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Introduction: Primary aldosteronism is the most common form of secondary
hypertension and blood pressure salt sensitivity. In the setting of
hyperaldosteronism and a high-salt diet, disturbances in tissue sodium and
potassium levels may contribute to salt sensitivity. This study aimed to
determine whether aldosterone-dependent changes in tissue and plasma
sodium and potassium concentrations occur before or after the development
of salt sensitivity and hypertension in a rat model of primary aldosteronism.
Previous studies in this model show that aldosterone-dependent salt sensitivity
develops after 7–10 days on a high-salt diet. A secondary objective was to
investigate differences in skin gene expression between aldosterone-treated
rats and vehicle-treated controls.

Methods: Unilaterally nephrectomized male Sprague-Dawley rats received
continuous infusions of aldosterone or vehicle while being fed a high-salt
diet. Electrolyte concentrations in plasma, carcass, and skin were measured
after 2 and 14 days of high-salt feeding. Tissue sodium and potassium
concentrations were determined by atomic absorption spectroscopy and
expressed as mmol/g tissue dry weight, while plasma ions (mmol/L) were
measured using ion-selective electrodes. RNA sequencing (RNAseq) was used
to identify differentially expressed genes in the skin, and gene set enrichment
analysis (GSEA) was performed to explore biological processes associated with
aldosterone treatment.

Results: After 2 days on the high-salt diet, aldosterone-treated rats showed
significantly lower skin and plasma potassium concentrations compared to
vehicle-treated controls, while sodium concentrations in the carcass, skin, and
plasma did not differ significantly. At 14 days, aldosterone-treated rats continued
to exhibit lower plasma potassium levels, although skin potassium differences
were no longer significant. Carcass sodium concentrations were significantly
higher in aldosterone-treated rats at 14 days. GSEA revealed that, at 2 days,
aldosterone treatment affected biological processes related to electrolyte
homeostasis and hyperosmotic responses. At 14 days, biological processes
related to muscle function and calcium ion transport were significantly altered.
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Conclusion: Aldosterone-treated rats on a high-salt diet for 2 days had lower skin
and plasma potassium levels compared to salt-loaded controls, suggesting early
potassium depletion precedes significant sodium accumulation and blood pressure
increases. These findings raise the possibility that early potassium depletion
contributes to the development of aldosterone-induced salt sensitivity. Further
studies with detailed time-course analysis will be of interest to elucidate the role of
early potassium depletion in increasing vascular resistance and triggering
aldosterone-dependent salt sensitivity and hypertension.
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1 Introduction

Primary aldosteronism is a common disorder involved in the
development of blood pressure salt sensitivity and salt-dependent
hypertension (Funder, 2015; Funder, 2022). In animal models,
increased plasma aldosterone – achieved by genetic or
pharmacologic methods – greatly enhances salt sensitivity and
the hypertensive effects of high-salt diets (Gu et al., 2017; Blasi
et al., 2003). In contrast, elevating plasma aldosterone levels in the
context of very low salt intake has little or no effect on blood pressure
(Shibata et al., 2011). Recent studies in a rat model of primary
aldosteronism demonstrated that aldosterone enhances salt
sensitivity and augments salt-induced hypertension by amplifying
salt-dependent increases in systemic vascular resistance while
reducing cardiac output (Kurtz et al., 2023).

It has been proposed that electrolyte disturbances in tissues such
as skin, brain, and vasculature may promote increased vascular
resistance and contribute to salt-sensitivity and hypertension
(Rossitto and Delles, 2022; Oberleithner et al., 2007; Oberleithner
et al., 2009; Kusche-Vihrog et al., 2014; Helle et al., 2013). Forty years
ago, Williams and colleagues reported that patients with primary
aldosteronism exhibited elevated total body sodium, and reduced
total body potassium (Williams et al., 1984). Recently, Torresan and
colleagues observed that surgical cure of unilateral primary
aldosteronism in humans was associated with significant
increases in skin and plasma potassium concentrations without
changes in sodium levels (Torresan et al., 2024). Although it is
not possible to measure tissue electrolytes in clinical practice,
detection of hypokalemia in plasma samples can sometimes be a
clue to the presence of hyperaldosteronism. However, there is little
information on the time course of onset of plasma and tissue
electrolyte disturbances during the pathogenesis of hypertension
induced by high salt intake in hyperaldosteronism. If aldosterone-
dependent disturbances in tissue or plasma electrolyte concentrations
precede salt-induced increases in blood pressure, they might be a
cause of the hypertension. If the aldosterone-dependent electrolyte
disturbances occur only after the onset of increased blood pressure,
they might simply be a consequence of the hypertension. In the
current study, in a rat model of primary aldosteronism, we
investigated skin and plasma electrolyte concentrations after 2 days
and 14 days of administering a high salt diet. As shown in previous
studies in thismodel, these represent time points occurring before and
after the development of aldosterone-dependent salt sensitivity and
hypertension (Kurtz et al., 2023).

2 Methods

2.1 Animals

We used 10-week-old male Sprague-Dawley rats from Charles
River Germany. Rats were housed separately and initially given
unrestricted access to tap water and a pelleted purified AIN-76A diet
containing 0.26% NaCl and 0.36% potassium (diet No.100000 from
Dyets, Inc., Bethelem, PA). This diet provides approximately twice
the minimum amount of salt recommended to support growth and
reproduction in rats (National Research Council Board on
Agriculture Committee on Animal Nutrition Subcommittee on
Laboratory Animal Nutrition, 1995). However, it is lower than
the typical amount of salt present in ordinary rat chow which
ranges from ~0.5% to ~1.2% NaCl (Martus et al., 2005; Gohar
et al., 2022). We refer to this 0.26% salt diet as the “low salt” diet.
This low salt diet was provided until the animals were ready for the
studies that were conducted on the high salt (4% NaCl diet) as
described further below. All animal experiments were conducted in
compliance with the Animal Protection Law of the Czech Republic
and were approved by the Ethics Committee of the Institute of
Physiology, Czech Academy of Sciences, Prague, protocol number
15–2022-P.

2.2 Experimental protocol

The experimental time line is shown in Supplementary Figure
S1. Rats weighing approximately 300 g underwent unilateral
nephrectomy as previously described (Kurtz et al., 2023). After
surgery, all rats were individually housed in their cages and
provided free access to tap water and the low salt diet. Four
weeks after nephrectomy, animals were randomized to receive a
continuous subcutaneous infusion of either aldosterone or vehicle
via subcutaneously implanted osmotic minipumps (2 pumps/rat) as
previously described (Kurtz et al., 2023). The aldosterone was
continuously infused at a dose of 1.5 μg/h with a volume flow
rate of 0.3 μL/h. This dose of aldosterone has been reported to
increase serum aldosterone levels to approximately 2000 pg/mL in
Sprague Dawley rats (Reil et al., 2012). This is a 4-fold increase over
the serum level of aldosterone observed in Sprague Dawley rats
ingesting normal rat chow containing 0.9% NaCl (Reil et al., 2012).

After implantation of the osmotic minipumps, each rat was
returned to its home cage and maintained on the low salt (0.26%
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NaCl) diet and tap water and allowed to recover from minipump
implantation for 2 weeks. After the 2 weeks recovery, all rats were
started on the high salt (4% NaCl) diet and tap water ad libitum. The
high salt diet contained 4% NaCl (AIN-76A diet with 4% NaCl, diet
No. 113756 from Dyets Inc., Bethlehem, PA) and was identical in
composition to the low salt diet except with respect to salt content.
This protocol is identical to the protocol we previously used to study
the time course of changes in blood pressure, cardiac output, and
vascular resistance induced by high salt diet in rats with
hyperaldosteronism (Kurtz et al., 2023). Rats were killed by
cervical dislocation. Carcasses, skin and plasma for electrolyte
measurements were collected from aldosterone and vehicle
treated rats after 2 days on high salt diet (N = 5 per group) and
14 days on high salt diet (N = 5 per group).

2.3 Tissue and plasma electrolyte
measurements

Intestines and stomach were completely removed from rats to
exclude remains of chow. The skins and carcasses (body without
skin, intestines and stomach) were weighed to determined wet
weight (WW). Biopsy samples of interscapular skin (1 cm ×
1 cm) were used for RNAseq analysis. The carcasses and skin
were then desiccated at 105°C for 36 h to determine dry weight
(DW). The difference between WW and DW is considered as tissue
water content. Ashing of carcasses was performed at 200°C and
450°C for 20 h at each temperature level, and the bones were sieved
from the carcass ashes. Ashing of skins was performed at 200°C and
450°C for 10 h at each temperature level. Ashes were sent to ALS
Czech Republic, Ltd. (Prague, Czech Republic) for analysis of Na+

and K+ concentrations by atomic absorption spectrometry. Chloride
concentrations in the ashes were measured by titration with 0.1N
silver nitrate. Plasma Na+, K+ and Cl− concentrations were measured
by the State Veterinary Institute (Prague, Czech Republic) using ion
selective electrodes. All chemical parameters in tissues are expressed
as relative values corrected to dry weights of carcass and skin. In the
present manuscript, we refer to the tissue electrolyte values corrected
to dry weight as tissue electrolyte “concentrations.” Plasma
electrolyte concentrations are expressed as mmol/L.

2.4 Gene expression analysis

We used the RNAseq method for determination of gene
expression levels in the skin biopsies as previously described
(Šilhavý et al., 2022). Briefly, skin biopsy samples were flash
frozen using liquid nitrogen and stored at −80°C. The frozen
samples were powdered by mortar and pestle in liquid nitrogen
and homogenized using TissueLyser (Qiagen) for 10 min at 50 Hz in
the lysis buffer RLT Plus (Qiagen) with addition of 1% β-
mercaptoethanol. Total RNA was isolated using RNeasy Plus
Mini Kit (Qiagen) according to the manufacturer’s instructions
with proteinase K treatment of the lysates and on-column
DNAse I treatment. RNA was quantified using UV
spectrophotometry and 2,100 Bioanalyzer and the RNA-6000
Nano-LabChip (Agilent) was used to assess RNA integrity. Only
samples showing RNA integrity numbers (RIN) above eight were

used for further analysis. The extracted RNA was used to prepare
cDNA libraries for sequencing on the Illumina NextSeq®

500 instrument using 76bp single-end configuration. Read quality
was assessed by FastQC. We used the bioinformatic pipeline nf-
core/rnaseq version 3.12.0 for read processing. Individual steps
included removing sequencing adaptors with Trim Galore,
mapping to reference genome mRatBN7.2 (Ensembl annotation
version 111) with STAR (Dobin et al., 2013), and quantifying
expression on gene level with Salmon (Patro et al., 2017). Per
gene mapped counts served as input for differential expression
analysis using DESeq2 R Bioconductor package. Prior to the
analysis, genes not expressed by ten transcripts in at least eight
samples were discarded. Gene set enrichment analysis (GSEA) was
performed with the algorithm in the clusterProfiler R Bioconductor
package to identify Gene Ontology (GO) Biological Processes with
normalized expression scores significantly affected by aldosterone-
treatment compared with vehicle-treatment.

2.5 Statistical analysis

The primary outcome variables were tissue concentrations
(carcass tissue and skin tissue) and plasma concentrations of
sodium and potassium. Data are expressed as means and 95%
confidence intervals. We used the estimation statistics and
graphics routines on the web application www.estimatestats.com
to test for and display differences in group means (Ho et al., 2019;
Claridge-Chang and Assam, 2016). For analyzing differences in
group means, we also include P values that were determined by
permutation testing to indicate the probability of observing the
effect size (or greater), assuming the null hypothesis of zero
difference is true. For each permutation P value, at least
5,000 reshuffles of the control and aldosterone data were
performed. P values <0.05 were considered significant. Correction
for multiple testing with the Benjamini–Hochberg procedure was
used to control the false discovery rate (FDR) in the gene expression
analysis and gene set enrichment analysis. Specifically, differentially
expressed genes were defined by setting the FDR <0.05 for genes
with a log fold change of ≥1 (absolute value). In the GSEA,
normalized enrichment scores with FDR of <0.001 were
considered statistically significant. Normalized expression
scores >1.0 or < −1.0 were considered to indicate potential
enrichment and scores >2.0 or < −2.0 were considered to
indicate strong enrichment.

3 Results

3.1 Tissue and plasma electrolyte
concentrations and water content

3.1.1 At 2 days on the high salt diet
In rats fed the high salt diet for 2 days, aldosterone-treated rats

had significantly lower potassium concentrations in both skin and
plasma compared with vehicle-treated controls (Figures 1,2;
Table 1). In contrast, sodium concentrations in skin, plasma, and
carcass did not differ significantly between groups (Figures
1–3; Table 1).
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3.1.2 At 14 days on the high salt diet
In rats fed the high salt diet for 14 days, plasma potassium

remained significantly lower in aldosterone-treated rats relative to
controls (Figure 2; Table 1). Although mean skin potassium
concentrations were lower in the aldosterone group versus
controls, the difference did not reach statistical significance (P =
0.073), nor did carcass potassium levels (Figures 1, 3; Table 1).

Conversely, carcass sodium concentrations were significantly
higher in the aldosterone-treated rats compared with controls
(Figure 3; Table 1), while sodium concentrations in skin and
plasma remained similar between groups (Figures 1,2). Plasma
chloride concentrations were significantly reduced in aldosterone-
treated rats after 14 days (Table 1). No significant group differences
in water content were observed in the skin or carcass at either time
point (Table 1).

3.2 Gene expression profiles in the skin

3.2.1 At 2 days on the high salt diet
To search for biologic processes in skin affected by aldosterone

treatment, we performed gene set enrichment analysis (GSEA) of gene

expression results in skin biopsies from aldosterone-treated rats relative to
vehicle-treated rats. In rats fed the high salt diet for 2 days, GSEA
identified a total of six biological processes where the enrichment scores
were significantly affected in the comparison of aldosterone treated rats
relative to the control rats. All six of these biological processes are listed in
Table 2. Among these processes, three were related to anion homeostasis
and one to hyperosmotic responses. The negative normalized enrichment
scores (approximately −1.9) indicate that most genes in these sets were
downregulated in the aldosterone group compared with controls. The
expression levels of all individual genes after 2 days of the high salt diet are
posted on ArrayExpress at https://www.ebi.ac.uk/biostudies/arrayexpress
website. Deposition number E-MTAB-14749.

3.2.2 After 14 days of the high salt diet
Salt loading for 14 days was associated with farmore changes in gene

expression than salt loading for 2 days. In rats fed the high salt diet for
14 days, aldosterone treatment was associated with significant effects on
genes involved in 687 biological processes (see excel Supplementary Table
S1 showing all 687 affected processes). Of these 687 biological processes,
the top 10 processes with the highest positive normalized enrichment
scores (all with false discovery rates of 8.28e–10) are displayed in Table 2.
These processes primarily involved muscle function (e.g., muscle

FIGURE 1
Sodium and potassium concentrations in the skin. Within 2 days of initiating the high-salt diet, aldosterone-treated rats exhibited significantly lower
skin potassium concentrations than vehicle-treated controls (P = 0.016). At 14 days of the high salt diet, skin potassium appeared lower in the aldosterone
group than in controls but the difference did not reach statistical significance (P = 0.073). Skin sodium concentrations were not significantly different
between the two groups at 2 days or 14 days of the high salt diet. The Gardner–Altman estimation plot (Ho et al., 2019) displays the mean difference
in electrolyte concentrations between the aldosterone and vehicle-treated rats. The left axis shows the individual group data, while the right floating axis
displays the bootstrap sampling distribution of the mean group difference, represented as a dot with vertical error bars indicating the 95% confidence
interval. DW, dry weight.

Frontiers in Pharmacology frontiersin.org04

Mlejnek et al. 10.3389/fphar.2025.1575972

https://www.ebi.ac.uk/biostudies/arrayexpress
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1575972


contraction) and had normalized enrichment scores greater than 2.4,
indicating strong upregulation (Table 2). We also identified three
processes related to calcium ion transport and to release of calcium
into the cytosol with enrichment scores greater than 2.0, indicating strong
upregulation in the aldosterone-treated group relative to controls
(Table 2). Some of the specific genes involved in these biological
processes and that were upregulated in aldosterone-treated animals
are discussed further below. The expression levels of all individual
genes after 14 days on the high salt diet are posted on ArrayExpress
at https://www.ebi.ac.uk/biostudies/arrayexpress website. Deposition
number E-MTAB-14749.

4 Discussion

4.1 Skin potassium

Recent attention has focused on the role of the skin in salt
sensitivity and hypertension (Helle et al., 2013; Johnson et al., 2016;
Chachaj et al., 2023). Much of the literature has emphasized sodium
accumulation in the skin and its potential effects on vascular
resistance via immunomodulatory and inflammatory pathways

(Rossitto and Delles, 2022; Miyauchi et al., 2024). In contrast,
recent findings by Torresan et al. (2024) suggest that skin
potassium depletion may play a critical role in the pathogenesis
of increased blood pressure in primary aldosteronism. They
observed that, following surgical cure of unilateral primary
aldosteronism, skin and plasma potassium concentrations
increased without changes in sodium levels. In our study,
aldosterone-treated rats fed a high-salt diet for 2 days exhibited
substantial hypokalemia and reduced skin potassium concentrations
compared with vehicle-treated controls, while sodium
concentrations in skin, carcass, and plasma were unchanged.
These findings are consistent with the results of Torresan and
colleagues in humans with primary aldosteronism (Torresan
et al., 2024).

Notably, in the present study, the observed hypokalemia and
skin potassium depletion occurred before the reported time of onset
of aldosterone-dependent salt sensitivity, which typically develops
after 7–10 days of salt loading in this model (Figure 4) (Kurtz et al.,
2023). This temporal relationship suggests that disturbances in
tissue potassium may contribute to the initiation of salt-induced
hypertension in hyperaldosteronism. It is possible that potassium
depletion of the vasculature in skin and in other organs might be

FIGURE 2
Sodium and potassium concentrations in plasma. Within 2 days of initiating the high-salt diet, aldosterone-treated rats had significantly lower
plasma potassium concentrations compared with vehicle-treated controls (P = 0.008). After 14 days on the high-salt diet, plasma potassium
concentrations remained significantly reduced in the aldosterone-treated rats P = 0.0076). Plasma sodium concentrations were not significantly different
between groups on day 2 or day 14. The Gardner–Altman estimation plot (Ho et al., 2019) shows the mean difference in electrolyte concentrations
between the two groups. Data for both groups are plotted on the left axis, and the right floating axis presents the bootstrap sampling distribution of the
mean group difference, depicted as a dot with vertical error bars representing the 95% confidence interval.
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involved in promoting the increases in vascular resistance that
initiate salt sensitivity and salt-dependent hypertension in
hyperaldosteronism (Büssemaker et al., 2010; Kurtz et al., 2023).
Potassium depletion may increase vascular resistance and promote
salt sensitivity through multiple mechanisms such as reducing nitric
oxide activity and increasing sympathetic nervous system activity
(Goto et al., 1981; Oberleithner et al., 2009; Houston, 2011; Kurtz
et al., 2021). Although hypokalemia is estimated to be present in
only 9%–37% of cases of primary aldosteronism (Gruber and
Beuschlein, 2020), it is possible for reductions in tissue potassium
to occur in the absence of hypokalemia (Nørgaard and Kjeldsen,
1991; Bilbrey et al., 1973).

4.2 Skin sodium

Our study did not detect changes in skin sodium concentrations
concurrent with the observed alterations in potassium. However,
this does not preclude the possibility that sodium changes in other
tissues could be involved in mediating increased vascular resistance

and blood pressure in hyperaldosteronism. On day 14, although skin
and plasma sodium levels were unchanged, carcass sodium
concentrations were significantly increased in aldosterone-treated
rats. Similar findings have been reported in deoxycorticosterone
acetate-salt treated rats, where prolonged mineralocorticoid-salt
treatment leads to sodium accumulation and potassium loss
(with the potassium losses occurring primarily from skin) (Titze
et al., 2005). However, given that these measurements were taken
during the established phase of hypertension, the changes might
reflect consequences of the disease process or mechanisms involved
in its maintenance rather than its initiation.

4.3 Gene expression profiling in the skin

Gene set enrichment analysis after 2 days of salt loading revealed
downregulation of biological processes related to anion homeostasis
and hyperosmotic responses in aldosterone-treated animals
compared with vehicle-treated controls. These changes may
reflect early disturbances in anion and osmotic balance that

TABLE 1 Means and 95% CI of variables in rats during treatment with aldosterone or vehicle.

Traits Vehicle + salt for
2 days

Aldosterone + salt for
2 days

Vehicle + salt for
14 days

Aldosterone + salt for
14 days

Body weight, g 414 (394–434) 410 (398–422) 439 (408–470) 416 (409–423)

Carcass weight, g) 293 (276–310) 297 (285–310) 308 (282–334) 303 (295–311)

Carcass dry weight (g) 91 (87–95) 94 (88–100) 99 (88–110) 94 (91–97)

Carcass water (mL) 202 (189–215) 204 (197–211) 209 (194–224) 209 (204–214)

Carcass relative water (mg/
g WW)

0.685 (0.667–0.693) 0.689 (0.678–0.700) 0.679 (0.662–0.696) 0.679 (0.673–0.685)

Skin weight (g) 74 (65–83) 74 (61–87) 82 (73–91) 66 (50–82)

Skin dry weight (g) 31 (28–34) 31 (24–38) 36 (34–38) 29 (21–37)

Skin water (mL) 43 (37–49) 42 (36–48) 46 (39–53) 37 (28–46)

Skin relative water (mg/
g WW)

0.577 (0.552–0.602) 0.581 (0.570–0.592) 0.560 (0.527–0.593) 0.560 (0.541–0.579)

Carcass Na+ (mmol/g DW) 0.054 (0.044–0.064) 0.06 (0.045–0.075) 0.047 (0.04–0.054) 0.079 (0.057–0.101)c

Carcass K+ (mmol/g DW) 0.127 (0.105–0.148) 0.105 (0.0374–0.136) 0.112 (0.097–0.128) 0.102 (0.079–0.125)

Carcass Cl− (mmol/g DW) 0.017 (0.014–0.021) 0.017 (0.015–0.019) 0.015 (0.011–0.0196) 0.012 (0.004–0.020)

Skin Na+ (mmol/g DW) 0.123 (0.107–0.139) 0.127 (0.114–0.142) 0.119 (0.103–0.134) 0.127 (0.115–0.139)

Skin K+ (mmol/g DW) 0.093 (0.087–0.099) 0.076 (0.059–0.092)a 0.086 (0.075–0.096) 0.074 (0.061–0.087)f

Skin Cl− (mmol/g DW) 0.046 (0.023–0.068) 0.051 (0.025–0.076) 0.044 (0.038–0.0499) 0.041 (0.021–0.061)

Plasma Na+ (mmol/L) 144 (141–147) 148 (140–156) 146 (143–149) 145 (143–147)

Plasma K+ (mmol/L) 4.0 (3.7–4.3) 2.8 (2.5–3.1)b 4.5 (4.2–4.8) 2.8 (2.77–2.83)d

Plasma Cl− (mmol/L) 104 (101–107) 104 (96–112) 106 (104–108) 101 (98–104)e

CI, confidence intervals. Sample size is n = 5 per group. P values <0.05 in two-tailed permutation testing for differences in means between aldosterone and vehicle groups fed the 4% salt diet for

same amount of time denoted by:
aP = 0.016.
bP = 0.008.
cP = 0.0079.
dP = 0.0076.
eP = 0.008.
fP = 0.073.
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contribute to the initiation of aldosterone-dependent salt-sensitive
hypertension or may be secondary to early potassium depletion or
both. After 14 days, the upregulation of genes influencing biological
processes involved in muscle function and cellular calcium handling
are of particular interest because of their potential relevance to
vascular contractility and vascular resistance. Although a variety of
the biological processes are associated with skeletal muscle function,
they can also be involved in regulating vascular smooth muscle
contraction.

Example of specific genes involved in smoothmuscle function or
calcium transport that were found to be significantly upregulated in
aldosterone-treated animals include:

• Cav3 (caveolin 3), which can influence the phenotypic switch
between contractile and synthetic phenotypes of vascular
smooth muscle cells (Gutierrez-Pajares et al., 2015).

• Ryr1 (ryanodine receptor 1), which contributes to calcium
signaling essential for muscle contraction and relaxation
(Guerrero-Hernández et al., 2002).

• Bves (blood vessel epicardial substance), which plays a
significant role in maintaining the contractile phenotype of
VSMCs (Liu et al., 2022).

• Ppp3cc (protein phosphatase 3 catalytic subunit gamma), the
gene encoding the gamma isoform of calcineurin, a calcium-
dependent, calmodulin-stimulated protein phosphatase. In
smooth muscle cells, calcineurin, through its catalytic
subunits (including gamma), dephosphorylates target
proteins, influencing muscle contraction and relaxation.
This regulation is important for maintaining vascular tone
and responding to physiological stimuli (Panchatcharam
et al., 2013).

• Smtnl1 (smoothelin-like 1), which is involved in mediating
vascular smooth muscle contractile responses to intraluminal
pressure (Turner et al., 2019).

• Atp1a2, (ATPase, Na+/K+ transporting, alpha 2 polypeptide)
which regulates cellular calcium through its effects on the
NCX (sodium-calcium exchanger) (Zhang et al., 2005).

• Stim1 (stromal interaction molecule 1), which has an essential
role in Ca (2+) homeostasis and in controlling function,
growth, and development of smooth muscle cells (Kassan
et al., 2016; Mancarella et al., 2013).

The upregulation of these genes aligns with evidence that
aldosterone amplifies salt-induced increases in blood pressure by

FIGURE 3
Sodium and potassium concentrations in the carcass. Within 2 days of initiating the high-salt diet, aldosterone-treated rats showed a trend toward
lower carcass potassium concentrations and greater sodium concentrations compared with vehicle-treated controls; however, the group differences
were not statistically significant. After 14 days on the high-salt diet, carcass sodium concentrations were significantly greater in aldosterone-treated rats
compared with vehicle-treated controls (P = 0.0079). Group differences in carcass potassium concentrations were not significantly different after
14 days on the high salt diet. The Gardner–Altman estimation plot (Ho et al., 2019) illustrates the mean difference in electrolyte concentrations between
the two groups. The left axis displays the data for both groups, while the right floating axis shows the bootstrap sampling distribution of the mean group
difference, depicted as a dot with vertical error bars representing the 95% confidence interval. DW, dry weight.
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amplifying the increases in systemic vascular resistance that mediate
initiation and maintenance of the salt-dependent hypertension
(Kurtz et al., 2023).

4.4 Limitations

While we observed significant group differences in plasma and
skin potassium after 2 days of salt loading, we did not detect clear
group differences in plasma and skin sodium concentrations at
either 2 days or 14 days of salt loading. This may be due to the
relatively small sample sizes and limited statistical power of these
studies. Future studies with larger sample sizes are needed to more
reliably estimate potential differences in sodium concentrations.
Additionally, our study focused on only two time points. More
frequent electrolyte measurements together with telemetry studies
would help clarify the detailed temporal relationship between
electrolyte changes and blood pressure alterations.

The study focused on aldosterone-dependent effects on electrolyte
metabolism in rats fed a high salt diet. Therefore, we compared animals
on a high salt diet given aldosterone to animals on a high salt diet not
given aldosterone. In future studies, it would be of interest to study control

groups maintained on a low-salt diet throughout the study (with or
without aldosterone treatment). External validation of our findings in
humans with primary aldosteronism will be required to establish the
clinical translational relevance of changes in electrolyte metabolism to the
pathogenesis of aldosterone-dependent salt sensitivity. In addition,
further work is needed to explore mechanistic links between
electrolyte disturbances and the development of aldosterone-
dependent salt sensitivity.

5 Conclusion

The present findings provide insights into the early electrolyte
disturbances that occur in response to the combination of
hyperaldosteronism and a high salt diet in a rat model of primary
aldosteronism. As early as 2 days after initiating a high-salt diet,
aldosterone-treated rats compared with vehicle treated controls,
exhibited significant potassium depletion in skin and plasma, without
concurrent sodium accumulation. Because substantial potassium
depletion becomes evident before the point when blood pressure
elevations are known to occur in this model, the findings suggest that
potassium depletion may play a critical role in the initiation of

TABLE 2 Selected biological processes in skin affected by aldosterone treatment in rats as revealed by gene set enrichment analysis.

Biological processes significantly affected by
aldosterone

Enrichment
score

Enrichment score
normalized

P-value FDR

After 2 days on high salt diet

Cellular anion homeostasis −0.704 −1.94 0.000826 0.000926

Monovalent inorganic anion homeostasis −0.687 −1.92 0.000709 0.000926

Chloride ion homeostasis −0.687 −1.92 0.000709 0.000926

Hyperosmotic response −0.620 −1.91 0.000726 0.000926

Axo-dendritic transport −0.472 −1.72 0.000921 0.000926

Negative regulation of cell division −0.755 −1.94 0.000926 0.000926

After 14 days on high salt diet

Myofibril assembly 0.857 2.58 1.00e-10 8.28e-10

Striated muscle cell development 0.853 2.57 1.00e-10 8.28e-10

Sarcomere organization 0.87 2.50 1.00e-10 8.28e-10

Striated muscle contraction 0.736 2.49 1.00e-10 8.28e-10

Skeletal muscle contraction 0.874 2.48 1.00e-10 8.28e-10

Muscle cell development 0.705 2.44 1.00e-10 8.28e-10

Muscle contraction 0.687 2.44 1.00e-10 8.28e-10

Multicellular organismal movement 0.815 2.41 1.00e-10 8.28e-10

Musculoskeletal movement 0.815 2.41 1.00e-10 8.28e-10

Energy derivation by oxidation of organic compounds 0.678 2.41 1.00e-10 8.28e-10

Regulation of calcium ion transmembrane transport 0.6 2.04 5.44E-10 3.81E-09

Regulation of calcium ion release into the cystosol by SR 0.813 2.08 2.34E-6 6.01E-06

Regulation of calcium ion transmembrane transporter activity 0.674 2.10 2.03E-08 8.86E-08

FDR, false discovery rate; SR, sarcoplasmic reticulum.
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aldosterone-dependent salt sensitivity and hypertension. These
observations are consistent with recent reports that in humans,
surgical cure of unilateral primary aldosteronism is associated with
significant increases in skin and plasma potassium concentrations
without changes in sodium levels (Torresan et al., 2024). Gene set
enrichment analysis suggests that disturbances in ion transport and
regulation of contractile function might be involved in mediating the
aldosterone-dependent salt sensitivity and hypertension. The results
warrant further detailed time-course studies across various tissues to
elucidate the mechanistic and temporal relationships between electrolyte
levels and the abnormalities in vascular resistance that cause salt
sensitivity and hypertension in hyperaldosteronism.
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