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Background:Hydrogen gas (H2), which is the lightest and diffusible gasmolecule,
has strong abilities to alleviate excessive oxidative stress, inflammation, and
apoptosis. Inhalation of H2 is beneficial for preventing the damage of the lung,
heart, brain, liver, kidneys, and many other organs. However, the effect of
intraperitoneal injection of H2 on metabolic dysfunction–associated steatotic
liver disease (MASLD) is unclear.

Objective: The aim of this study is to investigate whether intraperitoneal injection
of H2 can improve MASLD, and if so, what are the key innate immune
mechanisms involved?

Methods: TheMASLDmousemodel was established by feeding amethionine- and
choline-deficient (MCD) diet for 3 weeks. H2 was daily given by intraperitoneal
injection since the eighth day of MCD diet feeding, and lasted for 2 weeks. Serum
levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were
examined to evaluate liver injury. Hematoxylin and eosin (H&E) staining, Oil Red O
staining, qPCR analysis of hepatic lipid metabolism genes, and detection of hepatic
triglyceride (TG) levels were performed to evaluate hepatic steatosis. Masson
trichrome staining and Collagen-I and Collagen-III protein levels were used to
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evaluate liver fibrosis. The liver 3-nitrotyrosine (3-NT) was detected by
immunoblotting and immunofluorescence, and the levels of malondialdehyde
(MDA) and reduced glutathione (GSH) were measured using kits to evaluate redox
homeostasis. The activation of TLR4-mediated innate immune signaling and
pyroptosis were tested by immunoblotting and immunofluorescence. Moreover,
hepatic protective effect and anti-pyroptosis effect of H2 were further confirmed by
H2-rich DMEM-treated HepG2 cells in vitro.

Results: Supplementing with H2 by intraperitoneal injection protected MCD diet-
fed mice against hepatic steatosis and fibrosis by down-regulating de novo
lipogenesis and fatty acid uptake genes, as well as hepatic Collagen-Ⅰ and
Collagen-Ⅲ protein levels, while up-regulating lipid export genes.
Mechanistically, H2 modulated hepatic redox homeostasis by suppressing 3-NT
and MDA levels, while increasing the reduced GSH levels. Subsequently, reactive
oxygen species (ROS)-related innate immune signaling, including the expression of
TLR4, and the activation of NF-κB, ERK1/2, p38 MAPK, and JNK in the liver, were all
inhibited by H2 treatment. These further contributed to inhibiting the expression of
TNF-α, IL-1β, and IL-18 in the liver. Thematuration of IL-1β and IL-18, the full-length
of the classical pyroptosis trigger GSDMD, and the cleavage of GSDMD processed
by Caspase-1 in NLRP3 inflammasome (including NLRP3, ASC, Caspase-1) were all
blocked by H2. In addition, H2 decreased both the full-length and cleaved forms of
Caspase-11, Caspase-8, Caspase-3 and GSDME, and thus inhibiting the non-
canonical pyroptosis signaling in the liver of MASLD mice. The anti-pyroptosis
effects of H2 in vitro were further confirmed by the reduced expression of
inflammatory cytokines, the decreased full-length and cleaved forms of GSDMD
and GSDME, and the reduced number of HepG2 cells with pyroptotic morphology.

Conclusion:H2 is an anti-pyroptosis gas molecule, intraperitoneal injection of H2 is
a novel therapeutic strategy for MASLD that deserves further investigation.
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1 Introduction

Metabolic dysfunction–associated steatotic liver disease
(MASLD, formerly known as non-alcoholic fatty liver disease
(NAFLD)) is a dynamic chronic non-communicable liver disease,
which displays hepatic steatosis with one or more cardiometabolic
risk factors in the absence of other causes of hepatic steatosis, such as
drug-induced or alcohol-related steatosis (Sarkar and Kushner,
2025). MASLD includes a broad spectrum of progressive steatotic
liver conditions, ranging from isolated hepatic steatosis to metabolic
dysfunction-associated steatohepatitis (MASH) with varying
amounts of liver fibrosis, and 10%–20% of the patients still
progress to cirrhosis and its complications—hepatocellular
carcinoma (HCC) and end-stage liver disease (Chen et al., 2021;
Mallet et al., 2024; Miao et al., 2024). The global prevalence of
MASLD was estimated to be 30.2% (Amini-Salehi et al., 2024).
Resmetirom, a liver-selective and thyroid hormone receptor B
(THRB, the predominant thyroid hormone receptor isoform in
the liver)-selective thyromimetic, is the only one and first FDA-
approved drug for MASH (Sinha et al., 2024). Therefore, it is still
urgent to find other effective therapeutic drugs for MASLD.

Oxidative stress, inflammation, insulin resistance, and cell death
are implicated in the pathogenesis of MASLD (Zhang et al., 2020c).
Hydrogen gas (H2), the lightest gas molecule in nature, has
antioxidant, anti-inflammatory, and anti-apoptotic effects (Tan

et al., 2019). Inhalation of H2, drinking H2-rich water and
intraperitoneal injection of H2-rich saline can alleviate many liver
diseases, such as ischemia/reperfusion (I/R) injury and MASLD
(Sun et al., 2011; Zhai et al., 2017; Ge et al., 2019; Liang et al., 2023;
Liu et al., 2023). Our group and others have shown that
intraperitoneal injection of H2 can alleviate acute alcoholic liver
injury and lipopolysaccharide (LPS)-induced cardiac dysfunction in
mice (Tan et al., 2019; Zhang et al., 2021a; Xu et al., 2024), and
display the neuroprotection in rabbits with cardiac arrest (Huang
et al., 2013). However, the therapeutic effect of intraperitoneal
injection of H2 on MASLD are unknown, if it has a liver
protective effect, what is the key mechanism?

2 Materials and methods

2.1 H2 and H2-rich medium

H2 used for animals was daily prepared by injecting H2

(Cat#73405157, Dalian Special Gases Co., Ltd., Dalian, China;
>99.999%) into a 100 mL vacuumed infusion bottle (Guangdong
Kelun Pharmaceutical Co., Ltd., Meizhou, China). H2-rich
Dulbecco’s modified Eagle’s medium (DMEM) for cell culture
was prepared as we previously described. All these were shown
in Figures 1A,B.
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2.2 Animal model of metabolic dysfunction-
associated steatotic liver disease and
H2 treatment

The male C57BL/6 mice were brought from Guangdong Medical
Laboratory Animal Center (Foshan, China). They were housed in an
SPF animal facility with a 12-h light/dark cycle and ad libitum access to
diet and water. All experimental procedures of animals were approved
by the Institutional Animal Care and Use Committee (IACUC) of

Guangzhou University of Chinese Medicine as a sub project of the
“Building a Comprehensive Prevention and Treatment System for
Cardiometabolic Diseases (3-1)” (Approval No. 2023053006).

The MASLD mouse model was established by feeding a MCD
diet for 3 weeks (Henao-Mejia et al., 2012; Valdecantos et al., 2017;
Figure 1C). Two doses of H2 were used in this study (Xu et al., 2024).
C57BL/6 mice (26–28 g) were randomly divided into four groups,
including Control group, MCD group, MCD + H2 (Low, L) group,
and MCD + H2 (High, H) group. The animals in the corresponding

FIGURE 1
Themethods of H2 usage and experimental process. (A)Open the pressure reducing valve with a small release pressure, exhaust the air in the plastic
hose connected to the pressure reducing valve. Insert the syringe needle into the evacuated plastic infusion bottle (100 mL), then further loosen the
pressure reducing valve and introduce H2 into the infusion bottle until there is no dead volume. (B)H2-rich medium was prepared by introducing H2 into
the infusion bottle containing 10 mL DMEM until there is no dead volume, then, it was stored in 4°C for 6 h before used. (C) The experimental
procedure is as follows: animals in H2 treatment group are intraperitoneally injected with H2 once a day at 5:00 p.m. since the eighth day. On day 22nd at
9:00 a.m., blood and liver samples are collected. In detail, there is a two-way valve connected between the injector and needle for injecting H2. Open the
two-way valve, extract the required volume of H2 into the syringe, and immediately close the two-way valve. After removing the needle from the infusion
bottle, immediately insert the needle into the abdominal cavity of the animals, open the two-way valve to complete the intraperitoneal injection.
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group were fed a mixed diet for 3 days, as 50% standard chow plus
50% MCD Control diet (Cat#MD12051, Medicience Ltd.,
Yangzhou, China) for Control group, and 50% standard chow
plus 50% MCD diet (Cat#MD12052, Medicience Ltd., Yangzhou,
China) for the other three groups, and subsequently, mice in the
corresponding group were fed a MCD Control diet or a MCD diet
for another 18 days. On day eighth, mice were daily given H2 by
intraperitoneal injection at the doses of 0.5 mL/100 g for MCD + H2

(L) group, and 1.0 mL/100 g for MCD +H2 (H) group. On day 22nd,
mice were deeply anesthetized before blood collection from the
orbital sinus, and then, euthanized via cervical dislocation
(Mackowiak et al., 2022). The liver samples were frozen in −80°C
or put in 4% Paraformaldehyde Fix Solution (Cat#G1101,
Servicebio, Wuhan, China) for further analysis.

2.3 Sodium oleate-induced lipid
accumulation in HepG2 cells and treatment
by H2-rich medium

HepG2 cells, which were generously provided by Prof. Peng Zhang
(School of Basic Medical Sciences, Wuhan University, China), were
cultured in DMEM containing 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin in a cell culture incubator with 5%CO2 at 37°C.
Oleic acid (OA)-induced lipid accumulation HepG2 cell model was
established by sodium oleate (Cat#S6130, Solarbio, Beijing, China)
(Chen et al., 2020; Liu et al., 2020; Wang et al., 2022). HepG2 cells were
divided into four groups: Control group, OA group, OA+H2 group, and
H2 group. H2-rich DMEM with 1% FBS was added to the OA+H2 and
H2 groups, and the Control group and OA group were treated with the
same volume of H2-free DMEM with 1% FBS. HepG2 cells in the OA
group and OA+H2 group were treated with sodium oleate (0.25 mM)
for 18 h after 30 min of H2 treatment.

2.4 Serum ALT and AST, and hepatic MDA,
reduced GSH and TG analysis

Serum levels of alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) were examined by an automatic blood
chemistry analyzer in Department of Clinical Laboratory from The
Third Affiliated Hospital of Sun Yat-sen University (Xu et al., 2024).
Hepatic malondialdehyde (MDA), reduced glutathione (GSH), and
triglycerides (TG) levels were examined by the commercialized
reagent kits (Cat#A003-1-2, A006-2-1, and A110-1-1, Nanjing
Jiancheng Bioengineering Institute, Nanjing, China).

2.5 Histopathological analysis

The fixed liver tissues by 4% paraformaldehyde fixed solution for
over 24 h were embedded in paraffin and sliced into 4 μm sections.
Then, Masson’s trichrome (Cat#G1006-100ML, Servicebio, Wuhan,
China) staining, and Hematoxylin (Cat#BA4097-500ML, BaSo,
Zhuhai, China) and eosin (Cat#BA4099-500ML, BaSo, Zhuhai,
China) (H&E) staining was performed according to the standard
procedures. In H&E-stained pathological sections, hepatic steatosis
was scored and the severity was graded based on the percentage of

affected total area, into the following categories: 0 (<5%), 1 (5%–
33%), 2 (>33–66%), and 3 (>66%) (Kleiner et al., 2005; Liang et al.,
2014; Zhang et al., 2020c). The H&E image analysis was performed
by Chengqin Lu and Yun Chen, and a double-blind design was
implemented to minimize bias. HepG2 cells were fixed with 4%
paraformaldehyde, and the frozen liver sections (10 μm) were
prepared in Tissue-Tek® optimum cutting temperature (O.C.T.)
compound (Cat#4583, Sakura, Japan), then, they stained with Oil
Red O (Cat#G1015-100ML, Servicebio, Wuhan, China). Hepatic
lipid accumulation by Oil Red O staining in the liver tissues were
quantified as previously described (Mehlem et al., 2013).

2.6 Quantitative PCR (qPCR) analysis

Total RNA was extracted from the fresh liver tissues by EZ-press
RNA Purification Kit (Cat#B0004DP, EZBiocience, Roseville, CA,
United States), Color Reverse Transcription Kit (Cat#A0010CGQ,
EZBiocience, Roseville, CA, United States) was used to convert
mRNA to cDNA, and 2 * Color SYBR Green qPCR Master Mix
(Cat#A0012-R2, EZBiocience, Roseville, CA, United States) was used
for qPCR under the standard procedure. The target genes levels were
normalized to glyceraldehyde-3-phosphate dehydrogenase (Gapdh) by
2−△△ct. The primer sequences of target genes were described in Table 1.

2.7 Western blot

Total proteins in the liver samples were extracted by the lysis buffer
containing 4% protease inhibitor cocktail (Cat#4693132001, Roche,
25×) and 10% phosphatase inhibitor cocktail (Cat#4906837001, Roche,
10×) (Zhang et al., 2020b). The expression levels of the corresponding
proteins in the liver samples were determined by Western blot
according to the standard processes (Zhang et al., 2021a). The
antibodies used in this study were listed in Table 2.

2.8 Immunofluorescence staining

3-NT immunofluorescence staining was performed on frozen
sections of the liver samples as follows: (1) Wash frozen sections with
PBS for 30 min, with TBS for 10 min, and with TBST for 20 min (2)
Seal with goat serum blocking solution (Cat#ZLI-9056, ZSGB Bio,
Beijing, China) at room temperature for 2 h (3) Incubate overnight
with 3-NT antibody (see Table 1) at 4°C. (4) Wash with TBS for
10min, with TBST for 20min (5) IncubatewithGoat Anti-Mouse IgG
(H+L) Fluor 594-conjugated secondary antibody (Cat#S0005, Affinity
Biosciences, Beijing, China) under dark conditions for 2 h (6) Wash
with TBS for 10 min, with TBST for 20 min (7) Finally, the
fluorescence intensity of 3-NT was observed under a fluorescence
microscope after sealing the sections with Mounting Medium,
antifading (with DAPI) (Cat#S2110, Solarbio, Beijing, China).

2.9 Statistical analysis

The statistical analyses were performed by one-way analysis of
variance (ANOVA) followed by Bonferroni’s post hoc analysis for data
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TABLE 1 Sequences of primers used for real-time quantitative PCR.

Gene Forward primer sequence (5′–3′) Reverse primer sequence (5′–3′)

Gapdh AGAACATCATCCCTGCATCC TTGTCATTGAGAGCAATGCC

Fasn GCCATGCCCAGAGGGTGGTT AGGGTCGACCTGGTCCTCA

Acaca TGGAGCTAAACCAGCACTCC GCCAAACCATCCTGTAAGCC

Cpt1a ATCGTGGTGGTGGGTGTGATAT ACGCCACTCACGATGTTCTTC

Acox TGTCATTCCTACCAACTGTC CCATCTTCTCAACTAACACTC

CD36 GTGCAAAACCCAGATGACGT TCCAACAGACAGTGAAGGCT

Fabp1 GCAGAGCCAGGAGAACTTTGAG TTTGATTTTCTTCCCTTCATGCA

Mttp AACTCCTACGAGCCCTCCTT AGTCCTCCCAGGATCAGCTT

Apob TCACCATTTGCCCTCAACCTAA GAAGGCTCTTTGGAAGTGTAAAC

Ppara AGAGCCCCATCTGTCCTCTC ACTGGTAGTCTGCAAAACCAAA

TABLE 2 The antibodies.

Antibodies Catalog numbers Suppliers

Anti-rabbit IgG HRP-linked antibody #S0001 Affinity Biosciences

Anti-mouse IgG HRP-linked antibody #S0002 Affinity Biosciences

TNF-α antibody #AF7014 Affinity Biosciences

Collagen I Antibody #AF7001 Affinity Biosciences

Collagen III Antibody #AF0136 Affinity Biosciences

ASC #DF6304 Affinity Biosciences

TLR4 antibody #sc-293072 Santa Cruz Biotechnology

Caspase-3 antibody #sc56053 Santa Cruz Biotechnology

Caspase-11 antibody #sc-374615 Santa Cruz Biotechnology

Caspase-8 antibody #9746S Cell Signaling Technology

p-NF-κB p65 antibody #3033S Cell Signaling Technology

NF-κB p65 antibody #8242S Cell Signaling Technology

NLRP3 #15101S Cell Signaling Technology

Phospho-SAPK/JNK antibody #9255S Cell Signaling Technology

SAPK/JNK Antibody #9252S Cell Signaling Technology

p38 antibody #8690S Cell Signaling Technology

p-p38 antibody #4511S Cell Signaling Technology

MAPK (Erk1/2) antibody #4695S Cell Signaling Technology

Rabbit Anti-phospho-ERK1/2 (Thr202 + Tyr204) antibody bs-3016R Bioss

IL-18 antibody #D046-3 Medical and Biological Laboratories Co., Ltd.

GAPDH antibody #MB001 Bioworld Technology

3-nitrotyrosine (3-NT) antibody #ab110282 Abcam

GSDMD antibody #ab219800 Abcam

GSDME antibody #ab215191 Abcam

Caspase-1 antibody #ab1872 Abcam
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FIGURE 2
H2 therapy improved hepatic steatosis in mice fed with a MCD diet. (A) Liver H&E and (B)Oil Red O staining showed that both low and high doses of
H2 attenuated MCD-induced hepatic steatosis. (C) Steatosis grade score, n = 8mice in each group. (D) The levels of TG in the liver tissues, (E) Serum ALT
levels, (F) Serum AST levels, n = 8 mice in each group. (G) The relative mRNA levels (ratios to Gapdh) of Acaca, (H) Fasn, (I) CD36, (J) Cpt1α, (K) Fabp1, (L)
Acox, (M) Ppar-α, (N)Mttp, (O) Apob, n = 3mice in each group. The data of steatosis grade score are expressed asmedian ± interquartile range, other
results are expressed as means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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with normal distribution (by Shapiro-Wilk test) and satisfying
homogeneity of variance (by Brown-Forsythe test), performed by
Brown-Forsythe and Welch ANOVA tests followed by Dunnett
T3 post hoc analysis for data with normal distribution and
heteroscedasticity, and performed by Kruskal-Wallis test followed
by Dunn’s post hoc analysis for data with skewed distributions (by
Shapiro-Wilk test). All data were expressed asmean ± SD ormedian ±
interquartile range, a value of P < 0.05 was considered as significantly
different. All histograms were performed using GraphPad Prism
10.1.2 (GraphPad Software Inc., San Diego, CA, United States).

3 Results

3.1 H2 improved hepatic steatosis inmice fed
with a MCD diet

The basic characteristics of MASLD is hepatic steatosis (Rinella
et al., 2023; Hagström et al., 2024). Therefore, we first investigated that
whether supplementing with H2 through intraperitoneal injection has
a protective effect on lipid deposition in the liver of mice fed with a
MCD diet. Macrovesicular steatosis indicated by H&E staining
(Figure 2A) and lipid droplets indicated by Oil red O staining
(Figure 2B) were obviously visible in MCD group. The steatosis
grade scores (Figure 2C), and hepatic TG levels (Figure 2D) were
higher in MCD group than Control group. The increased serum levels
of ALT (Figure 2E) and AST (Figure 2F) pointed to hepatocellular
injury in MCD group. All these indicators reflecting hepatic steatosis
and liver injury were improved by high dose H2 therapy. Hepatic
steatosis is a consequence of lipid acquisition exceeding lipid disposal,
for example, fatty acid uptake and de novo lipogenesis surpassing lipid
export and fatty acid oxidation (Ipsen et al., 2018). Here, we found the
hepatic mRNA involved in de novo lipogenesis, such as acetyl-
Coenzyme A carboxylase (Acaca) and fatty acid synthetase (Fasn),
and fatty acid uptake geneCD36were increased by feeding aMCDdiet
for 3 weeks (Figures 2G-I); in contrast, the genes involved in fatty acid
oxidation, such as carnitine palmitoyl transferase 1 α (Cpt1α) and fatty
acid binding protein 1 (Fabp1), Acyl-CoA oxidase (Acox, the rate-
limiting enzyme in peroxisomal β-oxidation of fatty acids),
and peroxisome proliferator-activated receptor-α (PPAR-α)
(Figures 2J-M), the lipid exporting genes such as microparticle
triglyceride transfer protein (Mttp) and apolipoprotein B (Apob)
were decreased by feeding a MCD diet for 3 weeks (Figures 2N,O).
Among these, Acaca, Fasn, and CD36 were decreased (Figures 2G-I),
while Mttp and Apob were increased by high dose H2 therapy
(Figures 2N,O). Therefore, these data indicated that H2 can improve
hepatic steatosis in mice fed with a MCD diet probably via inhibiting
de novo lipogenesis and fatty acid uptake, while increasing lipid export.

3.2 H2 improved liver fibrosis in mice fed
with a MCD diet

MASLD patients have the potential for progressively developing
into liver fibrosis (Chalasani et al., 2017; Younossi et al., 2023). Our
Masson staining indicated that MCD diet feeding induced liver
fibrosis in mice, and the hepatic protein levels of fibrosis markers
Collagen-Ⅰ and Collagen-Ⅲ, were increased in mice fed with a MCD

diet, these conditions were all improved by H2 therapy (Figure 3).
Therefore, these data indicated that H2 also has the potential to
improve liver fibrosis in mice fed with a MCD diet.

3.3 H2 alleviated oxidative stress in the liver
of mice fed with a MCD diet

Hepatic oxidative stress is a key feature and contributor of
MASLD (Li et al., 2024). To investigate the effects of
intraperitoneal injection of H2 on oxidative damage in the
liver of mice fed with a MCD diet, hepatic 3-nitrotyrosine (3-
NT), an indicator of oxidative stress, were examined by
immunofluorescence and Western blot. Compared with Control
group, 3-NT levels in the liver were elevated in MCD group, and it
was decreased by H2 therapy (Figures 4A–D). Malondialdehyde
(MDA) is an aldehyde formed as secondary products during
lipid peroxidation, in contrast, glutathione (GSH) is a principal
intracellular antioxidant buffer (Ayala et al., 2014; Wrotek et al.,
2020). We further evaluated MDA and GSH levels in the
liver. Hepatic MDA levels were increased, while hepatic reduced
GSH levels were decreased in MCD group when compared with
Control group, in contrast, H2 therapy reversed this redox imbalance
(Figures 4E,F). Therefore, H2 therapy alleviated oxidative stress in
the liver of mice fed with a MCD diet.

3.4 H2 suppressed pyroptosis in the liver of
mice fed with a MCD diet

In human and murine models of MASH, increased hepatocyte
death, such as apoptosis and pyroptosis, is a critical mechanism
contributing to inflammation and fibrogenesis (Hatting et al., 2013;
Xu et al., 2018; Gaul et al., 2021). The canonical proptosis, a lytic form
of cell death, can be elicited by Caspase-1 (which is activated after the
binding of the ligands to the inflammasome-forming pattern
recognition receptors (PRRs), such as NLRP3 (Shi et al., 2015)) to
cleave the pyroptosis executioner, gasdermin D (GSDMD) (Shi et al.,
2017). The gasdermin-N domains of GSDMD can bind themembrane
lipids, phosphoinositides and cardiolipin, and exhibit membrane-
disrupting cytotoxicity in mammalian cells, and thus triggering
pyroptosis (Ding et al., 2016). In order to investigate the effect of
H2 on NLRP3 inflammasome activation and the subsequent
pyroptosis in the liver of mice fed with a MCD diet, we examined
NLRP3, ASC, Caspase-1 and GSDMD protein levels in the liver.
Our results showed that MCD diet feeding increased the protein levels
of NLRP3 andASC, and the full length and cleaved forms of Caspase-1
and GSDMD in the liver, in contrast, these upregulation
were decreased by H2 therapy (Figure 5). In addition to Caspase-1-
GSDMD pathway, the non-canonical pathway can also induce
pyroptosis, as the cleavage of GSDMD by Caspaes-11/8 and the
cleavage of GSDME specifically by Caspase-3 (Kayagaki et al.,
2015; Wang et al., 2017; Sarhan et al., 2018). Here, we showed that
compared with Control group, the full length and cleaved forms of
Caspase-11, Caspase-8, Caspase-3, and GSDME were increased, while
H2 downregulated both the expression and maturation of these
pyroptosis signaling proteins (Figure 6). Therefore, H2 inhibited
pyroptosis in the liver of mice fed with a MCD diet.
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3.5 H2 therapy reduced inflammatory
cytokines expression in the liver of mice fed
with a MCD diet

The activated Caspase-1 can process the cleavage of GSDMD
and IL-1β, and the cleavage of GSDMD is required for pyroptosis
and the release of matured IL-1β (He et al., 2015; Shi et al., 2015). It is
well-known that the increased inflammatory cytokines were
essential for the pathogenesis of MASLD. Therefore, we
examined hepatic protein levels of inflammatory cytokines to
explore the effects of intraperitoneal injection of H2 on
inflammation in mice with MASLD. Our results showed that
compared with Control group, the hepatic levels of TNF-α, the
full length and cleaved forms of IL-1β and IL-18 were all increased in
MCD group, and high dose H2 therapy reversed the upregulation of
these inflammatory cytokines in the liver (Figure 7). Therefore, H2

therapy inhibited inflammatory cytokines expression in the liver of
mice fed with a MCD diet.

3.6 H2 inhibited the overactivation of
TLR4 innate immune signaling in the liver of
mice fed with a MCD diet

The expression of hepatic inflammatory cytokines were induced
by the activation of pattern recognition receptors (PRRs, such as
Toll-like receptor 4 (TLR4)) after recognizing the upregulated
pathogen-associated molecular patterns (PAMPs, such as LPS) or
damage associated molecular patterns (DAMPs) during the
progression of MASLD (Carpino et al., 2020). Here, the
expression of TLR4, and the phosphorylation of its downstream
signaling proteins, including nuclear factor-κB (NF-κB), ERK1/2,

FIGURE 3
The effect of H2 on liver fibrosis inmice fed with aMCD diet. (A) TheMasson’s trichrome staining showed that H2 alleviatedmild liver fibrosis induced
by MCD. (B) Western blotting images of hepatic Collagen-Ⅰ and GAPDH, and quantification of Collagen-Ⅰ/GAPDH ratio, (C) Western blotting images of
hepatic Collagen-Ⅲ and GAPDH, and quantification of Collagen-Ⅲ/GAPDH ratio, n = 3 mice in each group. Results are expressed as means ± SD. **p <
0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 4
H2 alleviated oxidative stress in the liver of mice fed with a MCD diet. (A) Immunofluorescence of 3-NT, (B) 3-NT average fluorescence intensity, (C)
Western blotting images of hepatic 3-NT and GAPDH and (D) quantification of 3-NT/GAPDH ratio, n = 3 mice in each group. (E)Hepatic MDA and (F) the
reduced GSH levels, n = 8 mice in each group. Results are expressed as means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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p38 MAPK, and JNK, were all increased in the liver of mice fed with
a MCD diet (Figure 8). In contrast, this overactivated TLR4 innate
immune signaling was suppressed by intraperitoneal injection of
high doses H2 (Figure 8).

3.7 H2-rich medium improved sodium
oleate-induced HepG2 cells steatosis by
inhibiting inflammatory cytokines
expression and pyroptosis

The hepatic protection of H2 on steatosis was further
confirmed in sodium oleate (OA)-induced HepG2 cells

steatosis model as indicated by Oil red O staining (Figure 9A).
OA increased the expression of 3-NT (Figure 9B), TNFα
(Figure 9C), IL1-β (Figure 9D) and IL-18 (Figure 9E) in
HepG2 cells, these were all suppressed by H2-rich medium.
Moreover, OA increased the numbers of cells with the
pyroptosis morphology as cell swelling with large bubbles
(Figure 9F), increased the levels of full-length and cleaved
forms of GSDMD (Figure 9G) and GSDME (Figure 9H), these
indicated that OA elicited pyroptosis in HepG2 cells, which were
all inhibited by H2-rich medium treatment. Therefore, H2-rich
medium inhibited the expression of inflammatory cytokines, and
targeted GSDMD and GSDME to alleviate OA-induced steatosis
in HepG2 cells.

FIGURE 5
H2 therapy inhibited hepatic NLRP3 inflammasome activation in mice fed with a MCD diet. (A) Western blotting images of hepatic NLRP3 and
GAPDH, and quantification of NLRP3/GAPDH ratio; (B)Western blotting images of hepatic ASC and GAPDH, and quantification of ASC/GAPDH ratio; (C)
Western blotting images of hepatic pro-Caspase-1, cleaved-Caspase-1 and GAPDH, and quantifications of pro-Caspase-1/GAPDH and cleaved-
Caspase-1/GAPDH ratios; (D)Western blotting images of pro-GSDMD, cleaved-GSDMD andGAPDH in the liver, and quantifications of pro-GSDMD/
GAPDH and cleaved-GSDMD/GAPDH ratios; n = 3 mice in each group. Results are expressed as means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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4 Discussion

MASLD is the leading chronic liver disease worldwide. The
spectrum of MASLD ranges from simple steatosis, through MASH,
to fibrosis, and ultimately cirrhosis and HCC. Until March 2024, the
US Food and Drug Administration (FDA) approved the launch of
the first (and only) characteristic drug, resmetirom, for the
treatment of fibrosis in MASH (Keam, 2024). Therefore, it is still
urgent to find other effective treatments for MASH. H2 is a gas
molecule with anti-inflammation, anti-oxidation, and anti-

apoptosis effects. Since Ikuroh Ohsawa first discovered that
inhaling 2% H2 can improve cerebral I/R injury in rats, the
therapeutic effect of H2 has attracted more attention (Ohsawa
et al., 2007). So far, H2 has been reported to have therapeutic
effects in various liver diseases, such as alcoholic liver injury
(Zhang et al., 2021a; Xu et al., 2024). Here, we first reported that
intraperitoneal injection of H2, as a novel strategy for supplementing
exogenous H2, can treat MCD diet-induced MASLD in mice. Future
research should add a positive control group, using Resmetirom, to
evaluate the efficacy of H2.

FIGURE 6
H2 therapy inhibited the non-classical pyroptosis signaling in the liver of mice fed with a MCD diet. (A)Western blotting images of pro-Caspase-11,
cleaved-Caspase-11 and GAPDH in the liver, and quantifications of pro-Caspase-11/GAPDH and cleaved-Caspase-11/GAPDH ratios; (B)Western blotting
images of pro-Caspase-8, cleaved-Caspase-8 and GAPDH in the liver, and quantifications of pro-Caspase-8/GAPDH and cleaved-Caspase-8/GAPDH
ratios; (C) Western blotting images of pro-Caspase-3, cleaved-Caspase-3 and GAPDH in the liver, and quantifications of pro-Caspase-3/GAPDH
and cleaved-Caspase-3/GAPDH ratios; (D)Western blotting images of pro-GSDME, cleaved-GSDME and GAPDH in the liver, and quantifications of pro-
GSDME/GAPDH and cleaved-GSDME/GAPDH ratios; n = 3 mice in each group. Results are expressed as means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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Methionine or choline can stimulate the synthesis of
phosphatidylcholine (the principal phospholipid comprising the
outer coat of very-low-density lipoprotein (VLDL) particles),
which is required for the secretion of VLDL and its deficiency
induces lipid accumulation in the liver (Rizki et al., 2006). Our data
showed that MCD diet feeding induced obvious hepatic steatosis in
mice as indicated by H&E and oil red O staining, and the increased
hepatic TG levels. MCD diet promotes hepatic lipid accumulation
by more than one mechanism (Rinella et al., 2008). The four key
events as de novo lipogenesis, fatty acid uptake, lipid export and
fatty acid oxidation, are all involved in the pathogenesis of MASLD
in animals induced by feeding a MCD diet, however, the degree of
MASLD is related to the days of feeding, the differences in MCD
dietary components, and the animal strains (Kirsch et al., 2003;
Rizki et al., 2006; Gyamfi et al., 2008; Rinella et al., 2008; Pickens
et al., 2009; Wu et al., 2010; Machado et al., 2015; Pierce et al., 2015;
Xu et al., 2018; Yu et al., 2019). Here, we found that the genes
involved in fatty acid uptake (CD36) and de novo lipogenesis
(Acaca and Fasn) were increased and the genes involved in
lipid export (Mttp and Apob) and fatty acid oxidation (Cpt1α,
Fabp1, Acox, and PPAR-α) were decreased in the liver of male
C57BL/6 mice fed with a MCD diet for 3 weeks. H2 treatment

decreased the mRNA levels of genes involved in de novo
lipogenesis and fatty acid uptake, while increased the mRNA
levels of genes involved in lipid export. In order to provide a
precise answer on the effect of H2 on hepatic lipid metabolism, we
should further detect the protein levels and activities of these
genes, and levels of related metabolites. H2 also improve liver
fibrosis and decreased hepatic Collagen-Ⅰ and Collagen-Ⅲ protein
levels induced by MCD diet feeding. Therefore, H2 has a
therapeutic effect on MASLD in mice caused by feeding
a MCD diet.

The pathophysiology underlying MASLD is complex and
incompletely understood. In 1998, Day and James proposed two
hits hypothesis, that the first hit is steatosis, and the second hit is
oxidative stress (Day and James, 1998). In 2010, Tilg and Moschen
further proposed multiple parallel hits hypothesis, many parallel
hits, such as lipotoxicity, insulin resistance, oxidative stress, and
the overactivation of both innate and adaptive immunity,
contribute to the development of MASLD or MASH (Tilg and
Moschen, 2010; Targher et al., 2024). Among these, oxidative stress
is as a central mechanism driving MASLD, it results from an
imbalance between the production and elimination of ROS (Hu
et al., 2025). Here, oxidative stress indicators including 3-NT and

FIGURE 7
H2 suppressed hepatic pro-inflammatory cytokines expression in mice fed with a MCD diet. (A)Western blotting images of TNF-α and GAPDH in the
liver, and quantifications of TNF-α/GAPDH ratio, (B) Western blotting images of pro-IL-1β, cleaved- IL-1β and GAPDH in the liver, and quantifications of
pro-IL-1β/GAPDH and cleaved- IL-1β/GAPDH ratios, (C)Western blotting images of pro-IL-18, cleaved- IL-18 and GAPDH in the liver, and quantifications
of pro-IL-18/GAPDH and cleaved-IL-18/GAPDH ratios, n = 3 mice in each group. Results are expressed as means ± SD. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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FIGURE 8
H2 suppressed hepatic TLR4-NFκB andMAPK innate immune signaling inmice fed with aMCD diet. (A)Western blotting images of TLR4 andGAPDH
in the liver, and quantifications of TLR4/GAPDH ratio; (B) Western blotting images of p-p65, (total) p65 and GAPDH in the liver, and quantifications of
p-p65/(total) p65 ratio; (C) Western blotting images of p-ERK, (total) ERK and GAPDH in the liver, and quantifications of p-ERK/(total) ERK ratio; (D)
Western blotting images of p-p38, (total) p38 and GAPDH in the liver, and quantifications of p-p38/(total) p38 ratio; (E) Western blotting images of
p-JNK, (total) JNK and GAPDH in the liver, and quantifications of p-JNK/(total) JNK ratio; n = 3mice in each group. Results are expressed as means ± SD.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Frontiers in Pharmacology frontiersin.org13

Chen et al. 10.3389/fphar.2025.1575106

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1575106


MDA increased, and the antioxidant GSH in the liver of mice
fed with a MCD diet decreased, these indicated that MCD diet
feeding disturbed hepatic redox homeostasis, which was improved
by H2 treatment. It is known that H2 selectively reduced the
hydroxyl radical, the most cytotoxic of ROS, and effectively
protected cells (Ohsawa et al., 2007). H2 can also reduce the
expression of NADPH oxidase subunit p67 (phox) expression
(Zhang et al., 2016). However, the detail mechanism by which
H2 improves redox homeostasis in MASLD still requires further
exploration.

Pyroptosis is a key mechanism of MASLD (Xu et al., 2018; Gaul
et al., 2021). Pyroptosis is executed by the pore-forming protein
GSDMD, which is always activated/cleaved by Caspase-1, murine
Caspase-11 and its human orthologs Caspase-4 and Caspase-5,
and Caspase-8 (Shi et al., 2017; Orning et al., 2018; Sarhan et al.,
2018; Rathinam et al., 2019). The activated canonical
inflammasomes, such as NLRP3 inflammasome, by the ligands
can activate Caspase-1; Caspase-4, Caspase-5, and Caspase-11 can
directly recognize bacterial LPS; both of which trigger pyroptosis
by cleaved GSDMD (Shi et al., 2015). NLRP3 inflammasome
includes three major components: NLRP3, Caspase-1, and ASC
(apoptosis-associated speck-like protein containing a caspase
recruitment domain), which acts as a bridge connecting
NLRP3 and Caspase-1 (Fu and Wu, 2023). The protein levels of
NLRP3, ASC, full-length and the cleaved forms of Caspase-1 and
GSDMD in the liver were increased by feeding a MCD diet, and
these upregulation were decreased by intraperitoneal injection of
H2. These indicated that H2 can inhibit NLRP3 inflammasome-
mediated canonical pyroptosis signaling in the liver of MASLD
mice. This canonical pyroptosis signaling was also inhibited by H2

inhalation in myocardial infarction rat model and in myocardial
I/R injury rat model (Nie et al., 2021a; Nie et al., 2021b). The non-
canonical pyroptosis signaling, such as Caspase-11 and Caspase-8
to cleave GSDMD, and Caspase-3 to cleave GSDME (Kayagaki
et al., 2015; Wang et al., 2017; Sarhan et al., 2018), were increased
in the liver of mice fed with a MCD diet. These non-canonical
pyroptosis signaling were suppressed by H2 therapy. Recently, our
group also showed that intraperitoneal injection of H2 can alleviate
acute ethanol-induced hepatotoxicity in mice partially via
inhibiting Caspase-11 and Caspase-8 to GSDMD, and Caspase-
3 to GSDME non-canonical pyroptosis signaling in the liver (Xu
et al., 2024). These indicate that H2 is an anti-pyroptosis gas
molecule, and this is one of the key mechanisms of H2 on
treating MASLD in mice (Figure 10).

In addition to cleaving GSDMD to trigger pyroptosis, the
cleaved Caspase-1 can also induced the cleavage of IL-1β and IL-
18, and GSDMD is not only an executor of pyroptosis, but is also
required for IL-1β secretion (He et al., 2015; Shi et al., 2015). As
mentioned above, inflammation is also one of the key pathogeneses
of MASLD. MCD diet feeding increased hepatic levels of TNF-α, the
full length and cleaved forms of IL-1β and IL-18, and these can be
suppressed by H2. Like this, H2 also showed the anti-inflammation
effect in the heart, brain, kidney, and the sex organs (Zhang et al.,
2018; Zhang et al., 2020a; Zhang et al., 2021b). We, therefore,
investigated the mechanism of downregulation of inflammatory
cytokines by H2. It has been reported that LPS, which can be

FIGURE 9
H2-richmedium improvedOA-induced steatosis inHepG2 cells by
inhibiting inflammatory cytokines expression and pyroptosis. (A) The Oil
Red O staining of HepG2 cells. (B)Western blotting images of 3-NT and
GAPDH in HepG2 cells, and quantifications of 3-NT/GAPDH ratio.
(C) Western blotting images of TNFα and GAPDH in HepG2 cells, and
quantifications of TNFα/GAPDH ratio. (D)Western blotting images of IL-
1β and GAPDH in HepG2 cells, and quantifications of pro-IL-1β/GAPDH
and cleaved-IL-1β/GAPDH ratios. (E) Western blotting images of IL-
18 and GAPDH in HepG2 cells, and quantifications of pro-IL-18/GAPDH
and cleaved-IL-18/GAPDH ratios. (F) The images of pyroptosis
morphology ofHepG2 cells observed under the bright field. (G)Western
blotting images of pro-GSDMD, cleaved-GSDMD and GAPDH in the
liver, and quantifications of pro-GSDMD/GAPDH and cleaved-GSDMD/
GAPDH ratios. (H) Western blotting images of pro-GSDME, cleaved-
GSDME and GAPDH inHepG2 cells, and quantifications of pro-GSDME/
GAPDH and cleaved-GSDME/GAPDH ratios. Results are expressed as
means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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recognized by the PRRs such as TLR4, was increased in MASLD
mice model and patients (Carpino et al., 2020). TLR4 can elicit IKK
phosphorylation to induce NF-κB-mediated inflammatory
cytokines expression, or elicit MAPK (ERK1/2, p38 MAPK and
JNK) phosphorylation to induce AP-1-mediated inflammatory
cytokines expression (Zhang et al., 2017a; Zhang and Li, 2017;
Zhang et al., 2017b). The expression of TLR4, the
phosphorylation of NF-κB, ERK1/2, p38 MAPK and JNK were
increased in the liver of mice fed with a MCD diet. H2 can
reverse the overactivation of TLR4-mediated innate immune
signaling in the liver (Figure 10). Our previously study also
showed that the activation of NF-κB and MAPK signaling were
suppressed by H2 in animal models of alcoholic liver disease and
septic cardiomyopathy. However, it is unclear whether H2 can
directly inhibits the phosphorylation of these molecules or

suppressed their upstream molecules, or indirectly activates the
negative molecules of innate immunity.
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FIGURE 10
Hydrogen gas (H2) is the immortal energy that subdues demons and monsters. H2 is like the immortal qi in the treasure gourd of the immortal
grandfather in Chinesemythology, which can subdue demons and eliminate evil spirits. Intraperitoneal injection of H2, as a novel method for H2 delivery,
can alleviate MCD diet-induced MASLD in mice via inhibiting hepatic oxidative stress, TLR4-mediated innate immune signaling, and GSDMD- and
GSDME-mediated pyroptosis. Therefore, H2 therapy may act as a novel therapeutic strategy for MASLD in animals, which is worth further
investigation.
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