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Introduction: Candidiasis, mainly caused by Candida albicans, poses a serious
threat to human health. The escalating drug resistance in C. albicans and the
limited antifungal options highlight the critical need for novel therapeutic
strategies.

Methods: We evaluated 12 machine learning models on a self-constructed
dataset with known anti-C. albicans activity. Based on their performance, the
optimal model was selected to screen our separate in-house compound library
with unknown anti-C. albicans activity for potential antifungal agents. The anti-C.
albicans activity of the selected compounds was confirmed through in vitro drug
susceptibility assays, hyphal growth assays, and biofilm formation assays. Through
transcriptomics, proteomics, iron rescue experiments, CTC staining, JC-1
staining, DAPI staining, molecular docking, and molecular dynamics
simulations, we elucidated the mechanism underlying the anti-C. albicans
activity of the compound.

Result: Among the evaluatedmachine learningmodels, the best predictivemodel
was an ensemble learning model constructed from Random Forests and
Categorical Boosting using soft voting. It predicts that Dp44mT exhibits
potent anti-C. albicans activity. The in vitro tests further verified this finding
that Dp44mT can inhibit planktonic growth, hyphal formation, and biofilm
formation of C. albicans. Mechanistically, Dp44mT exerts antifungal activity by
disrupting cellular iron homeostasis, leading to a collapse of mitochondrial
membrane potential and ultimately causing apoptosis.

Conclusion: This study presents a practical approach for predicting the antifungal
activity of com-pounds usingmachine learningmodels and provides new insights
into the development of antifungal compounds by disrupting iron homeostasis in
C. albicans.
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1 Introduction

Candida albicans is a common opportunistic pathogenic fungus
responsible for most human candidiasis cases, ranging from mild to
potentially deadly invasive candidiasis (Lu et al., 2023a). Risk factors for
candidiasis include weakened immune systems from conditions like
HIV/AIDS, organ transplants, and chemotherapy, as well as diabetes,
pregnancy, prolonged use of medical devices, and other health issues
(Lu et al., 2023a). Evidence also implicates C. albicans in tumorigenesis,
revealing substantially higher fungal loads in carcinoma samples (42.9%
lung, 68.2% mouth malignancies) (Wang X. et al., 2023; Laroumagne
et al., 2013). However, the current clinical antifungal compounds are
limited in terms of their mechanisms of action and chemical structure
classes, mainly consisting of polyenes, azoles, and echinocandins (Xiong
et al., 2025). The excessive use of these compounds, along with long-
term treatment regimens and environmental exposures, have led to a
sharp rise in the development of antifungal drug resistance over the past
decade. For instance, surveillance data have indicated a concerning
trend of increased azole resistance and tolerance in C. albicans
(Nishimoto et al., 2020; Feng et al., 2023; Lu et al., 2021). Polyenes
can induce severe side effects owing to the structural resemblance
between the target ergosterol and the mammalian membrane sterol
cholesterol (Robbins et al., 2017). Despite echinocandins exhibiting
potent antifungal activity and an impressive safety record, their clinical
utilization is hindered by several factors, including a limited antifungal
spectrum, the necessity for intravenous administration, and the high
costs associated with the drug (Pappas et al., 2016). Driven by the
limited availability and efficacy of current antifungal medications,
coupled with the ongoing increase in clinically resistant C. albicans
isolates, the need to identify novel agents to expand the antifungal drug
repertoire has become increasingly significant.

Machine learning, a rapidly advancing area in artificial
intelligence, has profoundly revolutionized the traditionally labor-
intensive and time-consuming process of pharmaceutical research
and drug discovery. It excels at processing massive datasets to
identify patterns and relationships, enabling rapid and accurate
predictions or decisions with minimal human intervention by
automatically discovering correlations and distinctions among
diverse objects (Yang et al., 2023). Additionally, it facilitates
exploring a broader chemical space beyond natural products,
promising the discovery of novel substances with improved and
desired properties. Moreover, an ensemble model constructed from
various machine learning algorithms can enhance predictive power
and avoid potential biases in the drug discovery (Yu et al., 2022; Lin
et al., 2024). Nevertheless, there are still relatively few articles in the
development of antifungal agents.

The iron constitutes an indispensable micronutrient in
eukaryotic cells, primarily serving as a cofactor for redox enzyme
in a multitude of biological processes. These processes encompass
heme biosynthesis, iron-sulfur cluster assembly, the citric acid cycle,
mitochondrial aerobic respiration, DNA synthesis and repair,
chromatin remodeling, as well as ribosome biogenesis (Pijuan
et al., 2023). Additionally, iron further regulates the virulence
characteristics of C. albicans, encompassing hyphal growth (van
Wijlick et al., 2022), biofilm formation (Mochochoko et al., 2021),
and adhesion (Puri et al., 2014). Candida albicansmutants deficient
in genes related to iron acquisition exhibit avirulence in systemic
infections (Xu et al., 2014). In a documented cohort study,

approximately 68% of invasive fungal infections were attributed
to C. albicans, with a positive correlation observed between these
infections and hepatic iron overload (Alexander et al., 2006).
Furthermore, elevated iron levels can augment the oral
colonization of C. albicans and facilitate its dissemination from
the oral cavity to the gut (Tripathi et al., 2022). Multiple compounds
have been identified to suppress the growth of C. albicans by
disrupting the iron homeostasis, leading to a decrease in
symptom severity or enhanced survival rates in animal models of
C. albicans infections. These compounds encompass DIBI (Savage
et al., 2018), IgY antibodies against Ftr1 (de Souza et al., 2023),
attinimicin (Fukuda et al., 2021), deferasirox (Puri et al., 2019).
Consequently, strategies targeted at disrupting iron homeostasis can
serve as a practical antifungal approach.

In this study, we evaluated 12 machine learning models and
determined that an ensemble learning model integrated by
Categorical Boosting and Random Forest models was the most
accurate in predicting the likelihood of a compound having
antifungal activity. We further applied this combined model to
predict that Dp44mT exhibits potent anti-C. albicans activity. In
vitro drug susceptibility test confirmed this prediction, showing that
Dp44mT can inhibit the planktonic growth, hyphal formation, and
biofilm formation of C. albicans. Comprehensive investigation
combining multi-omics profiling, staining experiments, and
computational modeling (molecular docking and dynamics
simulations) demonstrated that Dp44mT exerts its antifungal
activity by disrupting the iron homeostasis of C. albicans. This
research presents a practical approach for predicting the antifungal
activity of compounds using machine learning models and offers
new insights into the development of antifungal compounds
through the disruption of iron ion homeostasis in C. albicans.

2 Materials and methods

2.1 Binary classification dataset construction

A comprehensive compilation of 2,654 compounds, both with
and without anti-C. albicans activity, was conducted based on the
published literature. This compilation included 1,375 reported anti-
C. albicans compounds and 1,188 known non-anti-C. albicans
compounds. To address discrepancies in the antifungal activities
reported in various studies, we processed the data utilizing the
following criteria: 1) Removal of duplicates; 2) Exclusion of
compounds without a definitive minimum inhibitory
concentration (MIC) value; 3) For compounds with varying MIC
values, the smallest value was taken as the MIC value; 4) Conversion
of MIC values reported in other units to the corresponding “μM”; 5)
Compounds with a MIC value not exceeding the threshold of
100 µM were labeled as “1” (active), and those exceeding this
threshold were labeled as “0” (inactive). This classification was
used as the response value for modeling. 6) Tanimoto coefficient
(TC), a widely used metric based on MACCS fingerprints in
cheminformatics, was utilized to conduct a comprehensive
similarity analysis of molecular cross-correlations, evaluating the
bioassay’s training potential and the molecular diversity in the
dataset (Wichka and Lai, 2024). To reduce redundancy,
compounds with a TC > 0.85 were removed. The removed
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FIGURE 1
Creating a binary classification machine learning dataset. (A) The workflow for successfully construction of machine learning dataset. (B) The
Tanimoto coefficient heatmap. In the heatmap, high similarity between compounds is shown in yellow, and low similarity is shown in blue. (C) Spatial
distribution analysis of compounds through t-SNE. The colors represent the classification of the dataset, with red and blue being “0” (inactive) and “1”
(active) compounds, respectively. The shapes represent the attributes of the dataset, with circles and crosses being the training and validation sets
respectively.
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FIGURE 2
Selection of best machine learning models. (A) Ensemble learning model building process. Random Forest (RF), Categorical Boosting (CatBoost),
Light Gradient Boosting (LightGBM), Logistic Regression (LR), K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGBoost), Multilayer Perceptron
(MLP), Support Vector Machine (SVM), Adaptive Boosting (AdaBoost), Naïve Bayes (NB), and Decision Tree (DT). Performance comparison heatmap of
various learning models in (B) validation set 1 and (C) validation set 2. ACC, RE, AUC and MCC refer to accuracy, recall, the area under the receiver
operating characteristic curve (AUC) and Matthews’ correlation coefficient, respectively. The confusion matrix in (D) validation set 1 and (E) validation set
2, (F) ROC curve, (G) histogram of the top 5 feature importance, and (H) the corresponding structure of features in ensemble learning models. The
unknown atom is denoted by an asterisk. (I) Class-specific density distribution of the top five features in the training dataset.
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compounds were reallocated as a distinct external subset (validation
set 2) to gauge model robustness.

To enable machine learning models to interpret and analyze
compounds, the structural information of these compounds is
transformed into an informative and comprehensible format
known as molecular fingerprints (MFs) (Wang R. et al., 2023).
These MFs were generated by the PADEL software (version 2.21)
(Yap, 2011), configured to detect aromaticity, standardize
nitrogen and tautomers, and remove salts, thereby optimizing
the accuracy and efficiency of feature generation. In this study, all
compounds were represented by four types of MFs: the 166-bit
MACCS, the 79-bit Estate, the 307-bit Substructure, and the
4860-bit Klekota-Roth fingerprints. The selection of suitable MFs
is crucial in determining the performance and generalizability of
ML models. When choosing features, the dataset is refined by
excluding less informative MFs. Specifically, we removed MFs
with low variance (0.1 or below) and those with a high Pearson
correlation coefficient (0.85 or above) to minimize redundancy
and conserve computational resources.

The imbalance in classifications between the “active” and
“inactive” categories was addressed by implementing the
oversampling technique known as Synthetic Minority
Oversampling Technique (SMOTE) from the imbalanced-learn
library (version 0.12.3) (Gomatam et al., 2024). The preprocessed
dataset was randomly divided into a training set and a validation set
1, with an 80:20 ratio, using stratified sampling via the “train_test_
split” function from the scikit-learn package (version 1.5.0) (Wu X.
et al., 2024). To facilitate dimensionality reduction and visualize the
extent of the chemical space, we utilized the t-Distributed Stochastic
Neighbor Embedding (t-SNE) through the implementation of scikit-
learn package (Plonka et al., 2021).

2.2 Machine learning models building

In this study, a total of 11 distinct learning algorithms were
employed as binary classification models (Yu et al., 2023; Li et al.,
2023; Idrisoglu et al., 2024). For eight of machine learning models-

FIGURE 3
Dp44mT possesses in silico and in vitro anti-C. albicans activity. (A) Procedures to verify that compounds demonstrate anti-C. albicans potency
through in silico prediction and in vitro experiments. (B) Substructures that influence the ability of learning model to predict the antifungal activity of
Dp44mT. The substructure within the different colored circles on the Dp44mT structure correspond to the fragments with the same color name. (C)
Antifungal susceptibility test results of Dp44mT against various Candida species and Cryptococcus Neoformans.
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FIGURE 4
The transcriptomic and proteomic analysis of the anti-C. albicans effects of Dp44mT. The GSEA analysis of transcriptomic group A1 (A), A2 (B),
B1 (C), B2 (D) and proteomic group C1 (E), and group C2 (F) after the treatment with Dp44mT. The significant differential expressed iron homeostasis
associated-genes in group A (G), group B (H), and -proteins in groups (I).
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FIGURE 5
Exogenous addition of Fe3+ antagonizes the anti-C. albicans activity of Dp44mT. (A)The antifungal susceptibility assay for exploring the impact of
iron addition on the MIC of the Dp44mT. C. albicans was cultured in media with the reagent and Fe3+ concentrations ranging from 0 to 64 μg/mL and
0–40 μM, respectively. (B) The growth curve analysis of Dp44mT against C. albicans. C. albicans was incubated for 36 h in RPMI 1640 medium with or
without 5 µM iron at concentrations of 0, 0.25, 0.5, 2 μg/mL of the Dp44mT, and 2 μg/mL of FLC, respectively. (C)C. albicanswas cultivated in iron-
free and iron-containing RPMI1640media with various concentration of Dp44mT for 3 h for hyphal growth. The length changes for hyphae are presented
in plot (D). (E) Inhibition of metabolic activity of biofilm by Dp44mT was measured using the XTT reduction assay. (F) The morphological manifestation

(Continued )
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Decision Tree, Logistic Regression, Naïve Bayes, Random Forest,
Adaptive Boosting, K-Nearest Neighbors, Support Vector Machine,
and Multilayer Perceptron - the scikit-learn package was employed.
Meanwhile, Extreme Gradient Boosting was constructed using the
xgboost package (version 2.0.3), Categorical Boosting using the
catboost package (version 1.2.5), Light Gradient Boosting
Machine using the lightgbm package (version 4.4.0). To address
the potential sensitivity of machine learning models to the scale of
input features across different datasets, we applied z-score
standardization via the “StandardScaler” method provided by
scikit-learn. To further enhance model reliability and evaluate its
robustness, we identified optimal parameters through
hyperparameter tuning by Optuna software (version 3.6.1)
(Thirunavukkarasu et al., 2024) and employed 5-fold cross-
validation to mitigate biases and variance. For each model,
200 optimization trials were conducted, and the hyperparameter
optimization results are summarized in Supplementary Table S1.
Subsequently, the optimal parameters were employed to assess the
performance of each model. Additionally, to enhance comparability
across all models during the analysis, the sizes of the training and test
sets, as well as the random states, were kept constant.

2.3 Machine learning models evaluation

In binary classification models, their performance in identifying
anti-C. albicans compounds was meticulously assessed based on six
evaluation criteria derived from the validation set. These criteria
included the confusion matrix, accuracy (ACC), F1 score, recall
(RE), the area under the receiver operating characteristic curve
(AUC), and Matthews’ correlation coefficient (MCC) (Wichka
and Lai, 2024; Jiang et al., 2022).

2.4 Ensemble learning model

After identifying the top two machine learning models based on
the number of optimal criteria met, we integrated them to construct
an ensemble learning model, aiming to bolster robustness and
improve prediction accuracy. We applied the soft voting strategy
to develop the proposed ensemble learning model (Yan et al., 2024).

2.5 Applicability domain (AD)

AD establishes a reliable prediction boundary based on
structural similarity to training data. Using a Euclidean distance-
based K-Nearest Neighbors approach, we set AD threshold to
classify compounds as in-domain (distance ≤ threshold) or out-
of-domain (distance > threshold) (Duy and Srisongkram, 2025). The
AD threshold is mathematically defined by Equation 1:

Di � Dk + Z × σ( ) (1)

In the equation, Dk and σ represent the mean and standard
deviation of k-NN distances in the training set, respectively. The
parameter Zwas set to 2 (Baei et al., 2025).Dk denotes the Euclidean
distance between a new compound and its nearest
training neighbors.

2.6 Anti-C. albicans property verification
in silico

The ensemble learning model was trained, tuned, validated and
evaluated using the same dataset as the aforementioned individual
machine learning models to determine whether it outperformed
them. Then the best model was used to screen potentially active
compounds from our in-house compound library, an internal
database comprising 1,650 compounds with unknown anti-C.
albicans activity. These compounds were randomly selected from
the ZINC20 database in the simplified molecular input line entry
system (SMILES) format (Irwin et al., 2020). The permutation
importance method was utilized to elucidate the top 10 features
that have the most significant impact on model predictions
(Garofalo et al., 2024).

2.7 Strains, culture conditions and medium

Candida albicans SC5314, Cryptococcus neoformansH99, and C.
albicans clinical strains were from the fungal collection of our
laboratory. Isolates preserved in frozen stocks at −80°C within
yeast extract-peptone-dextrose (YPD) medium, composed of 1%
yeast extract, 2% peptone, and 2% dextrose, augmented with 40% (v/
v) glycerol, were revitalized through two successive cultivations on
YPD agar plates incubated at 30°C prior to utilization.

2.8 Antifungal susceptibility assay

The MIC values of compounds against C. albicans were
determined following the guidelines set forth in the Clinical and
Laboratory Standards Institute document M27-A4 (Li et al., 2024).
Briefly, the agents were tested included fluconazole (FLC) and
Dp44mT from TargetMol, Boston, United States; Amphotericin B
(AMB) from Yuanye Bio-tech, China. These agents were tested at
concentrations ranging from 0.0625 μg/mL to 32 μg/mL. The fungal
cells, suspended in RPMI 1640 medium (Gibco, United States) with
or without Fe3+ at 5 × 103 cells/mL, were then dispensed into
triplicate wells of a sterile 96-well microtiter plate. Following a
24-h incubation at 37°C, the optical density was measured at 600 nm
using a microplate reader (Thermo Scientific, United States). The

FIGURE 5 (Continued)

changing of biofilm in iron-containing or iron-free RPMI1640 media with Dp44mT were observed under the SEM (upper) and the light microscope
(down). Statistical significance between the two groups was assessed using a t-test. “*” indicates “p < 0.05”; “**” indicates “0.001 < p ≤ 0.01”; “***” indicates
“p ≤ 0.001.”
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FIGURE 6
Detection of mitochondrial function and apoptosis. Observation of C. albicans cells stained with (A) CTC for respiratory activity and (B) DAPI for
nuclear fragmentation, after the C. albicans cells incubated for 10 h with Dp44mT.
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FIGURE 7
Molecular docking and molecular dynamics of Ftr1 and Dp44mT. (A) A Venn diagram showing the overlap hub genes identified by MLmethods and
Cytoscape software. Correlation heatmaps of candidate gene correlations without (B) and with (C) hierarchical clustering. (D) Scatter plots representing
the correlations of FTR1 with CFL2. (E) A schematic of the Dp44mT docking with the Ftr1. Light blue dashed lines represent weak hydrogen bonds, blue

(Continued )
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MIC was defined as the lowest concentration of the regent that
inhibited microbial growth by 50%.

2.9 RNA sequencing

Total RNA was extracted from C. albicans under various
conditions using TRIzol reagent (Invitrogen, CA, United States),
in accordance with the manufacturer’s instructions. The purity and
quantity of the RNA were assessed using the NanoDrop
2000 spectrophotometer (Thermo Scientific, United States), with
subsequent assessment of RNA integrity conducted using the
Agilent 2,100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, United States). The VAHTS Universal V6 RNA-seq Library
Prep Kit was employed for library preparation. The transcriptome
sequencing was performed by OE Biotech Co., Ltd. (Shanghai,
China), using the Illumina Novaseq 6,000 platform. Raw reads in
Fastq format were processed with Fastp (version 0.20.1) to generate
clean reads, which were then aligned to the reference genome using
HISAT2 (version 2.1.0) (Lu et al., 2023b; Zhen et al., 2024).
Differential expression was identified through the
DESeq2 package (version 1.22.2). RNA sequencing raw data is
available at the following websites: https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE287552.

2.10 Proteomic analysis

Samples were ground in liquid nitrogen and then mixed with
800 µL of phenol extraction buffer (2.4 g sucrose, 0.058 g NaCl,
0.146 g EDTA·2Na, 0.02 g DTT, 2.5 mL of 0.5 M Tris-HCl [pH 6.8],
2.5 mL of 1.5 M Tris-HCl [pH 8.8], brought to a final volume of
10 mL with ddH2O), phosphatase inhibitors, and PMSF to achieve
a final concentration of 1 mM. The grinding was performed using a
cryogenic grinder at −35°C, 60 Hz, for 120 s. A pre-chilled 0.1 M
ammonium acetate-methanol solution was added, and the mixture
was incubated overnight at −40°C. After incubation, pre-chilled
methanol was added for washing, and subsequently, acetone was
used to fully remove methanol. The pellets were collected and
resuspended in sample lysis buffer. After centrifugation at 4°C,
12,000 rpm for 10 min, the supernatant was collected and the
protein concentration was measured by bicinchoninic acid assay.
Proteins (50 μg) were reduced with DTT to a final concentration of
5 mM at 55°C for 30 min, then alkylated with iodoacetamide (IAA)
by adding IAA to a final concentration of 10 mM and incubating at
room temperature in the dark for 15 min. Trypsin-TPCK (1 mg/
mL) was added for overnight digestion at 37°C. TMT reagent was
then added to the samples, mixed thoroughly, and allowed to label
at room temperature for 1 h. The tryptic peptides were separated
into fractions using high-pH reverse-phase high-performance
liquid chromatography (HPLC) with an Agilent 1,100 system.

Tryptic peptides were dissolved in 0.1% formic acid (solvent A)
and loaded onto an Acclaim PepMap RSLC column (75 μm ×
50 cm, RP-C18, Thermo Fisher, United States). The gradient
elution started at 2% solvent B, increasing to 28% over 40 min,
then to 42% over 20 min, and finally to 90% over 5 min, holding at
90% for 10 min, all at a flow rate of 300 nL/min on an EASY-nLC
1,000 ultraperformance liquid chromatography (UPLC) system.
For Mass Spectrometry 1 (MS1), the mass resolution was set to
60,000, the automatic gain control (AGC) target to 1e6, and the
maximum injection time to 50 m. MS scans were set for a full scan
m/z range of 350–1,500. The resolution was set to 30,000, the AGC
target to 1e5, and the maximum injection time to 80 ms for MS/
MS, with a dynamic exclusion time of 30 s. The results were
analyzed using Proteome Discoverer 2.4.1.15 (Thermo Fisher
Scientific, United States) with the sequence database uniprot-
candida_albicans-237561-2023.2.2. fasta.

2.11 Gene set enrichment analysis
(GSEA) analysis

GSEA assesses the distribution of genes from a predefined set
within a ranked list according to their correlation with a phenotype,
to determine the significance of the set in contributing to that
phenotype (Subramanian et al., 2005). GSEA enrichment analyses
were conducted using the “clusterProfiler” packages (version 4.10.1),
encompassing all subontologies in the analysis. Gene sets with
p-values ≤0.05 were selected for further analysis.

2.12 Growth curve analysis

To investigate the impact of reagent concentration and exposure
time on antifungal effects, we conducted a growth curve experiment
(Li et al., 2024). The C. albicans suspension was diluted with RPMI
1640 to a mixture of 5 × 105 cells/mL containing specific
concentrations of reagents. Subsequently, the samples were
incubated at 30°C, and measured every 15 min with a Tecan
plate reader (Tecan, Switzerland) at OD600 for 36 h.

2.13 Hyphal formation

A suspension of C. albicans, at a concentration of 5.0 × 105 cells/
mL, was prepared in the RPMI1640 medium. These media
contained various concentrations of agent, and the suspension
was incubated at 37°C for 3 h to evaluate the effect of Dp44mT
on hyphal formation. The cell morphology was then photographed
using a light microscope, and the lengths of the hyphae were
measured using ImageJ software (version 1.54 g) (Fang et al.,
2025; Fang et al., 2023).

FIGURE 7 (Continued)

dashed lines denote hydrogen bonds, and gray dashed lines indicate hydrophobic interactions. (F–I) for RMSD, RMSF, RDG and binding energy
analysis, respectively. VDW and total represent Van der Waals forces and total energy.
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2.14 Biofilm suppression and
eradication assays

The anti-biofilm activity of the reagent was evaluated following a
previously described method, with slight modifications (Fang et al.,
2023; Zhen et al., 2024). Briefly, C. albicans was adjusted to a
concentration of 1.0 × 106 cells/mL to facilitate biofilm formation.
To investigate the effect of Dp44mT on both the formation and
maintenance of the biofilm, fresh RPMI 1640 medium containing
varying concentrations of Dp44mT, both with and without iron
supplementation, was introduced after 90 min of adhesion and
following 24 h of biofilm formation, respectively. The cultures were
then incubated at 37°C for an additional 24 h. The metabolic activity
and total biomass of biofilm were respectively assessed using XTT
(Yuanye Bio-Tec, China) reduction and crystal violet (CV) (Yuanye
Bio-Tec, China) staining assays. After removing the medium, 100 µL of
a 9:1 mixture of 0.5 mg/mL XTT and 0.32 mg/mL phenazine
methosulfate (Aladdin, China) was added to each well. Then, the
OD450 was measured after incubating the plates for 1 h at 37°C in
darkness. For CV staining, the biofilm cells were initially fixed with
methanol for 15 min, followed by staining with 0.5% CV for 15 min.
The biofilms were washed with sterile water, and their morphology was
observed and photographed under a light microscope. Subsequently,
the absorbance was measured at 590 nm after adding the absolute
ethanol to the plates for 30 min to release the dye.

2.15 Scanning electron microscopy

Scanning electron microscopy (SEM) was used to visualize the
morphological structure of C. albicans biofilms after treatment with
1 μg/mL Dp44mT for 24 h at 37°C, both in the absence and presence
of 5 µM Fe3+. The biofilms were then fixed with 2.5% glutaraldehyde
overnight, dehydrated using a series of ethanol concentration
gradients (30%, 50%, 70%, 80%, 90%, 95%, and 100% v/v), and
dried at 37°C. Subsequently, after being coated with gold–palladium,
the samples were observed and imaged by a SEM (Hitachi, S-3400N,
Japan) at an accelerating voltage of 12 kV and magnification
of ×2000, with a working distance of 8,100 µm (Zhu et al., 2023).

2.16 Laser confocal microscopy assay

Candida albicans cells (1 × 106 cells/mL) in RPMI 1640 medium,
with or without 5 µM Fe3+, were treated with various concentrations
of Dp44mT at 30°C for 10 h. To assess cell metabolic activity, we
utilized 1 mM 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC,
Yuanye Bio-Tec, China), a redox dye that, upon reduction,
produces a red fluorescent formazan, indicating microbial
respiration (Jin et al., 2021). The excitation and emission
wavelength were 590 and 612 nm, respectively.

Mitochondrial membrane potential (MMP) was detected with a
JC-1 based kit (Beyotime Biotechnology Co., China), following the
manufacturer’s instructions (Chen et al., 2023). JC-1 dye was
employed to assess MMP collapse, emitting red fluorescence in
healthy mitochondria and green fluorescence in those with a lower
membrane potential. The ratio of red to green fluorescence served as
an indicator of depolarization extent. For green fluorescence, the
excitation and emission wavelength were 495 nm and 519 nm,
respectively, while for red fluorescence, they were 590 nm
and 612 nm.

Nuclear condensation was stained using 50 μg/mL 6-diamidino-
2-phenylindole (DAPI, Sangon Biotech, China) in the dark for
20 min (Fang et al., 2025). The excitation and emission
wavelength used were 353 nm and 465 nm, respectively. Images
of the stained cells were observed and captured using a laser confocal
microscopy (Zeiss, German).

2.17 Identifying hub genes

Hub genes were identified using Cytoscape software (version
3.9.1) combined with two machine learning approaches, i.e., SVM-
RFE and Logistic Regression (Shannon et al., 2003; Pei et al., 2025).
The plugins CytoNCA and CytoHubba in Cytoscape were used with
multiple algorithms: cytoNCA plugin employed Betweenness,
Closeness, and Degree, while cytoHubba plugin used BottleNeck,
Stress, EPC, MCC,MNC, and Radiality. The top five hub genes from
each algorithm in Cytoscape and top 20 hub genes from each
machine learning method were collected and interacted. The

TABLE 1 Molecular docking of Dp44mT with Ftr1.

Vina score (kcal/mol) Cavity volume (Å3) Center (x, y, z) Docking size (x, y, z) Contact amino acid residues

−7.0 936 6, −3, 16 20, 20, 28 GLU16 SER17 ALA20 ILE21
VAL24 SER25 TRP52 LEU53
ALA55 GLY56 LEU57 VAL59
LEU60 LEU63 CYS155 LEU186
ILE190 GLY193 ALA194 TYR197

TABLE 2 Hydrogen bonds information of Dp44mT against Ftr1.

Acceptor Donor (H) Donor Frames Fraction Average. Bond distance Average bond angle

LIG_382@N1 TRP_52@HE1 TRP_52@NE1 60 0.0012 2.9201 142.2194

LIG_382@N1 TRP_52@HE1 TRP_52@NE1 46 0.0009 2.9472 153.7937

LIG_382@N3 TRP_52@HE1 TRP_52@NE1 2 0 2.9619 143.1433
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overlapped hub genes were analyzed by Pearson correlation to
quantify their relationships with all other genes (Zhang W.
et al., 2024).

2.18 Molecular docking

The 3D structural homology models of the protein were
generated by SWISS-MODEL according to their amino acid
sequences (Waterhouse et al., 2018). The predicted protein
structures were refined by GalaxyRefine server via side chain
rebuilding, repacking, and overall structure relaxation (Heo et al.,
2013). The chemical structures of the targeted compounds were
retrieved from PubChem database. Molecular docking is an
approach to predict compound-target interactions. It was
conducted using CB-Dock2 server to identify the specific residues
in the target protein that interact with each ligand. Docking

simulation with CB-Dock2 integrates cavity detection, docking
and homologous template fitting to enhance protein-ligand blind
docking (Liu et al., 2022). Preprocessing, such as adding hydrogen,
charge, and side-chain atoms, is automated by the platform. The
docking site with the lowest Vina score was chosen as the most
favorable binding conformation. A binding affinity score
of ≤ −6.58 kcal/mol was defined as tight protein-ligand binding
(Zhang C. et al., 2024).

2.19 Molecular dynamics simulations

Following molecular docking, molecular dynamics simulations
were performed with Amber24 for 50 ns to elucidate the behavior,
conformational stability, and potential practical applications (Case
et al., 2023; Posansee et al., 2023). All simulations were conducted
using the AMBER force field, specifically the ff19SB force field for

FIGURE 8
Schematic illustration of the anti-C. albicans mechanism of the Dp44mT. Dp44mT treatment induces cellular iron starvation through its ability to
chelate environmental iron and interfere with reductive iron uptake pathways by targeting the essential iron permease Ftr1. This dual action results in
mitochondrial electron transport chain (ETC) dysfunction, which subsequently leads to a collapse of the MMP. The disruption of these critical cellular
processes ultimately culminates in apoptosis. ISC refers to iron-sulfur cluster.
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the targeted protein and the General Amber Force Field 2 (GAFF2)
for the corresponding ligand. The protein-compound complexes
were neutralized using Cl− counterions to balance any net charge
and solvated with a TIP3P water model. For ensuring the
convergence of the simulation, several parallel trajectories were
performed for each system. There included root mean square
deviation (RMSD), root mean square fluctuation (RMSF), radius
of gyrations (RDG), hydrogen bonds and binding energy computed
using the CPPTRAJ module in Amber24.

3 Results

3.1 A binary classification machine learning
dataset construction

After removing duplicates and compounds without MIC values,
2,564 compounds were selected, with 1,375 compounds active
(MIC ≤100 µM) and 1,188 compounds were inactive
(MIC >100 µM) against C. albicans. To enhance model
generalizability, highly similar compounds (1,656) were removed
to form validation set 2 (808 inactive and 848 active compounds) as
an external validation set, while the remaining compounds
(380 inactive and 528 active compounds) constituted the
validation set 1 and training sets (Figure 1A;
Supplementary Table S2).

The dataset includes 5,412 features of 4 MFs per compound
(Supplementary Table S3). Unbalanced data in binary
classification can skew model performance by under-
representing the minority class, while balanced classes yield
optimal ML results. Our dataset has a 41.9% inactive portion,
potentially causing prediction bias. To address this issue, we used
SMOTE to oversample the “inactive” class, generating
148 synthetic compounds balance the dataset at
528 compounds per class (Supplementary Table S3). To assess
the similarity of compounds in the balanced dataset, we
recalculated the TC values. The average TC is 0.2752, much
lower than 0.7 (Ji et al., 2022), indicates considerable dissimilarity
among the compounds, as evidenced by the predominantly blue
heatmap (Figure 1B). Feature selection removes irrelevant or
redundant variables to prevent overfitting, enhance statistical
significance, improve performance and efficiency, and reduce
computational costs. Therefore, we eliminated low-variance and
highly correlated fingerprints, leaving 627 features in the dataset
(Supplementary Table S4). After feature selection, the balanced
dataset is split into training and validation sets (80% training,
20% validation) using stratified sampling. The training set
includes 844 compounds (422 active, 422 inactive), and the
validation set includes 212 compounds (106 active, 106 inactive).

We used t-SNE to analyze and visualize the chemical space,
revealing the dataset’s diversity. Figure 1C shows the dataset’s
compounds are widely dispersed, indicating their chemical
diversity. Nevertheless, the training set’s chemical space
encompasses the validation set’s, ensuring consistent chemical
structures and properties. This allows the model to accurately
predict properties of unknown compounds, enhancing its
reliability and predictive power, and validating stratified sampling
as an effective partitioning method.

3.2 The ensemble of categorical boosting
and random forest models was the most
accurate in predicting the likelihood of a
compound having antifungal activity

In this study, we initially trained multiple individual machine
learning models, selected the top two based on their anti-C. albicans
activity prediction performance, and combined them into an
ensemble model to further assess its predictive capability
(Figure 2A). The evaluation metrics for the predictive
performance of individual models are shown in Figure 2B. Five
metrics (ACC, F1, RE, AUC, and MCC) showed that both
Categorical Boosting and Random Forest models are the top
2 models among 11 machine learning models.

Then the top two algorithms were fused using soft-voting
strategy to create an ensemble model with a MCC of 0.56, AUC
of 0.85, RE of 0.83, F1 score of 0.79, and ACC of 0.78, surpassing the
best individual model by 2% in RE in validation set 1 (Figure 2B;
Supplementary Table S5); with a MCC of 0.50, AUC of 0.83, RE of
0.97, F1 score of 0.78, and ACC of 0.72, surpassing the best
individual model by 2% in MCC in validation set 2 (Figure 2C;
Supplementary Table S6). The confusion matrix and ROC curve in
Figures 2D–F support the ensemble model’s effectiveness in
classifying C. albicans suppression tasks. Combining models
further improves classification and generalization, leading to the
conclusion that the ensemble model has superior predictive
reliability.

The ensemble model, constrained to a narrow chemical space,
requires AD to define its valid scope. We systematically optimized
the AD through K-nearest Neighbors analysis (k = 2–10) using
Euclidean distance, eliminating out-of-domain samples while
retaining in-domain compounds. The σ and Dk are 4.1385.
Performance comparisons between AD-only set and original set
identified the optimal k-value based on predictive accuracy. In the
AD analysis, K = 2 yielded the optimal ensemble model
performance, with ACC, F1, RE, AUC and MCC values of 0.84,
0.71, 0.76, 0.88, and 0.60 in AD-only validation set 1 (Supplementary
Figure S1A), and 0.75, 0.77, 0.97, 0.85 and 0.58 in AD-only
validation set 2 (Supplementary Figure S1B). Notably, AD-only
validation set 1 showed improvements of 8% (ACC), 4% (AUC),
and 7% (MCC) over the original dataset, while AD-only validation
set 2 exhibited gains of 4% (ACC), 2% (AUC), and 16% (MCC).
With K set at this value, the original validation set 1 achieved an AD
coverage of 37.7% (Supplementary Figure S1C), while the original
validation set 2 reached 39.2% (Supplementary Figure S1D). The AD
threshold is 16.61 (Supplementary Figures S1C,D). This contrast
underscores the need to evaluate predictive accuracy both inside and
beyond the AD, ensuring comprehensive reliability assessment.
Notably, our model exhibits superior performance on in-
domain compounds.

Model interpretation and feature extraction are crucial for
understanding predictions and identifying key features. We
identified the top5 features through the permutation importance
approach for anti-C. albicans compound discovery, are
MACCSFP150, MACCSFP77, KRFP3712, MACCSFP122, and
MACCSFP145 in descending order of importance (Figures
2G,H). Additionally, Figure 2I illustrates the distribution of the
top five features, revealing significant differences between “active”
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and “inactive” categories, suggesting their potential contribution to
anti-C. albicans activity prediction.

3.3 The ensemble of categorical boosting
and random forest models predicts that
Dp44mT has potent antifungal activity

To obtain novel antimicrobial agents, we virtually screened for
targets by prediction using a pretrained ensemble learning model
based on an in-house database of 1,650 compounds (Figure 3A).
With a low TC (0.2523) and distinct t-SNE clustering patterns, the
training set and in-house database exhibit significant structural
divergence. This diversity ensures the compounds in the database
is appropriate for the model to predict novel anti-C. albicans agents
(Supplementary Figures S2A,B). We found that 18 (1%) compounds
presented positive results, while the remaining had no anti-C.
albicans activity (Supplementary Table S7). Of these “active”
compounds, only ZINC000003986690 (Dp44mT), is within the
AD (Supplementary Figure S1E). And its anti-C. albicans activity
is undetermined. Furthermore, previous studies have shown that it
alleviates allergic rhinitis in mice and significantly prolongs the
survival of mice with glioma, indicating its favorable safety profile
(Kim et al., 2018; Zhou et al., 2020). Therefore, we believe it is of
great importance to study the anti-C. albicans property of this
compound. For elucidating the mechanism behind the correct
predictions, an analysis of feature importance was conducted.
This result revealed that the substructures of the Dp44mT
corresponding to the aforementioned MFs are Fragment 1 for
MACCSFP77, Fragment 2 for MACCSFP122, and Fragment 3 for
MACCSFP145 (Figure 3B).

To validate the predictions of the ensemble model, we
performed in vitro antifungal susceptibility assays. Indeed,
Dp44mT demonstrated the MIC was 0.25 μg/mL against our
standard and clinically-derived C. albicans, besides other fungal
species (Figure 3C). To delve deeper into whether cross-resistance
phenomena occur between FLC and Dp44mT, we evaluated the
responsiveness of FLC-resistant strains to the targeted agent. Similar
to FLC-sensitive strains, Dp44mT showcased commendable
antifungal efficacy, recording MICs within the range of 0.12 μg/
mL to 0.5 μg/mL (Figure 3C). Moreover, all strains displayed
susceptibility to AMB, with MICs spanning from 0.5 to 2 μg/mL
(Figure 3C), a range marginally higher compared to the MICs of
Dp44mT observed against these strains. Summarizing the above
results, Dp44mT exhibits a robust, broad-spectrum antifungal effect,
proving more potent than the established antifungals,
FLC and AMP.

3.4 Dp44mT disrupts cellular iron
homeostasis destabilization and
dysfunctions mitochondria

To elucidate the effects of the Dp44mT on cellular processes,
RNA-seq was carried out. The experiment was divided into six
groups based on the exposure time and dose: 6 and 10 h of Dp44mT
exposure with doses of 0, 0.5 and 2 μg/mL, respectively. For ease of
description, the samples with 6 h incubation at reagent doses of 0,

0.5, and 2 μg/mL are labeled A0, A1, and A2, respectively; the 10 h of
incubation with the respective doses are labeled B0, B1, and B2.
Based on the classical |log2(FoldChange)| > 0.58 thresholds,
differentially expressed genes (adjusted p-value <0.05) were
identified. Exposure to Dp44mT dramatically altered the gene
expression, with significant differences observed in 1,445 genes
(721 upregulated, 724 downregulated) in A1 vs. A0, 2,249 genes
(1,094 upregulated, 1,155 downregulated) in A2 vs. A0, 1884 genes
(954 upregulated, 930 downregulated) in B1 vs. B0, and 2,248 genes
(1,124 upregulated, 1,124 downregulated) in B2 vs. B0.

For further insight into the biological signals enriched between
the agent-treated and nontreated groups, GSEA, with a pre-
sequenced gene list acquired from the transcriptomics, were
carried out. While traditional enrichment analysis is limited by
its use of predefined gene expression thresholds, GSEA collectively
assesses genomes, increasing sensitivity to coordinated expression
patterns and providing complementary insights (Iqbal and Munir,
2024). In all groups, in response to the action of the Dp44mT, the
upregulated gene set was predominantly intracellular iron
homeostasis (Figures 4A–D). The downregulated gene sets were
mainly associated with mitochondrial functions, including oxidative
phosphorylation, respiratory chain complex I, and ATP synthesis
coupled electron transport for group A1, A2, and B2 (Figures
4A,B,D). Unexpectedly, however, the gene sets associated with
mitochondrial respiratory function were upregulated in the
B1 group (Figure 4C). The differential expressed iron
homeostasis-associated genes in transcriptomic between the
treated and untreated groups are respectively depicted in Figures
4G,H. Among these genes, six crucial genes including FTR1, CCC2,
PGA7, SIT1, SEF1 and HAP43 were upregulated during cells treated
with Dp44mT. FTR1, CCC2, the essential genes participating in
reductive iron acquisition pathway, PGA7, the essential gene
involving in the heme iron absorption pathway, SIT1, the critical
gene in siderophore iron uptake pathway, and two regulators, SEF1
and HAP43, of iron homeostasis were upregulated when the iron
deficiency was encountered (Chen et al., 2011; Ramanan and Wang,
2000; Heymann et al., 2002; Weissman et al., 2002; Kuznets
et al., 2014).

To ascertain whether the aforementioned phenomenon
appeared at the protein level, we conducted the proteomic
research. In order to examine how varying concentrations of
Dp44mT influence cellular proteomics, we cultured cells for 10 h
in media supplemented with 0 μg/mL (C0 group), 0.5 μg/mL
(C1 group), and 2 μg/mL (C2 group) of the compound. Based on
the |log2 (FoldChange)| > 0.58 thresholds, differentially expressed
proteins (p-value <0.05) were identified in the proteomics. There
were 161 and 1,086 differentially expressed proteins in C1 vs. C0
(84 upregulated, 77 downregulated) and in C2 vs. C0
(428 upregulated, 658 downregulated), respectively
(Supplementary Figures S8, S9). For GSEA analysis, a surprising
finding was that, in some cases, the results in group C1 were contrary
to those obtained from the corresponding transcriptomic group B1,
such as the downregulation of the gene sets associated with
mitochondrial ATP synthesis coupled electron transport and
oxidative phosphorylation (Figures 4C,E). Nevertheless, the iron
homeostasis-associated gene set was also upregulated. The results
obtained by GSEA analysis of the group C2 were consistent with
those obtained by GSEA analysis of the corresponding
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transcriptomic group B2 (Figures 4D,F). Regarding the iron-
homeostasis associated proteins, Dp44mT treatment increased
the expression of these proteins, including Hap43, Sit1, Ccc2, and
Sef1. However, the expression of Ftr1 increased under low-dose
Dp44mT treatment but was reduced to levels below the control
group under high-dose treatment (Figure 4I). Collectively, the above
analyses indicated that the cells were in iron starvation after the
Dp44mT treatment. In conclusion, Dp44mT primarily upregulated
the gene set involved in iron homeostasis, whereas mainly
downregulated those associated with mitochondrial respiration,
such as the electron transport chain, respiratory chain, oxidative
phosphorylation.

3.5 Anti-C. albicans activity of Dp44mT
antagonized by Fe3+

To validate the results of the above multi-omics study, we
conducted antifungal susceptibility assays in media without or
with a concentration gradient of Fe3+, increasing in a 2-fold
series. The experimental results showed that, as expected, the
MIC increased from 0.25 to 16 μg/mL as the Fe3+ concentration
increased from 0 to 40 μM (Figure 5A). Since the MIC remained
unchanged when the Fe3+ concentration was between 1.25 μM and
5 μM, we selected 5 μM as the Fe3+ concentration for the subsequent
experiments. For investigating the dynamics of C. albicans growth
inhibition by Dp44mT, we conducted a 36-h growth curve
experiment. Compared to the control group without the reagent,
0.25 μg/mL (1 × MIC) Dp44mT delayed the logarithmic growth
phase of C. albicans and suppressed its overall growth (Figure 5B).
Candida albicans in the 2 μg/mL Dp44mT (8 × MIC) group
exhibited almost no growth, resulting in a nearly horizontal
growth curve. In contrast, the growth curve for 2 μg/mL (8 ×
MIC) FLC was positioned between the curves for 0.5 μg/mL and
2 μg/mL of the Dp44mT, consistent with the previous conclusion
that Dp44mT has a superior antimicrobial effect compared to FLC.
After the iron addition, the growth curves of C. albicans nearly
overlapped with those of the negative control, indicating that the
growth was no longer affected by the reagent. This further confirmed
that the antifungal effect of Dp44mT is iron-dependent.

The major virulence traits exhibited by C. albicans include the
capacity to form hyphae and to establish a biofilm. After the
treatment with Dp44mT, the majority of hypha-forming genes
(HGC1, BRG1, CZF1, HWP1, UME6, and CPH1) were reduced
expression and hyphal repressor (HSP90, NRG1) were upregulated
(Chen et al., 2020) (Supplementary Figure S3A). Therefore, we
hypothesized that Dp44mT were able to inhibit hyphal
formation. To test our hypothesis, we conducted hyphal growth
experiments. The degree of hyphal inhibition increased with higher
reagent concentrations and could be counteracted by iron addition
(Figures 5C,D). At 16 μg/mL of the Dp44mT, hyphal formation was
almost completely suppressed, although iron addition could still
partially reverse the hyphal inhibitory effect (Figure 5D).

The hyphal growth is considered a crucial virulence factor
playing an important role in biofilm development and
maintenance for C. albicans (Sun et al., 2022). Additionally, iron
deficiency prevents C. albicans biofilm formation (Pentland et al.,
2021; Mochochoko et al., 2021). We therefore analyzed the anti-

biofilm effects of Dp44mT in both iron-containing and iron-free
media. The results showed that Dp44mT could inhibit both biofilm
formation and disrupt mature biofilms, and this effect could be
attenuated or eliminated by the iron supplementation. The XTT
reduction assay showed that 0.25 μg/mL of Dp44mt significantly
reduced the metabolic activity of the biofilm to 77.5% of the control
(p < 0.05). With the iron addition, the reagent concentration had to
be increased to 4 μg/mL to significantly reduce the metabolic activity
to 45.4% of the control (Figure 5E). CV staining showed that
0.125 μg/mL of Dp44mT significantly reduced the biofilm
biomass to 80% of the control (P < 0.05). After the iron
supplementation, a significant reduction in biomass to 75% of
the control required 1 μg/mL Dp44mT (Supplementary Figure
S3B). As seen under the microscope, biofilm formation was
largely inhibited with sparse hyphae present in the medium only
containing 1 μg/mL Dp44mT (Figure 5F). After the 5 μM Fe3+

addition, the biofilm morphology was essentially the same as that of
the controls (Figure 5F). Besides, Dp44mT also can significantly
disrupt mature biofilms, and iron supplementation can partially
antagonize its effects (Supplementary Figure S3C).

Mitochondria were identified as one of the most affected
organelles as determined by the multi-omics. To validate the
result, we initially assessed the mitochondrial respiratory activity
through the utilization of CTC dye, reduced by respiratory electron
transport to CTC formazan producing red fluorescence (Jin et al.,
2021). As shown in Figure 6A, iron addition to the 0.5 μg/mL
Dp44mT medium restored fluorescence to the control levels,
suggesting iron counteracts the Dp44mT’s anti-C. albicans effect.
Similarly, iron addition to the 2 μg/mL Dp44mT medium yielded
fluorescence intensity akin to the 0.5 μg/mL compound group,
indicating a reduction in effective Dp44mT concentration due to
iron chelation. The 2 μg/mL Dp44mT group displayed significantly
lower fluorescence intensity than the control, confirming strong
growth inhibition at high concentrations. In contrast, the 0.5 μg/mL
Dp44mT group and the 2 μg/mL Dp44mT group with iron
supplementation exhibited higher fluorescence intensity than the
control, indicating improved cell viability under low-concentration
conditions. Thus, low concentrations of Dp44mT increased the
mitochondrial metabolic activity, while high concentrations
decreased it, which were in agreement with the results of the
GSEA analyses (Figures 4C,D). Afterwards, we assessed changes
in MMP using JC-1 staining. The results showed that Dp44mT
reduced the fluorescence intensity in a dose-dependent manner, and
this effect can be antagonized or partially antagonized by Fe3+

(Supplementary Figure S4). The collapse of MMP in early
apoptosis leads to the release of apoptogenic factors, while late-
stage apoptosis involves chromatin damage and condensation due to
nuclear protein proteolysis (Wang and Youle, 2009; Dobrucki and
Darzynkiewicz, 2001). As expected, the results of DAPI staining
assay showed that Dp44mT-treated cells did emit significant higher
fluorescence compared to the control and iron-added cells
(Figure 6B), which demonstrated nuclear morphological
alterations subsequent to Dp44mT treatment, with the binding of
DAPI to the A:T rich regions of the DNA sequence (Sasidharan
et al., 2022). Above all, following the administration of Dp44mT,
intracellular iron homeostasis is disrupted, inducing aberrant
electron transport chain function and a reduction in MMP,
which in turn induces apoptosis.
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3.6 Ftr1 is the target protein of Dp44mT
against C. albicans

For identifying the target gene of Dp44mT, the 35 overlapping
differentially expressed genes, obtained from the intersection of
proteomics and transcriptomics (Supplementary Figure S5A), were
analyzed using multiple algorithms in the CytoHub and CytoNCA
plugins. The top five genes from each algorithm were selected,
resulting in a total of 8 hub genes, including FTR1, ZRT2, SIT1,
CCC2,DDR48, RBT5, PRA1, and CFL2 (Supplementary Figure S5B).
Machine learning methods with SVM-RFE and Logistic Regression
identified 20 hub genes (Supplementary Figures S5C, D).
Intersecting with these hub genes revealed two candidate genes:
FTR1 and CFL2 (Figure 7A). To elucidate their relationships, a
Pearson correlation analysis was conducted. The result revealed that
CFL2 is among the top 20 genes most correlated with FTR1
(Figure 7B). Hierarchical clustering divided these 20 genes into
two clusters, with FTR1 and CFL2 in the same cluster (Figure 7C). Its
correlation coefficient with FTR1 is 0.88, indicating that FTR1 has a
stronger correlation with CFL2 (Figure 7D). Given that FTR1 is
essential for adaptation to low iron, it was identified as core gene for
further studies (Ramanan and Wang, 2000).

Molecular docking is a valuable technique in the fields of
structural molecular biology and computer-aided drug design,
facilitating the investigation of primary binding patterns
between Ftr1 and Dp44mT and the prediction of their
binding affinities. The protein structures were first predicted
and refined using the SwissModel and GalaxyRefine platforms,
and then docked to the compound to calculate the binding
energy and predict affinity. The binding energy of Dp44mT
with the Ftr1 was −7.0 kcal/mol, which indicated that they can
bind stably (Table 1). In their interaction, the cavity size was
936 Å3, with contact 20 amino acid residues (Table 1; Figure 7E).
The Dp44mT-Ftr1 interactions primarily consist of
hydrophobic interactions and weak hydrogen bonds.
Hydrophobic interactions occur between alkyl groups or
between alkyl and Pi groups, while weak hydrogen bonds are
formed between carbon donor atoms and acceptors or between
Pi groups and donor atoms (Liu et al., 2022). The interactions
between Dp44mT and the Ftr1 protein are mainly concentrated
on fragment 2 and fragment 3. Weak hydrogen bonds are
associated with fragment 2, and hydrophobic interactions are
linked to fragment 3, underscoring the critical role of these
fragments in the interaction between Dp44mT and Ftr1
(Figure 7E). The MD simulation is indispensable for post-
docking characterization of biological compounds, enabling
the investigation of time-dependent stability and intrinsic
atomic movements (Hossain et al., 2023). Compared to a
relatively fragile binding, a more robust binding of the ligand
to the active pocket of the protein has a superior
pharmacological prospective. The stability and binding
affinity can be analyzed include RMSD, RMSF, RDG,
hydrogen bonds and binding energy after the 50 ns dynamics
trajectory. The RMSD quantifies the degree of conformational
variation relative to the initial structure throughout the
simulation. For the Ftr1 and Ftr1-Dp44mT complex, the
RMSD reached equilibrium with it stabilizing around 3 Å
after decreasing rapidly relative to the original structures at

the beginning of the simulation due to an initial kinetic
adjustment period (Figure 7F). For Dp44mT, the RMSD
values gradually decreased and stabilized at approximately
1.5 Å, indicating robust pose stability. The average RMSDs
for proteins, ligands, and protein-ligand complex were
3.25 Å, 1.59 Å, and 3.25 Å, respectively. For small protein, an
RMSD of 1–4 Å is acceptable (Rudrapal et al., 2024). The RMSF
are commonly applied for describing the fluctuation of protein
residues during compound binding, relative to a reference
position, quantifying their mobility and stability. The proteins
and complex exhibited comparable RMSF fluctuations across
similar residue ranges (e.g., 130–140), indicating homogeneous
flexibility among these residues (Figure 7G). The average RMSF
values for both the Ftr1 and the complex were 9.04 Å. The RDG
was evaluated as a measure of the compactness and rigidity
during the simulation trajectories. The less variation in RDG
demonstrate a compact structure and the consistent stability of
the system over the course of the simulation. The results revealed
that RDG varied stably between 24.53 and 26.38 Å during the
entire simulation, suggesting that Dp44mT kept the
Ftr1 structure compact, thus stabilizing the inactive condition
of Ftr1 and achieving its anti-C. albicans action (Figure 7H). In
the binding pocket, the stability of Dp44mT-Ftr1 binding is
affected by hydrogen bonds. Dp44mT formed a total of
108 hydrogen bonds with Ftr1, all of which were with TRP52
(Table 2). Analysis of van der Waals interactions and total
energy in the complex, ligand and proteins revealed that the
differences were −32.58 kcal/mol for van der Waals interactions
and −36.11 kcal/mol for total energy, respectively (Figure 7I).
Consequently, van der Waals interactions play a major role in
the binding energy between proteins and ligands. Consequently,
through the analysis of above results suggest that Dp44mT
targets Ftr1 and binds tightly to exert anti-C. albicans activity.

4 Discussion

In this study, we successfully applied the ensemble learning
model constructed by Categorical Boosting and Random Forest
models to identify Dp44mT as an anti-C. albicans agent from an “in-
house” compound library. Further in vitro antifungal susceptibility
assays confirmed that Dp44mT demonstrated potent anti-C.
albicans activity. The multi-omics results confirmed that the
observed growth inhibitions by Dp44mT were due to the
deprivation of cellular iron. Through network analysis, ML
algorithms, Pearson correlation analysis, clustering, molecular
docking, and molecular dynamics simulations, we identified the
essential iron permease Ftr1 in the reductive iron uptake pathway as
the target of Dp44mT (Ramanan and Wang, 2000; Fourie et al.,
2018). In summary, Dp44mT reduces the amount of iron in the cell,
resulting in iron starvation, mitochondrial electron transport chain
dysfunction, MMP collapse and apoptotic cell death (Figure 8). This
study presents a practical approach for predicting the antifungal
activity of compounds using machine learning models and offers
new insights into the development of antifungal compounds
through the disruption of iron ion homeostasis in C. albicans.

We compiled 908 unique compounds that exhibited diverse
chemical structures for constructing anti-C. albicans activity
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prediction models, which was crucial for reducing redundancy and
enhancing dataset representativeness. Considering the relatively
small scale of the dataset and the class imbalance problem,
resulting in limited data volume and skewed class distribution,
we implemented the SMOTE technique to mitigate these
constraints. This innovative approach addresses class imbalance
in ML models by generating synthetic minority samples through
intelligent interpolation between existing instances and their
k-nearest neighbors, rather than random generation. This
strategy enhances dataset diversity while preventing simple
duplication. When applied to well-curated, representative
datasets, the synthesized samples accurately capture the
underlying chemical space. The t-SNE analysis demonstrated that
the synthesized compounds align with inactive compounds and
diverge from active compounds, validating their compatibility with
the training set (Supplementary Figure S6). By doing so, it reduces
overfitting risks and minimizes bias toward the majority class,
improving the model’s capacity to recognize patterns in
underrepresented classes (Saha et al., 2024; Talebi Moghaddam
et al., 2024). Although beneficial for imbalanced datasets,
SMOTE also suffers from some weaknesses: (1) potentially
unrealistic synthetic data due to original distribution constraints;
(2) overfitting propensity; (3) noise amplification issues; (4) poor
scalability to high-dimensional problems; and (5) intensive
computational needs for massive data. To address potential
drawbacks, we combined SMOTE with high-quality dataset,
rigorous feature selection, cross-validation, hyperparameter
optimization and robust evaluation metrics to ensure result
reliability. After the “active” and “inactive” classes being
balanced, we conducted feature selection based on correlation
and variance for only a subset of features effectively contributes
to capturing the biological characteristics of compounds, reducing
dimensionality and noise, improving model interpretability, and
enhancing computational efficiency. Currently, pharmaceutical
research leverages both traditional machine learning and
advanced deep learning techniques While deep learning (e.g.,
Graph Neural Networks, Transformers) demonstrates impressive
capabilities in drug discovery, they demand extensive data,
significant computational power, and suffer from poor
interpretability for “black box” nature—making them better
suited for complex, large-scale problems (Qi et al., 2024; Tseng
et al., 2023). Traditional ML, however, proves more effective for our
limited dataset, ensuring rapid training, transparent reasoning, and
straightforward optimization without sacrificing predictive power.
Comparative analyses have revealed that Random Forest and
ensemble methods achieved higher prediction accuracy than deep
learning approaches, including Graph Neural Networks (Wu J. et al.,
2024). Hence, following the partitioning of the constructed dataset
into a training set and a validation set, we trained 11 individual
machine learning models and selected the two best-performing
models, Categorical Boosting and Random Forest, based on
evaluation metrics for generating an ensemble model. By
comparing the performance of the ensemble model with that of
the other 11 individual models, we found that the ensemble model
indeed outperformed the individual models: in validation set 1, it
outperformed Random Forest, achieving higher accuracy (by 1.3%),
F1-score (by 1.3%), AUC (by 1.2%) and MCC (by 3.7%), while
matching its recall and surpassing CatBoost by 2% in recall. In

validation set 2, it exceeded CatBoost in accuracy (by 1.4%), F1-score
(by 1.3%), recall (by 2.1%), AUC (by 2.5%) and MCC (by 6.3%),
while also improving MCC (by 2%) over Random Forest (Figures
2B,C). Accuracy reflects correct-to-total prediction ratios. Precision
measures positive prediction reliability (critical for reducing false
alerts in fraud detection), while recall quantifies true positives
identified (avoiding missed frauds). The F1-score balances both,
ideal for imbalanced tasks like fraud or rare disease diagnosis (Azim
Mim et al., 2024). Therefore, in this study, the adoption of an
ensemble model for predicting anti-C. albicans compounds offers
several significant advantages over using a single model, which are
crucial for advancing our research and its applications. Firstly, the
ensemble models integrate predictions from two distinct algorithms,
enhancing perspective diversity and mitigating bias or overfitting
risks. Secondly, by leveraging the strengths of the two individual
classifiers, the enhanced generalization of ensemble learning model
enables more accurate, reliable and rapid to identify novel promising
antifungal compounds. Consequently, the robust nature of the
ensemble classifier allows for consistent performance, rendering it
well-suited for high-precision drug discovery. However, CatBoost-
Random Forest hybrids have seen little use beyond clinical studies
and virus tracking, receiving scant attention in pharmaceutical
exploration. For example, a study prospectively developed and
validated a CatBoost-Random Forest ensemble, to predict 30-day
unplanned readmission in elderly ischemic stroke patients (Hu et al.,
2025). The ensemble model was also constructed to classify SARS-
CoV-2 sequences, facilitating variant surveillance and enhancing
anti-pandemic strategies worldwide (Miao et al., 2022). Thus, this
ensemble learning model offers an innovative strategy for
discovering anti-C. albicans compounds. Using the ensemble
model, we screened our in-house database and identified
Dp44mT as the promising anti-C. albicans compound that had a
broad-spectrum antifungal activity and exhibited superior
antifungal efficacy in subsequent in vitro experiments compared
to commonly used clinical antifungals.

In addition, our analysis of molecular structures revealed that
compounds containing the fragment identified as significant
through feature importance analysis are highly likely to manifest
pronounced anti-C. albicans potency. The top 10 features for
positive prediction in ensemble model are MACCSFP150,
MACCSFP77, KRFP3712, MACCSFP122, and MACCSFP145
(Figures 2G–I). For example, the features, MACCSFP77,
MACCSFP122, and MACCSFP145 in Dp44mT are Fragment 1,
Fragment 2, and Fragment 3, respectively (Figure 3B). The
predominant distribution of these molecular fingerprints in Class
1 implies that their characteristic structural features may be
associated with antifungal properties (Figure 2I). For example,
these fragments constitute the core scaffold of the anti-C.
albicans compound Dp44mT and 19ak (Figure 3B;
Supplementary Figure S7). The hydrophobic and weak hydrogen-
bonding interactions of the Dp44mT scaffold are essential for
protein-ligand recognition (Figure 7E). This finding provides a
basis for guiding the development of novel antifungal
compounds. In the past, it was a time-consuming, labor-intensive
and costly process to discover and validate anti-C. albicans
compounds using traditional high-throughput screening. By
concentrating on these specific scaffolds, researchers can expedite
the discovery process and prioritize compounds with a higher
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likelihood of success in subsequent testing. Moreover, this insight
facilitates researchers in the rational design of novel anti-C. albicans
compounds. Therefore, through feature importance, we gain deeper
insights into the factors driving the ensemble model’s predictions
and identify critical molecular features for anti-C. albicans activity,
enhancing our understanding of the model’s decision-making
process and guiding the design of new compounds.

Three clinically used antifungal drugs - azoles, polyenes, and
echinocandins - exert their antifungal effects through distinct yet
singular mechanisms by targeting CYP51, ergosterol synthesis, and
(1,3)-β-D-glucan synthase, respectively, making them prone to drug
resistance (Zhai et al., 2025). In contrast, our findings show that iron
addition mitigates the anti-C. albicans efficacy of Dp44mT.
Meanwhile, the strong binding of Dp44mT to Ftr1 suggests it
operates through two mechanisms: chelating iron directly from
the environment or intracellularly, and targeting Ftr1 to reduce
iron uptake, thereby disrupting iron homeostasis and achieving anti-
C. albicans effects. Although drug resistance is not directly examined
herein, previous studies have shown that C. albicans exposed to
another thiosemicarbazone derivative 19ak, with a TC similarity of
0.89 to Dp44mT, maintained susceptibility (Duan et al., 2022).
Dp44mT exhibiting diverse antifungal mechanisms are less
susceptible to resistance, as their multifaceted action minimizes
the ability of C. albicans to adapt and survive. The targeted
protein Ftr1 is also a key contributor to C. albicans virulence, as
evidenced by the inability of FTR1-deficient strains to inflict
epithelial cell damage and their non-pathogenic behavior in a
murine candidiasis model (Ramanan and Wang, 2000; Almeida
et al., 2008). Beyond its established antifungal activity, Dp44mT also
exhibits therapeutic promise for oral tumors (Lee et al., 2016), breast
cancer (the leading cancer among women) (Rao et al., 2009; Qiu
et al., 2024), and non-small cell lung cancer, the predominant
subtype of lung cancer, such as lung adenocarcinoma, in vitro
and in vivo (Liu et al., 2024; Lovejoy et al., 2012; Xu and Lu,
2024). Decreased expression of Ftr1 results in greater beta-glucan
exposure in C. albicans, boosting the host’s innate immune
recognition and phagocytosis of the fungus, alongside anti-tumor
activity (Pradhan et al., 2019; Sadeghi et al., 2020; Peymaeei et al.,
2020). Additionally, a reduction in iron within fungal cells, achieved
through iron chelation or the removal of FTR1, has been
demonstrated to enhance the efficacy of antifungal agents,
including tunicamycin, zymolyase, FLC, and nystatin (Tripathi
et al., 2020; Prasad et al., 2006). Accordingly, Dp44mT may
improve the anti-C. albicans property of classic antifungal agents,
such as FLC. In conclusion, Dp44mT exhibits multifaceted
antifungal mechanisms and pleiotropic properties, effectively
lowering the likelihood of drug resistance and concurrently
targeting infections and tumors. For patients with dual diagnoses,
it offers a streamlined treatment approach, reduces economic
burdens, decreases adverse effects, improves adherence, and
enhances treatment outcomes, positioning it as a highly
promising therapeutic candidate. Therefore, the treatment of
mice with C. albicans infection or concurrent tumors using the
Dp44mT alone or with common antifungal drugs will be the focus of
our future research. Similar to Ftr1, many iron homeostasis-related
proteins associated with the survival, virulence and pathogenicity of
C. albicans, such as Sef1 (Chen et al., 2011), and Hap43 (Hsu et al.,
2011) were upregulated upon Dp44mT treatment. Deficiency in

them impairs biofilm formation in C. albicans and reduces its
pathogenicity due to its inability to survive in iron-deficient
blood (Pentland et al., 2021). During iron scarcity, Sef1 and
Hap43 target the promoter regions of FTR1 and ISA1 (involved
in Fe-S biogenesis), respectively. Sef1 stimulates FTR1 to increase
extracellular iron uptake, whereas Hap43 downregulates ISA1 to
conserve iron reserves (Chen et al., 2011). However, when
Ftr1 activity is inhibited by Dp44mT, drastic intracellular iron
starvation occurs, disturbing Fe-S cluster generation and thereby
hindering mitochondrial functionality. Hence, targeting these
proteins to discover or synthesize new compounds is a viable
strategy, emphasizing iron homeostasis destabilization as a
promising approach against C. albicans.

Beyond its effectiveness, compound Dp44mT exhibits a
favorable safety profile to be considered a viable option for
treating C. albicans infections. Our BLAST analysis of protein
sequences confirmed the absence of Ftr1 homologs in humans,
suggesting minimal off-target effects in host cells and
highlighting its target specificity. During research on
Dp44mT’s anti-tumor efficacy in mice, the animals were able
to tolerate doses of at least 525 µM (0.75 mg/kg) (Whitnall et al.,
2006). And it demonstrated a 50% growth inhibition
concentration of more than 10 µM for healthy human
mammary epithelial MCF-12A cells and over 25 µM for MRC-
5 fibroblasts (Yuan et al., 2004; Rao et al., 2009). They are far
exceeding the MIC (0.876 µM, 0.25 μg/mL) needed for its anti-C.
albicans activity. Other iron chelators 19ak, deferasirox,
hinokitiol, and DIBI and attinimicin, selectively inhibits C.
albicans without harming human cells and exhibits in vivo
activity (Duan et al., 2022; Ji et al., 2022; Puri et al., 2019; Jin
et al., 2021; Savage et al., 2018; Fukuda et al., 2021). In addition,
within the host, microbes face an iron-deprived environment.
Hosts impose iron limitation (“nutritional immunity”) on
microbes via hepcidin-regulated pathways: inhibiting dietary/
macrophage iron release and sequestering iron into hemoglobin,
transferrin, and ferritin (Roy et al., 2022; Ramirez-Zavala et al.,
2022). Consequently, free iron drops to ~10–18 M—too low for C.
albicans to exploit, even in blood. The efficacy of anti-Ftr1 IgY
antibodies against C. albicans infection further validates this
iron-restricted host environment (de Souza et al., 2023). This
iron-depleted environment may enable dose reduction through
synergistic effects. Nevertheless, when Dp44mT arrives at the
infection locus, its anti-C. albicans activity might be attenuated
due to competitive binding with iron from various biological
sources. To address current limitations, our research strategy will
incorporate structural optimization, synergistic combination
therapies, topical administration and targeted-drug delivery
systems for assessing its anti-C. albicans efficacy in vivo.
Dp44mT could serve as an adjunct to fluconazole to enhance
antifungal efficacy. Liposomal encapsulation improves
Dp44mT’s site-specific delivery, whereas molecular
refinements enhance its iron affinity, collectively mitigating
nonspecific chelation and external iron effects. For localized
infections, topical formulations (e.g., ointments) may be
advantageous due to lower iron levels and controlled drug
distribution.

This experiment also has some limitations. Firstly, following
10 h of treatment with low-dose Dp44mT, mitochondrial
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respiration-related functions were observed to increase at the gene
expression level and via the CTC staining assays, but decreased at the
protein level. This discrepancy suggests potential post-
transcriptional or translational regulation mechanisms that have
not yet been fully explored. Prolonged treatment with low-
concentration Dp44mT reduces the synthesis of the large
ribosomal subunit, as indicated by transcriptomic and proteomic
GSEA analyses, leading to fewer ribosomes and decreased protein
synthesis (Figures 4C,E). However, the relationship between protein
quantity and activity is not linear. The heightened red fluorescence
observed after CTC staining could result from: 1) post-translational
modifications (e.g., phosphorylation, acetylation) under Dp44mT-
induced stress, which may significantly increase protein activity; 2)
Dp44mT binding to the limited protein produced, inducing
conformational changes that enhance activity; 3) cells may
maintain or enhance protein function through cofactors or
cooperative proteins; 4) diminished protein degradation enhances
the duration of protein activity. In future research, ribosome
profiling, mass spectrometry, X-ray crystallography, enzyme
activity assays, and ubiquitination detection could be applied to
validate the proposed mechanisms of reduced ribosome levels, post-
translational modifications, conformational changes, activity
compensation, and diminished protein degradation. Secondly,
current computational approaches (molecular docking/MD
simulations) provide only theoretical interaction models without
experimental verification.We will validate these predictions through
structural biology techniques including X-ray crystallography and
site-directed mutagenesis. Ultimate limitations involve indirect
evaluation of cellular iron handling and mitochondrial activity;
future studies will employ direct FeRhoNox-1/ICP-MS
quantification coupled with seahorse XF analyzer.

In summary, our work identified a novel anti-C. albicans
compound Dp44mT representing a major advance in machine
learning-based anti-fungal drugs discovery. Dp44mT exerts its
anti-C. albicans property by chelating environmental iron and
targeting essential proteins Ftr1, for which collectively disrupt
intracellular iron homeostasis, collapse MMP, and ultimately
induce cell apoptosis. With its favorable safety profile, Dp44mT
can be a prospective novel chemical entity for C. albicans
infection treatment.
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