of Ara-C
resistance generation in AML cells, an analysis was conducted of
the expression differences of ten genes in normal and AML patients
(Figure 5A). S100A4, ASCC3, CSPG4, MPO, RASAL3, and
SHANK1 exhibited significantly higher levels of expression in
AML patients compared to normal subjects. Conversely,
EPB41L2, NET1, TEX30, and PDE4A exhibited higher expression
levels in normal subjects and lower levels in AML patients. Gene co-
expression heatmap results showed that MPO, S100A4, and
RASAL3 were generally lowly expressed in normal subjects and
highly expressed in AML patients, while EPB41L2, PDE4A, and
NET1 were generally highly expressed in normal subjects and lowly
expressed in AML patients (Figure 5B). These findings suggest that
these genes associated with resistance to treatment may exhibit
differential expression between normal subjects and AML patients.
To identify additional genes that are clinically significant, we
performed survival analysis on these 10 genes (Figure 5C). The
finding that the survival rate is lower in the S100A4 high expression
group compared to the low expression group is consistent with our
hypothesis that S100A4 overexpression is associated with poorer
prognosis. (Figure 5C a). Similarly, the survival rate was lower in the
SHANK1 low-expression group compared to the high-expression
group (Figure 5c). Additionally, the survival rate was lower in the
MPO low-expression group compared to the high-expression group
(Figure 5e). This result provides further evidence to support our
research hypothesis and suggests that S100A4 may be a potential
biomarker for predicting survival outcomes.

Subsequently, an experimental investigation was conducted to
ascertain whether there was a discrepancy in the expression of the
10 genes in the AML-sensitive (THP-1, U937) and Ara-C-resistant
(THP-1/R, U937/R) cell lines (Figure 5D). RT-PCR results indicated
that S100A4, ASCC3, TEX30, MPO, PDE4A, and RASAL3 were
expressed in both THP-1 and U937. The expression of
S100A4 exhibited the most significant discrepancy, with

EPB41L2 and NET1 being elevated in THP-1/R compared to
THP-1, yet diminished in U937/R compared to U937.

A comprehensive examination of the expression differences,
survival analysis, and the results of the PCR assay screening was
conducted. This analysis led to the conclusion that S100A4 has a
significant potential to be associated with the development of Ara-C
resistance in AML cells.

S100A4 expression: impact on Ara-C
resistance in AML cells

An examination of S100A4 protein expression in four distinct
cell lines revealed that S100A4 expression levels were significantly
higher in THP-1/R and U937/R cells compared to THP-1 and
U937 cells (Figure 6A). To further explore the role played by
S100A4 in the development of Ara-C resistance in AML cells, we
used lentivirus to upregulate and downregulate the expression of
S100A4 in THP-1 and U937 cell lines, respectively. Western blot
verified the regulatory effect at the protein level (Figure 6B), and RT-
PCR verified the regulatory effect at the transcriptional level (Figures
6C–E). Following the regulation of S100A4 gene expression in the
THP-1 cell line, the median inhibitory concentration (IC50) value of
cells exhibiting elevated S100A4 expression increased, while the
IC50 value of cells with reduced S100A4 expression decreased (LV-
S100A4:IC50 = 26.14 μM; EV1:IC50 = 8.22 μM; sh-S100A4:IC50 =
4.647 μM; sh-S100A4. (EV2:IC50 = 7.361 μM) (Figure 6F). A similar
trend was observed in the U937 cell line (LV-S100A4:IC50 =
36.26 μM; EV1:IC50 = 16.67 μM; sh-S100A4:IC50 = 5.665 μM;
EV2:IC50 = 16.31 μM) (Figure 6G). Subsequently, we employed
FCM to assess the apoptosis rate in different groups following Ara-C
(10 μM) stimulation (Figure 6H). The results demonstrated that the
lowest apoptosis rate was observed in the LV-S100A4 group, which
exhibited high S100A4 expression, and the highest rate was observed
in the sh-S100A4 group, which exhibited low S100A4 protein
expression in both THP-1 and U937 cells (Figures 6I,J).

Furthermore, we observed that S100A4 expression was
significantly elevated in Ara-C-resistant strains. The upregulation
of S100A4 expression in sensitive strains demonstrated a modest
enhancement in cell resistance to Ara-C, while the downregulation
of S100A4 expression exhibited a corresponding increase in cell
sensitivity to Ara-C. These findings collectively suggest the potential
for S100A4 to play a significant role in the resistance of AML cells to
the lethal effects of Ara-C.

In vivo S100A4 overexpression promotes
AML tumor cell growth and impairs the
therapeutic effect of Ara-C

Four distinct groups of EV1, LV-S100A4, EV2, and sh-S100A4
cells were injected subcutaneously into NOD/SCID mice, with the
administration of Ara-C via the tail vein on the seventh day. The
subcutaneous tumor results demonstrated that the LV-S100A4
group, which exhibited high S100A4 protein expression, exhibited
the largest tumor volume (Figure 7A), the fastest growth rate
(Figure 7B), and the heaviest weight (Figure 7C). Conversely,
tumors in the sh-S100A4 group, which exhibited low expression
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of S100A4 protein, demonstrated the smallest volume, the slowest
growth rate, and the lightest weight. The results of IHC analysis
after paraffin sectioning of subcutaneous tumors showed that in
the in vivomodel the LV-S100A4 group had the highest expression
level of S100A4 protein and the sh-S100A4 group had the lowest
expression level (Figure 7D). The in vivo experiments
demonstrated that AML cells with high S100A4 protein
expression exhibited increased resistance to Ara-C resistance,
and the inhibition of S100A4 protein expression enhanced the
killing effect of Ara-C on AML tumor cells. In addition, our center
collected human bone marrow blood samples for testing and found
that S100A4 protein expression was higher in patients with
primary diagnosed AML than in normal donors, and
S100A4 protein levels were higher in patients with relapsed
AML than in patients with primary diagnosis and in normal
donors (Table 1; Figures 7E,F). The PCR results also showed
that relapsed patients had the highest levels of S100A4, and that
the group of patients with primary diagnosis AML was higher than
the group of donors on average (Figure 7G).

Activation of S100A4 by the transcription
factor NR6A1 in AML increases tumor cell
drug resistance through the p53/cyclin-
D1 signaling pathway after cell cycle
inhibition.

In the course of our prior research, we have demonstrated that
S100A4 varies between AML cell-sensitive and drug-resistant
strains, thereby modifying the capacity of cells to resist Ara-C-
induced death. To further explore the mechanism by which
S100A4 regulates cellular resistance to Ara-C, we found a close
association between S100A4 and TP53, a key cell cycle protein, using
protein-protein interaction (PPI) network interaction analysis
(Figure 8A). To verify their relationship, we detected the
expression of cell cycle key proteins p53, cyclin-D1, and
CDK4 after regulating S100A4 expression. The results showed
that p53 expression was elevated, cyclin-D1 expression was
decreased, and CDK4 expression was elevated in the LV-S100A4
group compared with the EV1 group; p53 expression was decreased,
cyclin-D1 expression was elevated, and CDK4 expression was
decreased in the sh-S100A4 group compared with the EV2 group
(Figures 8B–D). These findings suggest that S100A4 high expression
can mediate AML tumor cells undergoing cell cycle arrest by
enhancing p53 expression.

In addition, a combination of the UCSC and JASPAR databases
was utilized to investigate the upstream transcription factors capable
of enhancing S100A4 transcription. The results of dual luciferase
assays demonstrated the direct binding of NR6A1 to the
S100A4 promoter and the binding sequence between them
(Figures 8E,F). Furthermore, Western blot detection of
S100A4 expression after overexpression-regulation of
NR6A1 expression revealed elevated S100A4 expression (Figures
8G–I). The FCM detection of apoptosis rate after Ara-C stimulation
revealed that the NR6A1-OE + S100A4-NC group was smaller than
the NR6A1-NC + S100A4-NC group, but the apoptosis rate was
higher in the NR6A1-OE + sh-S100A4 group than in the NR6A1-
OE + S100A4-NC group (Figures 8J–L).

Discussion

Despite significant progress in the treatment of AML in recent
years (Kantarjian H. M. et al., 2024),drug resistance (DiNardo and
Wei, 2020) limited treatment options for elderly patients (Li et al.,
2024) the challenge of individualized therapy, and treatment-related
complications remain current dilemmas (Kantarjian et al., 2021).
Ara-C, a core chemotherapeutic agent for the treatment of AML, is
indispensable in the induction, intensification, and consolidation of
AML, and is an important component of the standard treatment
regimen. The “3 + 7” regimen has been widely used in the treatment
of AML over the past few decades, resulting in complete remission in
60%–80% of AML patients and remains one of the most commonly
used treatment regimens today (Lancet et al., 2018; Lancet et al.,
2021). After AML patients have achieved complete remission,
cytarabine is one of the main agents used in consolidation
chemotherapy to prevent disease recurrence (Bornhäuser et al.,
2023). Cytarabine is one of the mainstays of chemotherapy for
the prevention of disease recurrence. Cytarabine is often used in
combination with other drugs to improve the therapeutic effect. For
example, the combination of cytarabine with gitumumab (GO) has
shown synergistic effects in certain subtypes of AML (Borthakur
et al., 2022). Despite the development of a variety of new targeted
therapeutic agents and immunotherapeutic agents in recent years,
the use of these new drugs in the treatment of AML is still limited.
The position of cytarabine in AML treatment remains irreplaceable.
Despite the importance of cytarabine in AML treatment, the
emergence of drug resistance remains a serious problem.
Therefore, there is a need to identify novel biomarkers that can
predict not only the prognosis of AML, but also the therapeutic
response to cytarabine-based therapy. In this study, we analyzed
potential mechanisms of cytarabine resistance using bioinformatics
tools. The establishment of an ARRGRS consisting of 10 biomarkers
(S100A4, ASCC3,EPB41L2,NET1,TEX30,CSPG4, MPO,PDE4A,
RASAL3,SHANK1) based on differential genes associated with
cytarabine resistance was used to categorize AML patients, which
helped to assess the overall survival of these patients and response to
cytarabine-based therapy. Both in the TCGA cohort and in the
external validation cohort (Beat AML), ARRGRS was able to
successfully categorize AML patients into high/low risk groups.
The high-risk group had more malignant clinical features and
shorter survival times compared to the low-risk group. In
addition, we categorized AML patients into two different clusters
based on 357 cytarabine resistance-associated DEGs. Cluster 2 had
worse clinical features and shorter survival time compared to cluster
1, suggesting that cluster categorization has prognostic and clinical
value. The characterization of cytarabine resistance-related genes
will help to reveal the mechanism of AML cytarabine resistance and
provide insights for optimizing the treatment of AML patients. To
explore the potential biological functions of the high and low
ARRGRS subgroups, we performed GESA and GO/KEGG
analyses. Cell adhesion, chemokine signaling pathways, and
cytokine-cytokine receptor interaction-related pathways were
mainly enriched in the high ARRGRS group. The chemokine
signaling pathway has multiple important functions in AML, e.g.,
increased secretion of the chemokine target CXCL10 in the bone
marrow microenvironment may affect clonal selection and disease
evolution (Chen et al., 2024). Chemokines are not only involved in
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the construction of the bone marrow microenvironment, but also
play an important role in the proliferation and apoptosis of AML
cells and in the modulation of immunity (Masamoto et al., 2023).

In this study, we found that these 10 cytarabine-associated genes
were differentially expressed in both normal and AML patient
samples. The results of survival analysis suggested that S100A4,
SHANK1, MPO might be more clinically relevant. Interestingly,
SHANK1, MPO expression was higher in AML patients, but survival
analysis showed better survival outcomes in the SHANK1, MPO
high expression group. In order to select the final 10 genes to
compare the expression differences between AML arabinoside-
resistant and sensitive strains by experiments, and to synthesize
the results of the biosignature expression analysis, survival analysis
and experimental analysis, we firstly chose S100A4 to investigate its
role in arabinoside resistance. There is increasing evidence that
S100A4 overexpression in AML is a poor prognostic biomarker with
the potential to guide clinical treatment planning (Alanazi et al.,
2020; Yao et al., 2023). However, most studies on S100A4 in AML
are based on algorithms of raw-fiducial analysis, and studies on the
molecular mechanisms of the roles of S100A4 are lacking. In this
study, S100A4 was detected to be expressed at much higher levels in
cytarabine-resistant cell lines than in sensitive lines. The results of
the next experiments indicated that upregulation of
S100A4 expression in THP-1, U937 cell line could increase the
cellular tolerance to cytarabine, while downregulation of
S100A4 expression could enhance the sensitivity of THP-1,
U937 to cytarabine. The results of in vivo experiments similarly
indicated that downregulation of S100A4 expression could increase
the sensitivity of tumor cells to cytarabine and inhibit tumor growth.
This study revealed for the first time the relationship between the
S100A4 protein and AML cytarabine resistance. The PPI protein
interaction network indicated a close association between
S100A4 and TP53 (Szklarczyk et al., 2023). Several studies have
demonstrated that TP53 plays an important role in participating in
the regulation of AML drug resistance (DiNardo et al., 2020b;
Nechiporuk et al., 2019). The P53 protein encoded by the
TP53 gene, an important tumor suppressor protein, is important
in the cell cycle regulation, DNA damage repair, and apoptosis
(Zawacka, 2024; Man et al., 2023). Ara-C plays an anticancer role by
inhibiting cell proliferation mainly through interfering with DNA
synthesis. Specifically, Ara-C acts mainly in the S phase of the cell
cycle, preventing DNA strand elongation by inhibiting the activity of
DNA polymerase (Yamauchi et al., 2009). AML cells may develop
drug resistance after prolonged exposure to Ara-C, which has been
linked to cell cycle regulation (Ling et al., 2023; Matthews et al.,
2001). In addition, some studies have found that drug-resistant
AML cells may be able to inhibit the proliferation of cells through
the upregulation of certain genes associated with cell cycle arrest
genes, such as TP53, to resist the induction of apoptosis by Ara-C
(DiNardo et al., 2020a; Grob et al., 2022). Therefore, we explored the
relationship between S100A4 and the p53 signaling pathway, as well
as cyclin D1, a key protein in cell cycle checkpoints. It was found that
p53 expression was elevated when S100A4 expression was enhanced,
cyclin D1 was inhibited, and synthesis of the cyclin/CDK complex
was blocked suggesting that AML tumor cells are blocked from
entering S phase in G1 phase. Conversely, knockdown of
S100A4 decreased p53 expression and elevated cyclin
D1 expression. To further investigate the reason for the high

expression of S100A4 in cytarabine-resistant AML cells, we
found that NR6A1 could directly bind to the S100A4 promoter
region to achieve enhanced transcription by analyzing multiple
transcription factors. In addition, our results demonstrated that
the increase in cellular drug resistance mediated by high
NR6A1 expression was mainly achieved by upregulating the
S100A4 expression level, in other words, even though
NR6A1 expression was elevated when the S100A4 expression
level was knocked down, it did not increase the resistance of
AML cells to cytarabine. This means that the expression of
NR6A1 can be reduced to achieve the purpose of decreasing the
expression level of S100A4 in cytarabine-resistant AML cells. From
the above results, it is suggested that targeting S100A4 may be a
useful approach to reverse cytarabine resistance (Figure 9).

Our study has several limitations. First, the prognostic
significance of the ARRGRS model was only validated using
public cohorts from the TCGA or Beat AML databases, and
more clinical cohorts, including chemotherapy/immunotherapy
cohorts, should be included to confirm our findings. Second, we
validated the role of S100A4 in cytarabine-resistant cell lines only
in vitro and in vivo, and further exploration of the expression profile
of S100A4 in patients with AML who are not responding favorably
to cytarabine-based therapies will elucidate the clinical value of
S100A4. In this study, the ARRGRS model was developed to help
predict overall survival and chemotherapy response in AML
patients. Third, the present study has not explored the
interaction between the ARRGRS scoring system and the
immune microenvironment, and the analysis of the related
mechanisms will be reported as a separate research direction. In
the future, it would be interesting to conduct clinical trials to explore
whether the ARRGRS model can predict response to chemo-
immunotherapy. Although the involvement of S100A4 in
cytarabine resistance has also been preliminarily validated,
revealing the mechanism of S100A4 in chemotherapy resistance,
such as the effects on DNA damage repair, drug metabolism, and
tumor microenvironment, would be helpful to develop some drugs
targeting S100A4 to inhibit tumor growth and overcome
chemotherapy resistance. Besides, it is also interesting to explore
the relationship between S100A4 and other chemotherapeutic
agents such as gemcitabine, flexibiotics, and vincristine, which
may broaden the clinical applications of S100A4 knockdown,
such as the treatment of other cancers and cytarabine high-
dose therapy.
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Glossary
AML Acute Myeloid Leukemia

Ara-C cytarabine

ARRGRS Ara-C resistance-related gene risk score

AUC Area Under Curve

CCK8 Cell counting Kit-8 assay

CDK cyclin-dependent kinases

DEGs Differentially expressed genes

DNA DeoxyriboNucleic Acid

EDU 5-ethynyl-2′-deoxyuridine

EV1 Empty virus of LV

EV2 Empty virus of RNAi

FCM Flow Cytometry

GEO Gene Expression Omnibus

GO Gene Ontology

GSEA Gene Set EnrichmentAnalysis

GTEx Genotype-Tissue Expression

IHC Immunohistochemical

KEGG Kyoto Encyclopedia of Genes and Genomes

K-M Kaplan-Meier

NC Negative Control

NES Normalize enrichment score

NR6A1 Nuclear Receptor Subfamily 6 Group A Member 1

OE Overexpression

OS Overall Survival

PPI Protein-Protein Interaction Networks

RNA RibonucleicAcid

ROC Receiver Operating characteristic

RT-PCR Real time-PCR; S100A4

S100 Calcium Binding Protein A4

TCGA The Cancer Genome Atlas

UCSC University of California Santa Cruz
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