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Microglia, the resident immune cells of the central nervous system (CNS), are
highly dynamic and play critical roles in maintaining CNS homeostasis. Under
normal conditions, microglia continuously monitor their environment, clear
cellular debris, and regulate homeostasis. In response to disease or injury,
however, they undergo rapid morphological and functional changes, often
adopting an amoeboid shape that facilitates phagocytosis of abnormal cells,
pathogens, and external antigens. Microglia also proliferate in areas of injury or
pathology, contributing to immune responses and tissue remodeling. Recently,
pharmacological approaches targeting microglial depletion and repopulation
have gained attention as a means to reset or modulate microglial function.
Techniques such as CSF1R inhibition enable transient depletion of microglia,
followed by rapid repopulation, potentially restoring homeostatic functions and
mitigating chronic inflammation. This review explores the current understanding
of microglial dynamics and highlights emerging therapeutic applications of
microglial depletion and repopulation within the CNS.
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Introduction

Microglia are immune cells with a diverse array of essential functions in the central
nervous system (CNS), including the retina (Huang et al., 2018a; Wang et al., 2023). Highly
dynamic, microglia continuously monitor the CNS environment and play critical roles in
synaptic pruning and phagocytosis, which are their primary functions (Wang et al., 2020;
Parkhurst et al., 2013). During development, microglia refine neural circuits by pruning
synapses (Zhao et al., 2015), while in pathological conditions, they phagocytose foreign
antigens and dead cells (Alt et al., 2014). Phagocytosis is a hallmark of innate immune cell
activation (Kalm et al., 2009).

Microglia possess an array of pattern recognition and immune receptors on their
surface, enabling them tomonitor neuronal activity, communicate with other cell types, and
promote adaptive immune responses (Elmore et al., 2014). Furthermore, they are a major
source of pro-inflammatory cytokines in the CNS. Unlike neurons, astrocytes, and
oligodendrocytes, which have limited proliferative capacities, microglia can rapidly
proliferate in response to CNS injury.
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Microglia originate from the yolk sac in mice and exhibit
dynamic changes in morphology and function throughout
development and aging (Stanley and Chitu, 2014). In juvenile
mice, microglia typically have a ramified, branched morphology
and are primarily involved in synaptic pruning and immune
surveillance (Chitu et al., 2016). In contrast, aged microglia
exhibit a more amoeboid shape, shorter processes, and a pro-
inflammatory phenotype, producing higher levels of
inflammatory cytokines (Stanley et al., 1997; Elmore et al., 2014).
They may also become less efficient at phagocytosis and
debris clearance.

The microglial population adapts to physiological and
pathological states in the CNS. During CNS injury, microglia
rapidly increase in number (Stanley and Chitu, 2014). Colony-
stimulating factor 1 receptor (CSF1R) is essential for their
viability in the adult brain (Chitu et al., 2016). Knockout of the
CSF1R gene significantly reduces microglial populations, while
treatment with CSF1R inhibitors eliminates most resident
microglia (Nakamichi et al., 2013). Upon cessation of CSF1R
inhibitor treatment, microglia quickly repopulate and restore
their presence in the brain. In this review, we will explore the
mechanisms and implications of microglial repopulation
in the CNS.

Microglia depletion

Microglia are highly dynamic resident immune cells within the
central nervous system (CNS), uniquely distinguished by their
robust proliferative capacity compared to other CNS cell types
(Huang et al., 2018a). As resident immune cells capable of rapid
proliferation, microglia have emerged as a compelling target for
therapeutic manipulation, sparking significant interest in their roles
in CNS health and disease. Several strategies have been developed to
deplete microglia in the CNS, including pharmacological
approaches (Wang et al., 2023; Wang et al., 2020), genetic
depletion (Parkhurst et al., 2013; Zhao et al., 2015), and
irradiation (Alt et al., 2014; Kalm et al., 2009). Each method
offers unique advantages and insights into microglial function
and their potential for therapeutic interventions.

Pharmacological depletion of microglia

The colony-stimulating factor 1 receptor (CSF1R) is a surface
protein that serves as a critical regulator of myeloid lineage cells,
including microglia and macrophages. Targeting CSF1R through
pharmacological inhibitors has emerged as an effective strategy for
depleting microglia in the CNS. By blocking CSF1R signaling, these
inhibitors disrupt the survival and proliferation of microglia, leading
to their rapid depletion. This approach has proven invaluable for
studying microglial function and offers potential therapeutic
avenues for resetting or modulating microglial activity in various
CNS disorders (Elmore et al., 2014; Stanley and Chitu, 2014; Chitu
et al., 2016). Both colony-stimulating factor 1 (CSF1) and
interleukin-34 (IL34) serve as ligands for the colony-stimulating
factor 1 receptor (CSF1R) CSF1R mediates critical signaling
pathways that regulate the survival, proliferation, and

differentiation of myeloid lineage cells, including microglia and
macrophages (Stanley and Chitu, 2014; Stanley et al., 1997).
These pathways are essential for maintaining microglial
homeostasis and function, making CSF1R a pivotal target for
therapeutic interventions aimed at modulating microglial activity
in the CNS.

In the context of microglia, CSF1R plays a crucial role in
maintaining their homeostasis in the CNS. Targeting CSF1R with
specific inhibitors has proven to be an effective strategy for depleting
microglia, enabling researchers to investigate their roles and
contributions to various neurological conditions. Small-molecule
CSF1R inhibitors, such as PLX5622 and PLX3397, have been widely
used in animal models to achieve selective and reversible depletion
of microglia. These inhibitors allow for precise temporal control,
making them invaluable tools for studying microglial dynamics and
their impact on CNS health and disease (Liddelow et al., 2017; Wang
et al., 2019; De et al., 2014). By blocking CSF1R signaling, these
inhibitors selectively induce microglial apoptosis without
significantly affecting other CNS cells. This targeted approach has
been instrumental in studies exploring microglial function and
neuroinflammatory processes, providing valuable insights into the
consequences of microglial depletion and subsequent repopulation
on CNS health and disease.

Among the commonly used CSF1R inhibitors, PLX5622 and
PLX3397 effectively deplete microglia, but they differ in specificity.
PLX5622 exhibits higher specificity for CSF1R, minimizing off-target
effects. In contrast, PLX3397 has broader activity, targeting other
kinases such as KIT and FLT3, which may lead to more side effects.

Upon ligand binding—either CSF1 or IL-34—the CSF1 receptor
(CSF1R), a receptor tyrosine kinase, undergoes dimerization and
autophosphorylation (Stanley and Chitu). This activation initiates a
cascade of intracellular signaling events critical for myeloid cell
survival, proliferation, and differentiation (Figure 1) (Stanley and
Chitu, 2014; Nakamichi et al., 2013; Freuchet et al., 2021). The major
downstream pathways include: PI3K–AKT signaling, which
promotes cell survival and metabolic activity (Stanley and Chitu,
2014; Kelley et al., 1999; Murray et al., 2000; Chang et al., 2009);
MAPK–ERK signaling, associated with cell proliferation and
inflammatory responses (Lee, 2011; Richardson et al., 2015; Yao
et al., 2005; Murga-Zamalloa et al., 2020; Chen et al., 2021);
JAK–STAT signaling, mediating transcriptional activation of
genes involved in immune function; Src-family kinase signaling,
influencing cytoskeletal organization and cellular migration
(Murga-Zamalloa et al., 2020; Truong et al., 2018); NF-κB
activation, driving the expression of pro-inflammatory cytokines
and chemokines (Lee, 2011; Caescu et al., 2015). Pharmacological
inhibitors targeting CSF1R (PLX3397and BLZ945) effectively block
these downstream pathways by preventing receptor activation
(Horti et al., 2019; Chadarevian et al., 2023). In addition,
pathway-specific inhibitors—such as LY294002 for PI3K,
U0126 for MEK/ERK, and Ruxolitinib for JAK/STAT—have been
widely used to dissect the individual contributions of these branches
to CSF1R-driven cellular outcomes (Stanley and Chitu, 2014;
Richardson et al., 2015; Sampaio et al., 2011; Karki et al., 2014;
Sehgal et al., 2018).

Despite its specificity, CSF1R inhibition with PLX5622 extends
beyond microglial depletion. It also significantly impacts circulating
and tissue macrophages, with long-term effects persisting even after
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the cessation of treatment. These findings underscore the broader
implications of CSF1R inhibition and highlight the need to carefully
consider both short- and long-term effects when using these
inhibitors in research and therapeutic contexts (Lei et al., 2020).
CSF1R inhibition not only depletes microglia but also induces
lasting changes in bone marrow-derived macrophages. Notably, it
reduces interleukin-1β levels, CD68 expression, and phagocytic
activity while sparing CD208 expression following endotoxin
exposure (Elmore et al., 2014). These findings highlight the
broader immunological impacts of CSF1R inhibitors,
demonstrating their ability to modulate macrophage functionality
and inflammatory responses beyond the CNS (Elmore et al., 2014).

Genetic depletion microglia

A key limitation of small-molecule drugs for microglial
depletion, such as CSF1R inhibitors, is their unintended impact
on other myeloid cells beyond microglia (Bosch et al., 2023; Tan
et al., 2021; Bohannon et al., 2024). These off-target effects can result
in systemic immune modulation, including long-term changes in
bone marrow-derived macrophages, such as altered cytokine
expression and reduced phagocytic activity, which may persist
even after treatment cessation (Lei et al., 2020).

Irradiation

Cranial irradiation is a common and widely used treatment
modality for managing cancers, particularly those involving the
brain or with a high risk of metastasis to the central nervous system
(CNS). This technique delivers targeted doses of radiation to
eliminate cancerous cells, reduce tumor size, and prevent further
disease progression. Despite its efficacy in controlling cancer, cranial
irradiation often comes with significant side effects, including
neurocognitive decline, inflammation, and damage to healthy
brain tissue. Understanding the cellular and molecular impacts of
cranial irradiation on the CNS is critical for improving therapeutic
outcomes and minimizing adverse effects (Pazzaglia et al., 2020;
Delaney et al., 2005; Moding et al., 2013). However, microglia
become highly activated following cranial irradiation of the brain.
This activation is characterized by morphological changes, increased
expression of pro-inflammatory cytokines, and enhanced
phagocytic activity. While microglial activation plays a role in the
repair and clearance of damaged cells, chronic or excessive
activation can contribute to neuroinflammation, exacerbating
radiation-induced damage to healthy brain tissue. The persistent
activation of microglia following cranial irradiation is a significant
factor in the development of neurocognitive impairments and other
long-term side effects, underscoring the need for strategies to

FIGURE 1
CSF-1R signaling pathways and the effects of CSF-1R inhibitors. Colony-stimulating factor 1 receptor (CSF-1R) is a shared receptor for both colony-
stimulating factor 1 (CSF-1) and interleukin-34 (IL-34). Upon ligand binding, CSF-1R activates a cascade of downstream signaling pathways, including
PI3K-AKT, ERK1/2, JAK/STAT, and NF-κB. These pathways regulate key cellular processes such as proliferation, survival, differentiation, and inflammatory
responses, particularly within myeloid lineage cells. PLX5622, a selective small-molecule CSF-1R inhibitor, effectively blocks CSF-1R signaling,
thereby suppressing the activation of these downstream pathways and reducing the survival and function of CSF-1R–dependent cells.
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modulate microglial responses in this context (Chiang et al., 1993;
Kyrkanides et al., 1999). Cognitive dysfunction is a well-documented
side effect of cranial irradiation of the brain. Microglial activation
has been strongly associated with this cognitive decline, as activated
microglia can exacerbate neuroinflammation and disrupt neural
circuits critical for memory and learning. Studies have shown that
depleting activated microglia can attenuate cognitive dysfunction
following cranial irradiation, highlighting their role in mediating
these adverse effects (Acharya et al., 2016). In addition to microglial
activation, cranial irradiation also impairs the proliferative capacity
of neural progenitor cells in the brain. This disruption affects
neurogenesis, particularly in the hippocampus, a brain region
essential for cognitive functions. The combined effects of
microglial activation and reduced neurogenesis contribute to the
long-term cognitive deficits observed after cranial irradiation. These
findings emphasize the importance of targeting microglial activation
and supporting neural regeneration to mitigate the cognitive side
effects of this treatment.

The number of microglia decreases significantly after cranial
irradiation (Kalm et al., 2009; Strohm et al., 2024; Chen et al., 2016;
Eriksson and Stigbrand, 2010; Xue et al., 2014; Mizumatsu et al.,
2003; Moravan et al., 2011). The primary cause of this microglial loss
is DNA damage induced by irradiation (Menzel et al., 2018;
Gutierrez-Quintana et al., 2022). DNA damage impairs the
survival of microglia, leading to apoptosis and a reduction in
their population.

Even in the young brain, which typically has robust regenerative
and repair mechanisms, irradiation significantly reduces microglial
numbers (Kalm et al., 2009; Han et al., 2016). Even in the young
brain, which typically has robust regenerative and repair
mechanisms, irradiation significantly reduces microglial numbers.

Microglia repopulation

Both genetic and pharmacological methods for depleting
microglia are effective approaches for studying their roles in the
CNS (Wang and Cepko, 2022; Basilico et al., 2022). However,
pharmacological depletion of microglia has broader applicability
in research due to its ease of use and flexibility (Han et al., 2017;
Barnett et al., 2021; Graykowski and Cudaback, 2021).
Pharmacological methods, such as the use of CSF1R inhibitors,
are particularly convenient for testing and therapeutic applications
across various CNS disease models (Wang et al., 2023; Spangenberg
et al., 2019; Sosna et al., 2018; Ortega-Martinez et al., 2019). These
approaches allow for precise temporal control over microglial
depletion and repopulation, making them a versatile tool for
investigating microglial function and exploring potential
treatments for neurodegenerative diseases, neuroinflammation,
and other CNS disorders.

Microglia are highly self-regulating cells, constantly monitoring
changes in the CNS under physiological conditions (Prinz et al.,
2019). Studies have demonstrated that microglial populations
recover rapidly after depletion (Huang et al., 2018a; Rice et al.,
2017). In the brain, the source of repopulated microglia is derived
from the surviving microglia that persist following depletion (Huang
et al., 2018a). In contrast, the repopulation of microglia in the retina
originates from two distinct sources (Huang et al., 2018b). This

difference in the sources of repopulated microglia between the brain
and retina highlights the unique dynamics of microglial recovery in
these regions. Further research is needed to understand the
underlying mechanisms driving these differences and their
implications for CNS and retinal health and disease.

Combining cell lineage tracing with bone marrow cell
transplantation offers a powerful approach to monitor the
source of repopulated microglia (Xu et al., 2020; Cuadros et al.,
2022). This method enables precise tracking of microglial origin
and dynamics, providing critical insights into the mechanisms of
microglial repopulation. Understanding the detailed process of
microglial repopulation remains an area of great interest, as it
could shed light on the pathways and signals driving
microglial recovery.

Both microglia and macrophages belong to the myeloid cell
lineage and share several marker genes, such as Cx3cr1, Cd68, and
Trem2 (Hopperton et al., 2018; Wang et al., 2024; Greter et al.,
2015). This overlap raises the intriguing possibility that
macrophages, under certain conditions, could enter the CNS and
potentially replace microglia. Such a replacement could open new
avenues for treating CNS diseases by leveraging the plasticity and
regenerative capabilities of macrophages. Exploring this possibility
and the functional integration of macrophages into the CNS
microenvironment warrants further investigation, as it could
provide innovative strategies for modulating immune responses
in the CNS.

We hypothesize that microglial repopulation following
depletion is regulated by CSF1–CSF1R signaling, which activates
downstream pathways including PI3K–AKT, MAPK–ERK, and
JAK–STAT to promote the survival, proliferation, and
differentiation of repopulating microglial precursors.
Furthermore, modulation of these pathways through
pharmacological inhibitors or genetic manipulation may alter the
dynamics, efficiency, and functional phenotypes of repopulating
microglia (Figure 2).

Applications and challenges

Microglia play a crucial role in maintaining CNS environmental
stability and homeostasis (Gao et al., 2023; Colonna and Butovsky,
2017; Michell-Robinson et al., 2015). However, abnormally activated
microglia can accelerate the progression of various neurological
diseases (Bachiller et al., 2018). Therefore, distinguishing between
“good” microglia, which support CNS health, and “bad” microglia,
which contribute to disease development, is of great importance in
vivo. Strategies aimed at repopulating “good” microglia while
eliminating “bad” microglia may offer a novel therapeutic
approach for treating CNS-related diseases such as Alzheimer’s
disease (AD) and Parkinson’s disease (PD).

Given the vital role of microglia in CNS function and the
potential risks associated with their manipulation, any
therapeutic intervention involving microglia in humans requires
careful consideration and thorough evaluation (Colonna and
Butovsky, 2017; Cartier et al., 2014; Rock et al., 2004). Balancing
the benefits of targeting microglia with the potential for unintended
consequences is essential to ensure the safety and efficacy of such
treatments.
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Summary

Microglia, often described as a double-edged sword, play a
pivotal role in the progression and resolution of CNS diseases
(Liu et al., 2021). Identifying “good microglia,” which promote
CNS health, and “bad microglia,” which exacerbate disease, is
essential for understanding their functions in vivo. Furthermore,
specifically replacing “bad microglia” with “good microglia” in CNS
diseases holds potential for mitigating disease progression.

As the immune cells of the CNS, microglia exhibit a remarkable
capacity for repopulation following pharmacological depletion (Najafi
et al., 2018; Han et al., 2019). Modulating the microglial
population—either by selectively enhancing the presence of beneficial
microglia or by depleting detrimental ones—offers a promising
therapeutic strategy for treating brain diseases and retinopathies. This
approach could pave the way for targeted interventions aimed at
restoring CNS homeostasis and alleviating disease burden.
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