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Background: Malignant pleural mesothelioma (MPM) is a rare type of tumor
closely associated with asbestos exposure. Increasing evidence shows that high
immuno-heterogeneity reduces the therapeutic efficacy of MPM. At present,
good biomarkers to screen immunodominant populations and predict the
efficacy of immunotherapy are lacking.

Methods: In this study, expression data from TCGA, GSE2459, GSE51024, and
GSE29354 were integrated for model construction. An eight-gene risk score
model (FLI1, IL32, FUCA1, CCR2, PSMB10, CCL5, WT1, and KRT5) was constructed
using CIBERSORT, weighted gene co-expression network analysis, Cox
regression analysis, differentially expressed gene analysis, and protein–protein
interaction network. The K–M survival analysis was used to evaluate the
prediction ability of the risk score model. The TIDE database and Oncology
Drug Sensitivity Genomics database were used to assess the predictive power of
risk score models for treatment. In addition, the expression of the key gene in
para-carcinoma tissue and MPM samples were detected by
Immunohistochemistry. Patient clinical information was employed to evaluate
the relationship between key genes and patient survival. Finally, the biological
functions of the key gene were examined by in vitro and in vivo experiments.

Results: The score model was used to divide patients with MPM into low- and
high-risk groups. The high-risk group was characterized by a survival
disadvantage, and they were less sensitive to immunotherapy. Clinical data
suggest that FUCA1, which is a key gene in the model, is an independent risk
factor for predicting the prognosis of patients with MPM. A series of experiments
demonstrated that FUCA1 expression was negatively correlated with the
proliferation, invasion and migration abilities of MPM cells. Further studies
revealed that FUCA1 inhibited epithelial–mesenchymal transition in MPM cells
by regulating the PI3K-AKT signaling pathway.
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Conclusion: The risk score model provides a new perspective for screening
potential populations to benefit from immunotherapy and predicting their
survival. FUCA1 may be a potential prognostic biomarker and promising
therapeutic target for patients with MPM.
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1 Introduction

Malignant pleural mesothelioma (MPM) is a rare tumor of high
invasiveness deriving from pleura mesothelial cells, the mechanism
of which is closely related with asbestos exposure (Broeckx and
Pauwels, 2018). Intake of asbestos fibers causes cytokine production,
which leads to reactive oxygen species from the topical area of
inflammation that induces carcinogenesis (Betti et al., 2018). With
the increasing consumption of asbestos in developing countries,
MPM has become a sustainable global health problem (Tsao et al.,
2009; Cinausero et al., 2019). The onset of MPM is insidious, with a
latency period of about 40 years. Most patients are usually diagnosed
at an advanced stage, which is difficult to be surgically resected, with
high mortality. Despite advancements in treatment, the prognosis
for patients with MPM remains poor, and therapeutic efficacy is
often limited (Ahmadzada et al., 2018). Although the correlation
between MPM and molecular pathways has already been
determined, such as cell cycle regulation, cell apoptosis, growth
factors, and angiogenesis (Bronte et al., 2016), targeted therapies for
MPM have not yet been discovered.

MPM is divided into three subtypes in accordance with cellular
morphology: epithelioid, sarcomatoid, and biphasic (mixed); among
them, the prognosis and response of chemotherapy for epithelioid are
the best, whereas those for sarcomatoid are the poorest (Verma et al.,
2018). The outcomes of the Check Mate-743 clinical trial facilitated the
recommendation of double immune checkpoint inhibitors (ICIs) as a
first-line treatment for MPM (Baas et al., 2021). Clinical trials have
demonstrated the efficacy of dual immunotherapy with navulizumab
and ipilimumab in patients with nonepithelial pleural mesothelioma.
However, the problem of high inter-individual variability in efficacy still
exists. Commonly used predictive parameters for immunotherapeutic
efficacy are PD-L1 expression (Powles et al., 2014), tumor mutational
burden (TMB) (Snyder et al., 2014), microsatellite instability (MSI)
(Dudley et al., 2016), and CD8 T cells (Ghatalia and Plimack, 2019).
However, in patients with MPM, these predictive parameters do not
have a good predictive power. Even in layers with high PD-L1
expression, the benefit of immunotherapy has not yet been seen for
the whole population (Rijavec et al., 2022). Hence, obtaining new
biomarkers to screen populations that may be effective for ICI
treatment is critical.

The tumor microenvironment (TME) has an important role in
the pathogenesis and therapeutic effect of MPM. In recent years,
studies have recognized it as an important complement for
predicting relapse and mortality for TNM staging systems by
evaluating the enrichment of tumor-infiltrating lymphocytes
(Mlecnik et al., 2011; Pagès et al., 2018). Traditional, flow
cytometry, and immunohistochemical staining assays for tumor
immune infiltration are incapable of evaluating the effect of
immunity all-around due to the quantity limitation of immune

markers. Therefore, the constant accumulation of transcription data
has provided a reliable resource for large-scale immune spectacle
analysis (Finotello and Trajanoski, 2018).

In this study, an eight-gene risk scoremodel was constructed on the
basis of MPM immune microenvironment characteristics. The risk
score model was able to well predict the prognosis of patients with
MPM and the efficacy of immunotherapy and chemotherapy. An in-
depth analysis of the key genes in the risk score model was conducted.
The results showed that FUCA1 could inhibit the proliferation,
invasion, and migration of MPM cells, and that it may play a
tumor-suppressive role by inhibiting epithelial–mesenchymal
transition (EMT) through the PI3K-AKT signaling pathway. These
findings provide novel insights into personalized and precise treatment
strategies.

2 Materials and methods

2.1 Data collection

The gene expression profiles and clinical features of MPM
samples were derived from the database combination of The
Cancer Genome Atlas (TCGA, http://tcga-data.nci.nih.gov/tcga/)
and Gene Expression Omnibus (GEO, http://www.nc-bi.nlm.nih.
gov/geo). A total of 289 samples were enrolled in this study
[GSE2459 (N = 54), GSE51024 (N = 96), GSE29354 (N = 53),
and TCGA (N = 86), Supplementary Table S1]. The batch effects
among different datasets were removed using the “ComBat”method
in the SVA R package (Wu et al., 2020). Moreover, duplicate samples
and cases without clinical outcomes in the downloaded data were
removed. Counts data were processed as TPM format with Toil.
Pan-cancer gene expression data were extracted from TCGA for
further validation. The validity of immune risk markers was verified
by treating the advanced urothelial carcinoma cohort
(IMvigor210 cohort) with atezolizumab (anti-PD-L1 mAb)
immunotherapy (Mariathasan et al., 2018). The detailed clinical
comments and complete gene expression profiling for the anti-PD-
L1 cohort can be found in IMvigor210CoreBiologies (http://
researchpub.gene.com/). The response of patients with MPM to
immunotherapy and the T-cell functional status were indirectly
predicted by the non–small cell lung cancer (NSCLC)
immunotherapy cohort in the Tumor Immune Dysfunction and
Exclusion Database (TIDE) (http://tide.dfci.harvard.edu/).

2.2 CIBERSORT analysis

The ratios for 22 types of tumor-infiltrating immune
cells (TIICs) in each sample were calculated with
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“CIBERSORT” in the R package. The relative expression levels
of 11,758 genes in individual tissue samples were analyzed on
the basis of gene expression profiling using
CIBERSORT(Newman et al., 2015), and the ratios for
22 types of TIICs in each tissue were predicted and
transformed from the standard MPM gene expression
profiling. The relative expression levels of 22 TIICs in each
sample were tested. Further analyses were performed in
accordance with the results of statistical significance (p < 0.05).

2.3 Weighted co-expression network
analysis (WGCNA)

WGCNA was used to describe the gene association patterns
among different samples and recognize the highly covariant gene
sets, candidate biological mark genes, or therapeutic targets in
accordance with the relativity of each gene set and the association
between gene sets and phenotypes. A co-expression network of
11,758 genes was constructed using WGCNA in the R package.
The scale-free topology guaranteed the soft threshold power
value b to be 9. Modules were defined by adopting the layered
clustering method with weighted coefficient matrices. Genes
related to immune cells were obtained by obtaining gene
modules related to immune cells in MPM. Analyses were
performed following the instruction of packages (Langfelder
and Horvath, 2008).

2.4 Survival analysis and subtyping

Genes in the group module that were most associated with
immune cells were selected. Univariate Cox regression and
Kaplan–Meier (K–M) analysis were performed using “Survival”
and “Survminer” in the R package. Datasets of immune cell-
related genes associated with the OS of patients were identified.
Five immune cell-related genes of independent prognostic
significance were defined with the multivariate Cox regression
analysis, and a reliable patient cluster was recognized using
“ConsensusClusterPlus” in the R package, the maximum of
clustering being 7. ClusterAlg = “pam”, innerLinkage =
“Pearson”. A clustering heatmap was constructed using
“pheatmap” in the R package.

2.5 Immune infiltration analysis for
different subgroups

The composite abundance of immune cells in samples was
predicted using five algorithms EPIC, MCPcounter, xcell,
ssGSEA, and quantiseq of “Immunedeconv” in the R package.
The expression levels of PD-L1, CTLA-4, LAG-3, and other
immunosuppressive factors were compared. Tumor purity and
stromal and immune cell analysis were carried out using
“Estimate” in the R package.

2.6 Mutational analyses

Clinical information of MPM mutational data and samples was
downloaded from the TCGA database. Mutational data were
analyzed and visualized using “maftools” in the R package to
identify the somatic mutations of patients with MPM.

2.7 Evaluation of MSI

“PreMSIm” is an R package for predicting MSI in accordance
with the data of transcriptome, and it was used to predict the
microsatellite instability status of 289 patients with MPM. The
results were classified as MSI high and MSI low.

2.8 Identification of differentially expressed
genes (DEGs)

The data of gene expression profiling for each patient were
standardized using “limma” in the R package. The empirical Bayes
method in the “limma” package was adopted to determine DEGs for
patients in the latter two clusters after consensus clustering to
identify key factors associated with prognosis and immune cell
infiltration. DEGs with significant differences were selected with
p < 0.05 and |logFC| ≥ 1 as the criteria.

2.9 Functional annotation and gene set
enrichment analysis (GSEA)

Gene Ontology (GO) enrichment analysis was performed using
“ClusterProfiler” in the R package to explore the potential biological
processes related with the acquired DEGs (Ritchie et al., 2015).
Enrichment analysis was conducted for GO from three aspects:
biological process (BP), molecular function (MF), and cellular
component (CC). The biological pathways of activation or
inactivation in patients of the latter two clusters were identified
after consensus analysis by performing GSEA on the expression data
after regulation of all transcriptomes.

2.10 Protein–protein interaction (PPI)
network establishment and hub gene
identification

A PPI network was established by adopting the Search Tool for
the Retrieval of Interacting Genes (STRING) database, and the
relationship between DEGs of patients in the latter two clusters
was determined after consensus clustering. In the STRING database,
the interaction score was set as 0.4. Interaction data were obtained in
the STRING database, and the PPI network was more readable
through Cytoscape. Central hub genes that were directly interacted
with DEGs and subordinate hub genes that directly interacted with
central hub genes were identified.
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2.11 Generation of prognostic indicators
based on key molecules

The optimal prognostic risk model with genes obtained after
performing univariate COX and multivariate COX analysis and hub
genes ofDEGs after performing consensus analysis was constructed using
the “survival” R package to identify immune cell related genes associated
with survival. The risk scores were calculated for each patient by using the
following formula: Riskscore = coef (FLI1) × expr (FLI1) + coef (IL32) ×
expr (IL32) + coef (CCR2) × expr (CCR2) + coef (FUCA1) × expr
(FUCA1) + coef (PSMB10) × expr (PSMB10) + coef (CCL5) × expr
(CCL5) + coef (WT1) × expr (WT1) + coef (KRT5) × expr (KRT5).

In accordance with the median value of risk scoring, patients
with MPM were divided into high-risk group and low-risk
group. K–M survival analysis was conducted using “survival” and
“survminer” in the R package to evaluate the survival difference
between the two groups.

2.12 Construction of a nomogram in
accordance with risk score and clinical traits

The MPM datasets were divided into testing dataset (50%) and
validation (50%) dataset to evaluate the predictive power of risk
scoring. The survival difference between the two patient groups was
evaluated with K–M survival analysis using “survival” and
“survminer” in the R package. Clinical features, including BAP1,
stage, gender, age, and risk score, were included in the multivariate
Cox analysis for establishment of the predictive model. Finally, a
nomogram that included risk score and clinical pathological features
was constructed using “rms” in the R package.

2.13 Prediction of response to
immunotherapy and chemotherapy

By adopting the NSCLC immunotherapy cohort in the TIDE
database, response to immunotherapy and T-cell function and state
in patients with NSCLC were predicted. The imported data were
standardized in accordance with the requirements of TIDE database.
The default cutoff value of TIDE scoring was 0. The efficacy of the
risk score model was indirectly validated in the atezolizumab-treated
advanced uroepithelial cancer immunotherapy cohort
(IMvigor210 cohort). The prediction of response to
chemotherapy for each sample was based on the Oncology Drug
Sensitivity Genomics (https://www.cancerrxgene.org/) predicted by
the largest public pharmacogenomics database. Four commonly
used chemotherapy drugs for MPM are cisplatin, etoposide,
gemcitabine, and vinorelbine. Prediction was implemented using
“pRRophetic” in the R package. The half-maximum inhibitory
concentration (IC50) of the sample was evaluated in accordance
with the previous description.

2.14 Patients and tissue specimens

A retrospective study was conducted on the basis of formalin-
fixed paraffin-embedded tumor samples of 34 patients with MPM

from Tianjin Medical University Cancer Institute and Hospital
(Tianjin, China) between January 2013 and July 2021. The study
conformed to the ethical guidelines of the Helsinki Declaration, and
it was approved by the Ethics Committee (No. bc2022241).

2.15 Immunohistochemistry

MPM tissue sections were dewaxed in xylene and rehydrated in
ethanol series. Antigen was extracted in citrate or EDTA, which was
then treated with 3% hydroxides for 10 min to inhibit the activity of
endogenous hydrogen peroxide. Then, the samples were stained for
30 min with antibodies at room temperature and kept overnight at
4°C. After being washed, tissue microarrays and sections were
incubated with secondary antibodies for 1 h at room
temperature, observed with 3,3-diaminobenzidine solution
(ZSGB-Bio), and counterstained with hematoxylin. The
percentage of immunoreactivity scoring was classified on a four-
point scale: 0 was assigned to <10% positive cells; one was assigned
to 10%–40% positive cells; two was assigned to 40%–70% positive
cells; and three was assigned to 70%–100% positive cells.

2.16 Cell culture

BEAS-2B cells were purchased from American Type Culture
Collection. NCI-H2452 and NCI-H2052 cells were purchased from
the Cell Bank of Chinese Academy of Sciences (Shanghai, China). In
accordance with culture requirements (37°C, 5% CO2), cells were
cultivated in 1,640 medium (HyClone, Logan, UT, USA) and
supplemented with 10% fetal bovine serum (FBS; Zetalife, USA)
and 1% penicillin/streptomycin (PS; HyClone, Logan, UT,
United States).

2.17 Transfection assay

Transfection assay was performed to obtain lentiviral particles.
Packaging plasmids (VSVG and PAX2) and expression plasmids
(sh-FUCA1, sh-Ctrl, FUCA1, and Vector) were transfected into
HEK293T cells by using PEI (Polysciences, Warrington, USA).
Lentiviruses were produced by HEK293T cells. NCI-H2452 and
NCI-H2052 cells were infected with a lentivirus to produce stable
FUCA1 overexpression and knockdown cells under puromycin
(Gibco, New York, United States) selection.

2.18 Western blotting (WB) analysis

Proteins were extracted from cells, which were lysed with 1 ×
SDS lysis buffer (Tris–HCl, pH 6.8, 62.5 mM, 2% SDS, 10% glycerol)
supplemented with 1 mM NaF, 1 mM Na3VO4, 1 × protease, and
phosphatase inhibitor cocktail (Hoffman-la Roche Ltd., Basel,
Switzerland) on ice for 30 min. Then, the proteins were
separated by SDS-PAGE and transferred to a PVDF membrane
(Merck Millipore). Next, they were blocked with bovine serum
albumin (BSA), followed by incubation with primary and
secondary antibodies. The information of primary antibodies is
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as follows: FUCA1 antibody (1:1000, Proteintech), E-Cadherin
antibody (1:1000, BD Pharmingen), Vimentin antibody (1:1000,
Abcam), Snail antibody (1:1000, Santa Cruz), PI3K antibody (1:
1000, Proteintech), p-PI3K antibody (1:1000, Abmart), AKT
antibody (1:1000, Cell Signaling Technology), p-AKT antibody
(1:1000, Cell Signaling Technology), and GAPDH antibody (1:
1000, Cell Signaling Technology).

2.19 Quantitative real-time PCR

Total RNA was collected and homogenized in TRIzol (Ambion,
USA). RNA reverse transcription and extraction were carried out
following standard procedures. cDNA was synthesized by reverse
transcription of the isolated RNA based on a nine kit (Takara,
Japan). Amplification reaction was conducted using predesigned
primers in accordance with the manufacturer’s instructions (Takara,
Japan). The results were normalized with GAPDH. The primers
involved in the experiment are detailed in Supplementary Table S2.

2.20 CCK-8 assay

Cells were seeded in 96-well plates at 1,000 cells/well and
cultured for 24, 48, 72, and 96 h. Then, CCK-8 solution
(Biosharp, Beijing, China) was added to each well for one or
two h at 37°C, and the absorbance was measured at 450 nm by
using a microplate reader (Molecular Devices).

2.21 Colony formation assay

Cells were seeded in six-well plates at a density of 1,000 cells per
well and cultured at 37°C for 2 weeks. Subsequently, the plates were
washed with phosphate-buffered saline (PBS) and fixed with 4%
paraformaldehyde for 15 min. Finally, 0.1% crystal violet was used to
stain the plates. The colonies were counted with ImageJ software
(Wayne Rasband, National Institutes of Health, United States).

2.22 EdU proliferation assay

Cells were seeded in 12-well plates. EdU assay was conducted for
cell proliferation detection using the BeyoClick EdU Cell
Proliferation Kit (Beyotime, Shanghai, China) with Alexa Fluor
594. The cell nucleus was detected with DAPI staining solution.
After the cells were washed in PBS, they were studied using an
inverted microscope.

2.23 Transwell assay

Cells were seeded in the upper chamber at a density of 1 × 105

cells per well. The lower chamber was filled with 600 µL of RPMI
1640 medium containing 20% FBS. After being incubated for 12 h,
the cells were fixed and stained with crystal violet. The cells in the
upper chamber were removed, and the migrated cells were
photographed and counted with ImageJ software.

2.24 Wound healing assay

Cells were seeded in six-well plates, and monolayers were
scratched with a 10 µL pipette tip until 95% confluence. The cells
were subsequently photographed every 3 h, and the migrated areas
were calculated using ImageJ software.

2.25 Immunofluorescence

Cells were seeded in 12-well plates, fixed in 4%
paraformaldehyde (Cat# P0099, Beyotime Biotech. Inc.),
permeabilized in 0.2% Triton X-100, and blocked with 5%
BSA. Immunofluorescence staining was performed using anti-
FUCA1 and anti-Vimentin antibody. The secondary antibodies
used were Alexa Fluor 488 and 594 anti-mouse IgG, and they
were incubated with 1 μg/mL DAPI. Imaging was carried out
using a microscope.

2.26 Xenograft models

The animal experiments were approved by the Ethics
Committee of Tianjin Medical University Cancer Institute and
Hospital (No. 2023054), Tianjin, China. Female BALB/c nude
mice (4–5 weeks old) were purchased from SPF Biotechnology
(Beijing, China) for xenograft animal assays. For tumor growth
assays, the mice were randomly divided into two groups
(FUCA1 vector and FUCA1 OE; n = 5 per group). The prepared
NCI-H2052 FUCA1-Vector/NCI-H2052 FUCA1-OE tumor cells
(5 × 106) in 100 μL PBS were injected subcutaneously. Tumor
volumes were measured every 5 days from 5 days after the injection.
The mice were humanely sacrificed on day 40. Tumor growth was
analyzed bymeasuring tumor length (a) and width (b) in accordance
with the following formula: volume (mm3) = ab2/2.

2.27 Statistical analysis

Continuous variables that follow a normal distribution were
presented as mean ± standard deviation; comparisons between two
groups were performed using Student’s t-test; and comparisons
within multi-groups were performed with one-way ANOVA
(Fisher’s LSD test). Continuous variables that follow an abnormal
distribution were presented as median and IQR; comparisons
between two groups were performed using Wilcoxon’s rank-sum
test; and comparisons within multi-groups were performed using
Mann–Whitney U-test. Categorical data were expressed in
percentage. Comparisons between two groups were performed
using Pearson’s chi-square test. Spearman’s rank correlation test
was used for correlation analysis. Univariable and multivariable Cox
regression analyses were used to evaluate the prognostic factors.
Time-dependent receiver operating characteristic (ROC) curves
were generated by “survivalROC” in the R package. Nomogram
and calibration analyses were carried out by “rms” and “survival” in
the R package. The “rmda” in R was used to draw the decision curve
analysis (DCA) decision curves. The reported P values were for a
two-tailed test. p < 0.05 was deemed as statistically significant.
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FIGURE 1
Identification of genes related to the prognosis of MPM in the immune microenvironment. (A) Venn diagram of four independent datasets. (B)
Boxplot of relative infiltration level of immune cells in TCGA and GEO MPM cohorts. (C) Gene network visualized via heatmap. (D) Univariate Cox
regression analysis of immune cell-related genes. (E)Hazard ratios and p values of multivariate Cox regression for immune-related genes. (F) Consistent
score matrix for all samples at k = 2 in TCGA and GEO cohorts. (G)Overall survival curves for two clusters of 172 patients with MPM from TCGA and
GEO cohorts. (H) Heat map showing the differential gene expression of five immune-related genes between two MPM subpopulations.
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Analyses were performed with SPSS (version 23) and R statistical
language (version R 4.0.3, https://www.r-project.org/).

3 Results

3.1 Identification of immune cell infiltration
and immune-related genes in MPM

A total of 289 samples of transcriptome data (Supplementary
Table S1) from the TCGA and GEO database were analyzed to
determine the role of different tumor-infiltrated immune cells in
patients with MPM. First, 11,758 co-expressed genes were obtained
from gene intersections out of four datasets (Figure 1A). Next, the
transcriptome data of four datasets were combined for subsequent
analyses after removal of batch effect (Supplementary Figures
S1A–C). CIBERSORT was applied to calculate proportions for
22 types of TIICs in each tumor sample. The infiltrated immune
cells in the tumor tissues of patients with MPM were mostly CD8+

T cells, M2 macrophages, plasma cells, activated mast cells, and
T cell follicular helper (Figure 1B; Supplementary Figure S1D).
WGCNA revealed eight gene modules of high co-expression with
22 immune cells, among which the MEturquoise module had the
strongest correlation with tumor-infiltrated immune cells, and the
genes were closely related with macrophages M1 (p < 0.001), CD8+

T cells (p < 0.001), gamma delta T cells (p < 0.001), and memory
activated CD4+ T cells (p < 0.001; Figure 1C; Supplementary Figures
S1E, F). K–M analysis was conducted for 348 genes in the
MEturquoise module to evaluate the correlation between immune
cell-related genes and patient prognosis (Supplementary Figure S2).
Genes with p < 0.05 were further enrolled in the univariate Cox
(Figure 1D) and multivariate Cox regression analyses (Figure 1E).
Five immune cell-related genes, including FLI1, IL32, FUCA1,
CCR2, and PSMB10, which were independently influential on the
prognosis of patients with MPM, were screened.

Unsupervised hierarchical clustering analysis was performed on
the basis of the above five immune cell-related genes for
identification of two different MPM subgroups, cluster1 and
cluster2 (Figure 1F). The results of K–M analysis for the two
clusters showed that cluster2 was significantly correlated with
worsened OS (p = 0.00037) (Figure 1G). The expression levels of
the five genes in the two clusters are shown in the heatmap
(Figure 1H). The immune microenvironment characteristics of
the two clusters were evaluated. The results showed that higher
counts of immunosuppressive factors were seen in cluster2 than in
cluster1 (Supplementary Figure S3A). The ESTIMATE algorithm
revealed that cluster2 scored higher in stroma and immunity
(Supplementary Figure S3B). The MSI states of two MPM
clusters were not significantly different (p = 0.240,
Supplementary Figure S3C). The TMB stage of cluster2 was
remarkably higher than that of cluster1 (Supplementary Figure
S3D). The waterfall plot displayed mutations of somatic cells in
cluster1 and cluster2 patients. The enriched gene mutations of the
two clusters were not relatively identical (Supplementary Figure
S3E). The mutation rates of the five genes were not high, suggesting
that mutations were not a primary cause for change in gene
expression. At this point, five immune cell-related genes, which
can classify patients with MPM into two subgroups, were initially

screened. The cluster2 patients demonstrated worse prognosis and
more expression of immunosuppressive factors in the TME.

3.2 Construction of a prognostic model of
MPM based on immune cell-related genes

Differential gene enrichment analysis was performed to identify
differences in patients with two different immune
microenvironment statuses. A total of 51 significant DEGs were
obtained after differential gene analysis of cluster1 and cluster2,
among which 11 genes were upregulated and 40 genes were
downregulated (Figure 2A). Figure 2B displays the expression
levels of 51 DEGs in cluster1 and cluster2. GO analysis and
GSEA were performed to determine the DEG function. The five
highest ranking GO terms of BP, MF, and CC are shown in
Supplementary Figure S3F. The receptor–ligand activities,
signaling receptor activator, and chemokine pathways were
significantly activated. BP ontology showed that DEGs were
concentrated in the cellular response pathway to fibroblast
growth factor. The GSEA analysis revealed a significant increase
of signaling pathways in cluster2 related to cell metastasis and
inflammatory responses, such as EMT, G2M checkpoint,
interferon gamma response, and apoptosis (Figure 2C;
Supplementary Figure S3G). A PPI network was constructed to
identify key genes associated with cluster1 and cluster2 phenotypes.
The former three hub genes in the critical node, which were
extensively connected with many DEGs, were CCL5, WT1, and
KRT5 (Figure 2D).

Five immune cell-related genes and three hub genes were
combined to construct an eight-gene risk score model. The
threshold value between dead patients and live patients (cutoff =
0.204,853) was obtained by drawing the ROC curve and determining
the risk scores with the maximum Youden index, based on which
patients were divided into low-risk group (n = 102) and high-risk
group (n = 70, Figure 2E). As the risk scores increased, the death
ratio of patients with MPM increased with a shortened OS
(Figure 2F). Among the eight genes used to construct the risk
score model, IL-32, CCL5, and FLI1 were significantly
upregulated in high-risk patients, whereas CCR2, PSMB10,
KRT5, WT1, and FUCA1 demonstrated low expression levels
(Figure 2G). The survival analysis showed that the survival
probability of the high-risk group was significantly lower than
that of the low-risk group (p < 0.0001, Figure 2H). The entire
dataset was randomly divided at a 1:1 ratio into validation set (n =
86) and test set (n = 86) for K–M survival analysis. As expected, the
prognosis of patients with high-risk scores was significantly worse
(Figures 2I,J). These data indicated that the features of eight genes in
the model contribute to MPM prognostic prediction.

3.3 Eight-gene risk score model being an
independent predictor of MPM

Risk scoring, TNM stage, BAP1 gene status, age, and gender
were included in the multivariate Cox regression analysis to confirm
whether risk scoring could be used as an independent predictor for
OS among patients with MPM. Age, TNM stage, and risk scoring
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FIGURE 2
Construction of a risk score model for MPM. (A) Volcano map showing 51 differential genes. (B) Heatmap showing 51 genes significantly positively
and negatively correlated with two MPM subpopulations. (C)GSEA enrichment plot of two MPM subpopulations. (D) Top three hub genes identified from
PPI networks. (E)Gene signature risk score distribution. (F) Vital status of high- and low-risk groups. (G)Heatmap of the expression profiles ofmembers in
the risk scoremodel. (H–J) Kaplan–Meier survival curves plotted to estimate the overall survival probabilities for the low-risk versus high-risk groups
in training, validation, and test sets. (K)Nomogrampredicting the 1-year and 3-year overall survival of patients withMPM. (L) Time-dependent ROC curves
plotted for 1-year and 3-year overall survival. (M) Calibration curve for the overall survival nomogrammodel in TCGA and GEO MPM cohort. The dashed
diagonal line represents the ideal nomogram, and the blue line and red line represent the 1-year and 3-year observed nomograms, respectively.
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were found to have independent prognostic meaning
(Supplementary Figure S3H). On the basis of these findings, a
nomogram available in clinical practice was established for
clinicians to predict the prognosis of patients with MPM with a
better quantitative approach. The survival probabilities of patients at
first and third years were evaluated (Figure 2K). The predictive
ability of the nomogram was determined using time-dependent
ROC curves (Figure 2L). The results showed that the predictive
accuracy of the nomogram gradually increased with the extension of
OS. Meanwhile, a calibration curve was constructed, and the results
indicated that the predictive and actual rates of survival were
consistent at first and third year (Figure 2M). Finally, DCA
demonstrated that the nomogram risk scoring was capable of
evaluating the OS of patients with MPM accurately
(Supplementary Figure S3I). Patients were stratified in
accordance with TNM stages to further verify the universality of
risk scoring in MPM, and the OS of patients with high- and low-risk
scores were compared. The results showed that regardless of the
stage, patients with MPM with higher risk scores were associated
with worse prognosis (Supplementary Figures S3J,K).

A survival analysis of patients in the high- and low-risk groups
involving 32 types of tumors in TCGA other than MPM was
performed to further validate the performance of risk score in
predicting prognosis of other tumors (Supplementary Figure
S4A). Patients in the low-risk group had a significant survival
advantage in 24 tumors, including adrenocortical carcinoma
(ACC, p = 0.00012), bladder urothelial carcinoma (BCLA, p =
0.0013), breast invasive carcinoma (BRCA, p < 0.0001), cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC,
p = 0.021), glioblastoma multiforme (GBM, p = 0.0014), esophageal
carcinoma (ESCA, p = 0.0046), lymphoid neoplasm diffuse large
B-cell lymphoma (DLBC, p = 0.012), colon adenocarcinoma
(COAD, p = 0.04), kidney renal clear cell carcinoma (KIRC, p <
0.0001), kidney renal papillary cell carcinoma (KIRP, p = 0.00012),
acute myeloid leukemia (LAML, p = 0.0007), brain lower grade
glioma (LGG, p < 0.0001), ovarian serous cystadenocarcinoma (OV,
p = 0.0016), lung squamous cell carcinoma (LUSC, p = 0.0007), lung
adenocarcinoma (LUAD, p < 0.0001), pheochromocytoma (PCPG,
p = 0.028), sarcoma (SARC, p = 0.00017), skin cutaneous melanoma
(SKCM, p < 0.0001), uterine corpus endometrial carcinoma (UCEC,
p = 0.00049), thymoma (THYM, p = 0.0016), thyroid carcinoma
(THCA, p = 0.014), stomach adenocarcinoma (STAD, p = 0.0016),
uterine carcinosarcoma (UCS, p = 0.049), and uveal melanoma
(UVM, p < 0.0001). The predictive performance of the risk score in
pan-cancer level was displayed by ROC curve, and the AUC values
are presented in Supplementary Figure S4B. In addition toMPM, the
risk score model demonstrated good prognostic predictive power for
pan-cancer species.

3.4 Low-risk group being more likely to
benefit from immunotherapy and
chemotherapy

The immunotherapeutic response and T cell functional status for
patients with MPM were indirectly predicted by adopting the NSCLC
immunotherapy cohort in TIDE database. The low-risk group had a
higher ratio of response to immunotherapy (43% vs 30%, Figure 3A).

The low-risk group also scored lower in TIDE than the high-risk group,
suggesting that the low-risk group was more likely to benefit from
immunotherapy (Figure 3B). Thus, the patients had a significant
rejection feature of enriched T-cells due to higher infiltration of
myeloid-derived suppressor cells (MDSCs) and tumor-associated
fibroblasts (CAFs) in the high-risk group. The validity of risk score
in the immunotherapy cohort for treating advanced urothelial
carcinoma (IMvigor210 cohort) with atezolizumab (anti-PD-
L1 antibodies) was indirectly verified. The results showed the worse
prognosis of patients with high-risk scores than those with low-risk
scores, of which both received immunotherapy (Figure 3C). A
correlation was found between the risk score and response to
immunotherapy. The risk scores of patients with response to
immunotherapy [complete response (CR) + partial response (PR)]
were significantly lower than those of patients with poor response
[stable disease (SD) + progressive disease (PD)], Figure 3D). The low-
risk group had a higher proportion of objective response (CR + PR),
which was consistent with the results in TIDE database (42% vs
26%, Figure 3E).

By using the “pRRophetic” algorithm, the IC50s of four
conventional chemotherapeutic agents (cisplatin, etoposide,
gemcitabine, and vinorelbine) in high-risk and low-risk patients
with MPM were predicted. The results showed that the IC50s of all
four chemotherapeutic agents in the high-risk group increased, and
the differences were statistically significant in cisplatin and
etoposide, indicating that patients in the high-risk group were
less sensitive to these two agents (Wilcoxon test, p < 0.01;
Figure 3F). Thus, the risk score models can be used to predict
the efficacy of immunotherapy and chemotherapy.

3.5 FUCA1 expression pattern and its
correlation with prognosis in MPM

FUCA1 was chosen for further study because it had the greatest
correlation with the risk score and the lowest HR in the multivariate
analysis, leading to the highest contribution to the predictive model
(Figure 1E; Supplementary Table S3). In addition, the functions of
FUCA1 inMPM remain unclear. The K–M survival analysis and violin
diagram showed that patients with low FUCA1 expression had a worse
prognosis (Supplementary Figures S5A, B). This finding was validated
from this study’sMPMcohort to further probe the expression pattern of
FUCA1 in MPM. Formalin-fixed paraffin-embedded tumor samples
and complete medical records of 34 patients with MPM from Tianjin
Medical University Cancer Institute and Hospital between January
2013 and July 2021 were collected. Figure 4A demonstrates the different
expression levels of FUCA1 in cancer and paracancerous tissues of
patients with MPM. The K–M survival analysis result was consistent
with the previous prediction (Figure 4B). Distant metastasis, TNM
stage, and FUCA1 expression were independent risk factors for
prognosis in patients with MPM (Supplementary Table S4). This
series of results indicated that FUCA1 could be used as a specific
biomarker in patients with MPM. Next, the associations of
FUCA1 expression with various clinicopathological factors were
assessed. The expression of FUCA1 was closely correlated with
patient survival time and age (Figure 4C). Four out of five (80.0%)
cases with a tumor size T1-T2 showed high FUCA1 expression. By
contrast, 14 out of 29 (48.3%) cases with a tumor size T3-T4 exhibited
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high FUCA1 expression (Figure 4D). Furthermore, 10 out of 17 (58.8%)
cases with no lymphaticmetastasis N0 showed high FUCA1 expression.
Eight out of 17 (47.1%) cases with lymphatic metastasis N1-N2
exhibited high FUCA1 expression (Figure 4E). Thirteen out of 23
(56.8%) cases with no distant metastasis M0 showed high
FUCA1 expression. Five out of 11 (45.5%) cases with distant
metastasis M1 exhibited high FUCA1 expression (Figure 4F).
Similarly, in different TNM stage subgroups, the patients with high
FUCA1 expression could still achieve longer OS than those in the low
expression cohort (p = 0.0042, p = 0.034, Supplementary Figure S5C).
Thus, the results clearly indicated that FUCA1 is expressed at low levels

in MPM tissues, and low FUCA1 expression correlates with poor
prognosis. Decreased FUCA1 expression may play an important role
in MPM progression and recurrence.

3.6 Promotion of MPM cell proliferation,
migration, and invasion by knockdown
of FUCA1

Next, we further explored the function of FUCA1 in MPM
through a series of in vitro and in vivo experiments. Firstly, the

FIGURE 3
Prediction of tumor response to immunotherapy and chemotherapy based on risk score model. (A) Rate of clinical response (TRUE and FALSE) to
immunotherapy in high or low-risk groups of 289 MPM in TIDE database. (B) TIDE database-evaluated scores of immunosuppressive cells and scores of
T cell dysfunction and exclusion in diverse risk groups. (C) Kaplan–Meier survival curves plotted to estimate the overall survival probabilities for the low-
risk versus high-risk group in IMvigor210 cohort. (D) Different anti-PD-L1 clinical response status groups (CR, complete response; PR, partial
response; PD, progressive disease; SD, stable disease). (E) Rate of clinical response (CR/PR and SD/PD) to immunotherapy in high- or low-risk groups. (F)
Boxplots showing the IC50s of four common chemotherapeutic agents (cisplatin, etoposide, gemcitabine, and vinorelbine) in high- and low-risk patients
with MPM (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Frontiers in Pharmacology frontiersin.org10

Shi et al. 10.3389/fphar.2025.1577232

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1577232


FIGURE 4
Correlation of FUCA1 with clinicopathological features of patients with MPM. (A) Different expression levels of FUCA1 in malignant pleural
mesothelioma cancer tissue and paracancerous tissue samples. (B) Correlation between FUCA1 expression level and prognosis of patients with pleural
mesothelioma. (C)Correlation analysis between FUCA1 expression and different risk factors. (D)Relationship between FUCA1 expression andOS in tumor
size subgroups. (E) Relationship between FUCA1 expression and OS in a subgroup of lymph node metastases. (F) Relationship between
FUCA1 expression and OS in a subgroup of distant metastases. (*p < 0.05, **p < 0.01).
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FIGURE 5
FUCA1 inhibition of MPM cell proliferation. (A–C) Verification of FUCA1 expression by using WB after transfection. In NCI-H2452 cells and NCI-
H2052 cells, CCK8 assay, cloning formation assay, and EdU proliferation assay indicated that FUCA1 expression was inversely related to cell proliferation
ability. (D) In BALB/c nude mice, the tumor size was smaller in the FUCA1-OE group than in the FUCA1-vector group. (E) Representative images of the
expression level of FUCA1 in mouse tumor tissues. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)
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FIGURE 6
FUCA1 inhibition of MPM cell invasion andmigration. (A) Transwell assay for evaluation of cell invasive ability. (B)Wound healing assay for analysis of
cell migration ability. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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FIGURE 7
FUCA1 regulation of EMT in MPM cells through PI3K-AKT signaling pathway. (A)WB demonstrating that FUCA1 expression was negatively correlated
with EMT. (B) Immunofluorescence confirmation that overexpression of FUCA1 suppressed the expression levels of mesenchymal phenotype genes. (C)
WB showing that FUCA1 inhibited PI3K-AKT signaling pathway. (D) WB showing that LY294002 inhibited EMT in FUCA1 knockdown cells. (E)
LY294002 inhibition of the invasive capacity of FUCA1 knockdown cells. (F) LY294002 inhibition of the migration capacity of FUCA1 knockdown
cells. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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FUCA1 expression in BEAS-2B, NCI-H2452, and NCI-H2052 cells
was examined (Supplementary Figure S5D). Next, NCI-H2452 and
NCI-H2052 cells were used to establish stable overexpression and
knockdown cell lines. The control cells Vector and sh-Ctrl were
constructed. The efficiency of FUCA1 deletion and overexpression
was confirmed by WB and real-time PCR (Figure 5A;
Supplementary Figure S5E). Then, the proliferation of MPM cells
with different expression levels of FUCA1 was evaluated using CCK-
8 assay (Figure 5A), colony formation assay (Figure 5B), EdU
proliferation assay (Figure 5C), and vivo mouse experiments
(Figure 5D). The results showed that the FUCA1-knockdown
group had a stronger proliferative ability, and the proliferation
ability was decreased after the overexpression of FUCA1. We
verified the expression level of FUCA1 in mouse tumour tissues
using immunohistochemistry (Figure 5E). The results of Transwell
assay (Figure 6A) and wound-healing assay (Figure 6B) in NCI-
H2452 and NCI-H2052 cells showed that FUCA1 knockdown
promoted cell invasion and migration when the upregulation of
FUCA1 suppressed the migration and invasion abilities in vitro.
Therefore, the decrease in FUCA1 expression induced the
proliferation, invasion, and metastasis of MPM cells, consistent
with the previous analysis of clinical data.

3.7 FUCA1 regulation of EMT through PI3K-
AKT signaling pathway

In the preliminary analysis, GSEA showed that
FUCA1 expression was negatively correlated with EMT in MPM
(Figure 2C; Supplementary Figure S3G). Next, the mRNA
expression of FUCA1 in EMT-associated genes was analyzed
using the ENCORI database. FUCA1 was positively correlated
with the epithelial phenotypes E-Cadherin, OCL, and TJP2 and
negatively correlated with the mesenchymal phenotypes vimentin,
CDH2, ZEB1, SNAL1, SNAL2, TWIST1, and FN1 (Supplementary
Figure S6A). WB was used to verify that the knockdown of
FUCA1 decreased E-Cadherin and increased vimentin and snail
in NCI-H2452 and NCI-H2052 cells. FUCA1 overexpression
showed the opposite effects on these proteins in NCI-H2452 and
NCI-H2052 cells (Figure 7A; Supplementary Figure S7A).
Immunofluorescence was used to verify that the knockdown of
FUCA1 increased vimentin (Figure 7B). All these results suggested
that the knockdown of FUCA1 promoted EMT, and that
FUCA1 may regulate the malignant phenotypic transformation of
MPM cells. KEGG software was used to explore some related
signaling pathways to demonstrate further the downstream
molecular mechanism of FUCA1. Pathway enrichment was
performed on the basis of DEGs. Genes in the PI3K-AKT
signaling pathway were significantly enriched (Supplementary
Figure S6B). Next, WB revealed that downregulated
FUCA1 expression strengthened the protein levels of p-PI3K and
p-AKT in NCI-H2452 and NCI-H2052 cells. The p-PI3K and
p-AKT protein expression levels decreased when FUCA1 was
overexpressed. However, the protein levels of PI3K and AKT did
not change significantly (Figure 7C; Supplementary Figure S7B).
NCI-H2452 and NCI-H2052 FUCA1 knockdown cells were treated
with LY294002, an PI3K-AKT inhibitor, to investigate the
relationship between the PI3K-AKT pathway and FUCA1.

p-AKT expression was significantly increased in sh-FUCA1 cells
and effectively suppressed upon treatment with LY294002. WB
further showed that the LY294002-mediated inhibition of p-AKT
significantly attenuated the levels of vimentin and snail in sh-
FUCA1 cells (Figure 7D; Supplementary Figure S7C). Besides,
the Transwell assay (Figure 7E) and wound-healing assay
(Figure 7F) showed that the LY294002-mediated inhibition of
p-AKT significantly suppressed the invasion and migration in sh-
FUCA1 cells. All these results indicated that FUCA1 regulated EMT
in MPM cells through the PI3K-AKT signaling pathway.

4 Discussion

MPM is an uncommon but aggressive tumor disease that has
been unequivocally linked to asbestos exposure. This association
underscores the critical need for effective preventive measures and
early detection strategies to mitigate the risk of developing this
disease. The TIME of MPM is highly heterogeneous, which is
generally considered as immune tolerance or
immunosuppression. This is one of the reasons why most of
patients with MPM cannot benefit from immunotherapy. An
enhanced understanding of this TIME may help screen out
sensitive population to the treatment and develop new treatment
strategies. However, in the highly complex microenvironment of
solid tumors, single biomarkers fail to satisfy clinical requirements.
Some gene panels and algorithms based on immune cells and
immune functions has certain reference value in predicting the
efficacy of immunotherapy (Ayers et al., 2017; Damotte et al., 2019).

By integrating expression data from multiple datasets, an eight-
gene risk score model that successfully divided patients with MPM
into low- and high-risk groups was constructed. Notably, the high-
risk group exhibited a survival disadvantage, and they were less
sensitive to immunotherapy, indicating that the model could be a
valuable tool for predicting immunotherapy outcomes. Among the
eight genes included in the model, FUCA1 emerged as a key player.
The clinical data indicated that FUCA1 is an independent risk factor
for predicting the prognosis of patients with MPM, suggesting its
potential as a prognostic biomarker. This finding is particularly
remarkable given the lack of good biomarkers for MPM.

At present, immunotherapy has become a new strategy for
cancer treatment, and in fact, only about 20% of patients with
solid tumors could benefit from such therapies (Braun et al., 2016).
Especially for patients with MPM with highly heterogeneous TIME,
identifying and validating the indicators that can accurately predict
efficacy of immunotherapy are particularly important. The focus of
previous tumor studies had always been on deciphering the intrinsic
characteristics of tumor cells. In recent years, spotlight has gradually
been shifted to the concept of interactions among tumor cells,
immune cells, and other cell types. In TME, the interactions
between tumor cells and immune cells have changed in the
between balance, which tends to activate tumor survival and
promote tumor immune evasion (Kersten et al., 2015), which, in
turn, promotes tumor progression and metastasis. A tumor growth-
promoting microenvironment was formed by producing various
cytokines and enzymes that promote tumor proliferation and
metastasis, angiogenesis, and immunosuppression (Yang et al.,
2020). In the enrichment analysis, the gene-related pathways of
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high-risk group were mostly associated with pro-tumor metastasis,
proliferation, and pro-inflammatory reactions. Meanwhile, the level
of immunosuppression factors in tumor tissues, such as LAG-3,
CTLA-4, and IDO-1, increased significantly.

FUCA1 encodes the tissue α-L-fucosidase (Intra et al., 2007), a
lysosomal enzyme involved in the degradation of L-focusing
residues at the end of oligosaccharide chains in glycoconjugates.
In tumor biology, the aberrant glycosylation of tumor cells reflects
specific modifications of their glucose metabolic pathways. α-L-
fucosidase is involved not only in the development of various
malignant tumors but also in the regulation of immune escape,
invasion, and metastasis of tumors. Previous studies have shown
that low FUCA1 expression is associated with worsened prognosis in
thyroid (Tsuchida et al., 2017), colon (Otero-Estévez et al., 2013),
and breast cancers (Cheng et al., 2015). The tumor suppressor p53 is
known to be a key regulator of programmed cell death (Vogelstein
et al., 2000), and p53 can activate FUCA1 transcriptionally
(Tsuchida et al., 2017). Expression of FUCA1 induced apoptosis
in renal tumor cells, and knockdown of FUCA1 enhanced the
proliferation of lung cancer cells (Ezawa et al., 2016). In lung
cancer, FUCA1 can inhibit EGFR signaling and its downstream
signaling by inhibiting AKT phosphorylation (Ezawa et al., 2016).
However, downregulation of FUCA1 expression inhibited glioma
progression by enhancing autophagy and suppressing macrophage
infiltration (Xu et al., 2020). A series of experiments was conducted
to further investigate the role of FUCA1 in MPM. The results
demonstrated that FUCA1 expression was negatively correlated
with the proliferation, invasion, and migration abilities of MPM
cells, suggesting that FUCA1 may have a tumor-suppressive
role in MPM.

Furthermore, the expression of FUCA1 was negatively
correlated with EMT in MPM cells by regulating the PI3K-
AKT signaling pathway. EMT is a process of epithelial-to-
mesenchymal cell transformation in which epithelial cells lose
acinar cell polarity, lose adhesion and acquire a mesenchymal
cell phenotype, and gain mesenchymal cell migration capacity to
facilitate metastasis and drug resistance (Thiery, 2002). Tumor
cell invasion and migration are important biological processes in
tumor development, and tumor metastasis is an important cause
of tumor progression. An increasing number of experiments
have confirmed that the EMT process plays an important role in
the invasion and metastasis of solid tumor cells (Thiery et al.,
2009). The occurrence of EMT in cancer cells can cause immune
escape, so patients become insensitive to anti-CTLA-4 therapy
(Dongre et al., 2021). Decreased expression of FUCA1 in bladder
epithelial cells contributed to increased expression of
fucosylated N-glycans in TGF-β-induced EMT (Guo et al.,
2014). Previous studies reported that FUCA1 may inhibit the
PI3K-AKT pathway activation through glycosylation
modification (Hu et al., 2024; Zhuang et al., 2024). The
present study confirmed that FUCA1 may contribute to the
suppression of MPM cell proliferation, invasion, and
migration by inhibiting EMT.

The risk score model provides a new perspective for screening
potential populations that may benefit from immunotherapy and
predicting their efficacy. Clinicians can tailor treatment strategies to
improve outcomes by identifying high-risk patients. The findings
suggest that FUCA1 may be a promising therapeutic target for

patients with MPM. Targeting FUCA1 could potentially inhibit
cancer progression and improve patient prognosis.

However, a notable detail that this study has limitations. First,
this study assessed the predictive power of risk score models for
immunotherapy outcomes by using an immunotherapy cohort of
patients with NSCLC and patients with uroepithelial carcinoma due
to the lack of data on immunotherapy in patients with MPM.
Second, the sample size was relatively small, and the findings
may not be generalizable to all patients with MPM. Further
validation in larger and more diverse patient cohorts is needed to
confirm the robustness of the risk score model and the prognostic
value of FUCA1.

5 Conclusion

This study, conducted from a multi-omics perspective, found
that immune cell-related genes are informative in predicting the
survival prognosis and efficacy of immunotherapy in patients with
MPM. The risk score model constructed in this study provides a new
perspective for screening potential populations to benefit from
immunotherapy and predicting their survival. FUCA1 may be a
potential prognostic biomarker and promising therapeutic target for
patients with MPM.
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