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The objective of this study is to develop an artificial intelligence-physiologically
based pharmacokinetic (AI-PBPK) model to predict the pharmacokinetic (PK) and
pharmacodynamic (PD) properties of aldosterone synthase inhibitors (ASIs),
enabling selection of the right candidate with high potency and good
selectivity at the drug discovery stage. On a web-based platform, an AI-PBPK
model, integrating machine learning and a classical PBPK model for the PK
simulation of ASIs, was developed. Baxdrostat, with the most clinical data
available, was selected as the model compound. Following calibration and
validation using published data, the model was applied to estimate the PK
parameters of Baxdrostat, Dexfadrostat, Lorundrostat, BI689648, and the 11β-
hydroxylase inhibitor LCI699. The PD of all five compounds was predicted based
on plasma free drug concentrations. The results demonstrated that the PK/PD
properties of an ASI could be inferred from its structural formula within a certain
error range, providing a reference for early ASI lead compounds screening and
optimization. Further validation and refinement of this model will enhance its
predictive accuracy and expand its application in drug discovery.
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1 Introduction

Primary hyperaldosteronism, a common cause of resistant hypertension and an
underlying cause of cardiac and renal diseases, is usually treated with mineralocorticoid
receptor (MR) antagonists (Awosika et al., 2023; Miguel et al., 2024; Verma et al., 2024).
However, these drugs are not always well tolerated and can cause a counterregulatory
increase in aldosterone secretion, limiting their efficacy (Bogman et al., 2017). Aldosterone
is synthesized from cholesterol through a series of enzymatic steps, with the last step
catalyzed by aldosterone synthase (AS) which is encoded by the CYP11B2 gene (Figure 1).
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Researchers have targeted AS inhibition to curb the production of
aldosterone (Andersen et al., 2012; Hargovan and Ferro, 2014). Yet,
most aldosterone synthase inhibitors (ASIs) also exert an effect on
11β-hydroxylase. This enzyme, encoded by the CYP11B1 gene,
facilitates the synthesis of cortisol, a steroid hormone structurally
related to aldosterone (Nishimoto et al., 2023). This lack of
selectivity of ASIs leads to side effects. Thus, compounds which
selectively inhibit AS without affecting 11β-hydroxylase are needed.
To identify an ideal ASI, a de novo design approach could be applied.
But it can be extremely time-consuming and costly. A more feasible
approach, i.e., comparison and optimization of the pharmacokinetic
(PK) and pharmacodynamic (PD) properties and selectivity of
existing ASIs (Mazzieri et al., 2024) might provide a solution. A
drug’s PK/PD properties can be experimentally determined, as done
conventionally. But again, this process usually is long and resource-
intensive (Haid and Reichel, 2024). To shorten the drug discovery
process, we developed an artificial intelligence (AI)-augmented
physiologically based pharmacokinetic (PBPK) model to predict
the PK and PD of ASIs.

A classical physiologically based pharmacokinetic model is
well established, and it integrates physiological characteristics
with a drug’s physicochemical properties to predict the drug’s

behavior across different populations (Peters, 2021; Balhara et al.,
2022). It helps optimize selection of the drug’s dosage and dosage
form, as well as assessment of efficacy of the drug, by simulating
its absorption, distribution, metabolism, and excretion (ADME)
(Zou et al., 2020). Key input parameters for the classical PBPK
model include human physiological parameters and molecule-
specific parameters. To ensure accuracy of the classical PBPK
model, comprehensive collection of the above parameters on
software platforms such as GastroPlus and Simcyp are required
(Arafat et al., 2021; Ezuruike et al., 2022). But at the drug
discovery stage, molecule-specific parameters are often
constrained by extensive in vitro experiments (Li et al., 2024).
In recent years, the use of AI-based approaches to predict
physiological parameters has emerged as a promising
alternative. A number of web-based ADMET prediction tools
have been developed, including ADMET-AI (Swanson et al.,
2023), SwissADME (Daina et al., 2017), pkCSM (Azzam,
2023), XenoSite Web (Dang et al., 2020), and ADMETlab 3.0
(Fu et al., 2024). These tools offer advantages such as high
efficiency, simplicity, and easy data interpretation by chemists.
However, they have limitations such as single predictive function,
incapability to predict PK and PD of compounds, and failure to

GRAPHICAL ABSTRACT
Steps for predicting a compound’s PK using the AI-PBPKmodel and predicting enzyme inhibition by combining it with the Emax model are shown. In
Step 1, the compound’s structural formula is input into the AImodel to generate key ADME parameters and physicochemical properties of the compound.
In Step 2, these parameters are used in the PBPKmodel to predict PK profiles of the compound. In Step 3, a PDmodel is developed to predict the inhibition
rate of aldosterone synthase and 11β-hydroxylase based on the plasma free concentration of the drug.
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derive physiologically relevant information from the structural
formula of compounds.

To address these limitations, on our web-based B2O Simulator®

(B2O stands for Bioavailability, Bioequivalence, Optimization)
platform, we developed a general AI-PBPK model, which
integrates the PBPK model with machine learning (ML) and
deep learning (DL), enabling a comprehensive prediction of a
drug’s PK/PD profile from its molecular structure. At the drug
discovery phase, when there are not enough drug-specific
parameters to support the classical PBPK model, machine
learning can be used to predict them based on the drug’s
structural formula. With the aid of ML, the classical PBPK model
can screen more potential candidate compounds at the preclinical
drug discovery phase, avoiding unnecessary testing of a large
number of candidates and shortening the process of advancing
the candidates to preclinical studies. The AI-PBPK model
facilitates the simulation and prediction of the behavior of
diverse drug candidates in vivo. With it, we can better
understand how drugs interact with the physiological systems,
and predict their distribution, metabolism, and elimination in the
body more efficiently (Chen et al., 2021; Chou and Lin, 2023), and
reduce the dependence on experimental data at the screening phase.
Therefore, the AI-PBPK model can have a broad perspective in
facilitating drug safety assessment, efficacy prediction, formulation
optimization, and therapy personalization (Marques et al., 2024;
Visan and Negut, 2024).

In this study, an AI-PBPK model was built and used to predict
the PK/PD properties of five ASIs, assisting the identification of the

optimal candidate. In general, the predicted results are in good
agreement with experimental observations, with occasional
discordance, indicating the applicability of our model. With
further improvement of the robustness of our AI-PBPK model, it
is expected to be widely used in drug discovery.

2 Methods

2.1 Overall workflow of model building

The workflow for predicting the PK profiles of a compound using
theAI-PBPKmodel is shown in Figure 2. It consists of four steps:model
construction, calibration, validation, and simulation. To identify a
selective ASI with high potency, we selected Baxdrostat, an ASI
currently with the most published research data, as the model drug.
After constructing the ASI model, we predicted the PK parameters of
Baxdrostat and compared the predictions with publicly available clinical
trial data (Bogman et al., 2017; Freeman et al., 2023). The model was
then calibrated by adjusting key parameters based on the comparison.
Subsequently, we conducted external validation of the model using
publicly available clinical PK data of two other ASIs, i.e., Dexfadrostat
and Lorundrostat, with the nextmost publicly available clinical PK data.
By comparing the predicted results with clinical data, we assessed the
predictive performance of the AI-PBPKmodel for ASIs (Mulatero et al.,
2023; Shimizu et al., 2024). Finally, themodel was used to predict the PK
profiles of all five compounds, i.e., Baxdrostat, BI689648, Dexfadrostat,
Lorundrostat, and LCI699 (osilodrostat phosphate), an inhibitor of the

FIGURE 1
Biosynthetic pathways of aldosterone and cortisol.
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11β-hydroxylase. LCI699 was first approved as an orphan drug for the
treatment of Cushing’s disease by the European Medicines Agency in
2020, and it also received FDA approval in the same year. In this study,
it was used as a control (Papillon et al., 2015; Dormoy et al., 2023;
Valentín-Goyco et al., 2023).

Themodel used to predict PDof thefive compounds is an adaptation
of Macdougall’s nonlinear model (Macdougall, 2006; Bogman et al.,
2017), which is widely employed in dosage-response analyses. First, it is
necessary to calculate the free plasma drug concentration based on the
previously predicted plasma drug concentrations of all compounds, and
then construct a PDmodel based on the free plasma drug concentration.
The pharmacodynamic endpoint is mainly a compound’s inhibition of
AS versus inhibition of 11β-hydroxylase. The ratio of a drug’s IC50 (half-
maximal inhibitory concentration) toward 11β-hydroxylase to that
toward AS is defined as its selectivity index (SI).

2.2 Literature search

Using PubMed, Google Scholar and ClinicalTrials.gov with
keywords such as aldosterone synthase inhibitor, CYP11B2, and
compound name (e.g., CIN-107 and MLS-101), we compiled the
aforementioned five compounds, listed in Table 1. Their associated
PK/PD data were either found in the collected literature or extracted
from the official website of the investigating company (Shimizu et al.,
2024). The SMILES codes and structural formulae for all five compounds
were obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/).

2.3 Machine learning and PBPK/
PD modeling

2.3.1 Machine learning
Machine learning was used on the B2O Simulator® platform to

predict drug-specific parameters. Gilmer’s Message Passing Neural

Networks (MPNNs) model (Gilmer et al., 2017), a subclass of
graphical neural networks (GNNs) (Wu et al., 2021), is
particularly useful for analyzing the chemical structure of a
compound and predicting its pharmacological properties (Tang
et al., 2023), such as fraction unbound in plasma (fup), blood to
plasma ratio (bpr), steady-state volume of distribution (Vss), and
gastrointestinal absorption constant (gi-ka) (Jiménez-Luna et al.,
2021). The apparent clearance was also predicted using the M5P
algorithm (Wang and Witten, 1997; Freitas et al., 2015). A detailed
discussion of the performance of the underlying ML model and the
use of the model to generate key compound parameters can be found
in a previous article using the platform (Wu et al., 2024).

2.3.2 Data sources for machine learning
Five ADME parameters, namely, fup (fup = 1-ppbr; ppbr, plasma

protein binding ratio), CLapp (CLapp = Vss*0.693/half-life), Vss (Vss_
per kg), gi_ka (gi_ka = 2*Peff/radius of the small intestine; Log
(Peff) = 0.6795Log (Papp)-0.3355), and bpr, were modeled by an ML
approach. The diameter of the small intestine is 2.5 cm (Helander
and Fändriks, 2014), thus its radius is 1.25 cm. Data for ppbr, Vss,
half-life and Papp were obtained from the Therapeutics Data
Commons (TDC) database. The Python package ‘PYTDC’ was
installed and the corresponding dataset was used in this package.
The bpr data were obtained from Mamada’s work (Mamada et al.,
2021). The five datasets consist of two vectors of molecular structure
shown by the SMILES code and the corresponding ADME
parameters for each molecule. Most of the data sources for ML
come from the TDC database (datasets: ppbr, TDC. PPBR_AZ, size:
1797; Vss, TDC. VDss_Lombardo, size: 1,130; half-life, TDC. Half_
Life_Obach, size: 667; Papp, TDC. Caco2_Wang, size: 906; bpr,
Mamada’s work, size: 461) (Huang et al., 2021; Mamada et al., 2021).

2.3.3 PBPK/PD modeling
In the study, the whole-body PBPK model (Wendling et al.,

2015; Wendling et al., 2016) was used, which consists of 14 tissue

FIGURE 2
Workflow for predicting PK profiles of compounds using the AI-PBPK platform.
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compartments, including lungs, heart, brain, muscle, fat, skin,
spleen, pancreas, liver, stomach, intestine, bone, kidney and other
parts of the body, and two blood compartments (arterial and mixed
venous). Assuming equilibrium of drug distribution in tissues and
plasma, the degree of distribution was characterized by the blood
partition coefficient (Kp). The rate equation for the tissue
compartment is as follows (Equation 1):

dAT

dt
� QT

VVEN/ART
· AVEN/ART − QT

VTKp
· AT (1)

Where AT denotes the drug amount (mg), VT is the volume (L),
and QT is the blood flow (L/h) for the 14 different tissues. AVEN/ART

and VVEN/ART are the amount (mg) and volume (L), respectively, of
either mixed venous blood (for the lungs) or arterial blood (for
tissues other than the lungs).

Additionally, the PD model describes the correlation between
the plasma free drug concentration (plasma drug concentration *fup)
and the inhibition of AS and 11β-hydroxylase. The in vitro
inhibition assay evaluated the inhibitory effect of an ASI on the
activities of the two enzymes by measuring the enzymatic
conversion of 11-deoxycortisol to cortisol for CYP11B1, and 11-
deoxycorticosterone (11-DOC) to aldosterone for CYP11B2, and
was presented as the inhibition constants of both enzymes by the
free base of the ASI (Shimizu et al., 2024). Thus, based on the free
plasma drug concentration of the ASI and the corresponding
inhibition constants of the compound on both enzymes, i.e., the
IC50 in this study (Table 6), PD modeling was performed separately
for each enzyme. The Exposure-Response (ER) relationship is as
follows (Equation 2):

E � E0 − Imax*C
C + IC50

(2)

Where C is the plasma concentration, E0 is the percentage
change from baseline in plasma aldosterone concentration at C = 0

(theoretically 0%), and Imax is the maximal inhibitory effect, which
is typically 100% and indicates complete inhibition.

2.3.4 Design of simulation studies
Once the required parameters of Baxdrostat were predicted with

the ML model, the constructed PBPK model was used to simulate
the drug’s PK profiles. The model was then calibrated appropriately
based on the differences between the simulated results and the
observed data. Following calibration, Lorundrostat and
Dexfadrostat were selected to validate the model, and the fitting
effect was evaluated by comparing the simulated outcomes with
observed values. Upon validation, the single ascending dose (SAD)
and multiple ascending dose (MAD) PK simulation of all drugs at
dosages of 0.5 mg, 1 mg, 3 mg, 10 mg and 30 mg was selected, and
the corresponding PD was simulated based on the obtained PK
parameters. The dosing interval for all multiple doses was 24 h. Due
to the high dosage of Lorundrostat in the clinical trials, the existing
dosages of 5 mg, 10 mg, 20 mg, 50 mg and 100 mg in the clinical
trials were used for SAD simulation, and dosages of 3 mg, 12.5 mg,
50 mg, and 100 mg were selected for MAD simulation. The PK and
PD properties of the compounds at different dosages were analyzed
and compared to determine the optimal combination of PK, PD, and
dosage for the candidate drugs.

2.4 Software

The PBPK model was built, fitted and used for prediction using
the web-based B2O Simulator® at https://simulation.b2osim.cn/
signin. To access the AI-PBPK module, users must register and
log in, and then input the chemical structure to predict a drug’s PK
parameters. The maximum serum concentration reached by a drug
in the body and the area under the curve are calculated within a
confidence interval (2.5%–97.5%). When the predicted data are less
than 1/2 or more than twice of the observations from clinical studies,

TABLE 1 Essential data related to all five aldosterone synthase inhibitors.

Compound SMILES code Alias Company Highest
R&D status

Target Available data

Baxdrostat CCC(=O)NC1CCCC2 =
C1C = NC = C2C3 = CC4 =
C(C=C3)N(C(=O)CC4)C

CIN-107, RO-6836191 CinCor,
AstraZeneca PLC

Phase 3 Aldosterone
synthase

PK; PD (Bogman et al., 2017;
Freeman et al., 2023)

Dexfadrostat C1CC(N2C = NC = C2C1)
C3 = CC = C(C=C3)C#N

DP-13, (R)-Fadrozole
(Damian Pharma), DP13

Damian Phase 2 Aldosterone
synthase

PK; PD (Rigel et al., 2010;
Weldon et al., 2016;
Mulatero et al., 2023)

Lorundrostat CC1 = CC = C(C=C1)C2 =
CN =NC(=N2)N3CCN(CC3)

CC(=O)NC4CCC(CC4)
NC(=O)C

MLS-101, MT 4129 Mineralys,
Mitsubishi

Phase 3 Aldosterone
synthase

PK; PD (Laffin et al., 2023;
Mineralys Therapeutics,

2023; Shimizu et al., 2024)

BI-689648 COCC1 = CC(=CN = C1)
C2 = CC3 = C(N=C2)
N(CCC3)C (=O)N

— Boehringer
Ingelheim

— Aldosterone
synthase

PD (Weldon et al., 2016)

LCI-699 C1CC2 = CN = CN2C1C3 =
C(C=C(C=C3)C#N)F

Osilodrostat, Osilodrostat
phosphate (JAN/USAN),
5YL4IQ1078 (UNII code),
LCI-699-NX, Isturisa, イス

ツリサ

Novartis,
Recordati SpA

et al.

Approved for
listing

11β-
hydroxylase

PD (Weldon et al., 2016)

Drug data updated as of September 2024.
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the deviation is considered significant. All data and graphs were
generated using Microsoft® Excel 2021 (64-bit) and R version 4.
3.0 software.

3 Results

3.1 Simulation, calibration, and validation
of PK

3.1.1 Simulation of Baxdrostat’s PK
The SMILES code for Baxdrostat (CCC(=O)NC1CCCC2 =

C1C = NC = C2C3 = CC4 = C(C=C3)N(C(=O)CC4)C), together
with the codes of the other four drugs (Table 1), were entered into
the AI-PBPK platform to generate ADME and physicochemical
parameters shown in Table 2. Baxdrostat’s fup was from Bogman’s
work (Bogman et al., 2017). The simulated PK parameters of a single
dose of 2.5 mg (same as the clinical trial dosage) of Baxdrostat and
the observed data (Freeman et al., 2023) are shown in Table 3. The
simulated drug exposure values, which represent the relationship
between plasma drug concentration and time, are lower than the
observed mean exposure values. Drug exposure is primarily reflected
through indicators such as the area under the concentration (AUC)-
time curve, maximum plasma concentration (Cmax), and time to
reach maximum concentration (Tmax). The simulated PK profiles
and observations for a 2.5 mg single dose of Baxdrostat are shown in
Figure 3. The observed and predicted Mean Absolute Error (MAE),
Mean Squared Error (MSE), Root Mean Square Error (RMSE) and
R-Square (R2) values are 7.81, 73.0, 8.54 and 0.54, respectively. Since
the simulated results deviated significantly from the observed data,
the model was calibrated.

3.1.2 Calibration of Baxdrostat’s PK
The Kp_scaler is a scaling factor applied to modify the Kp

values, which represent the tissue/blood partition coefficient. The
Kp_scaler calibrates the predicted Kp values to better fit
experimental data or improve the model’s accuracy. The size
of Kp_scaler varies based on the predicted Vss_per Kg. The
simulated AUC0-24 (157.25 ng*hr/mL) of Baxdrostat was
smaller than the observed value (365.79 ng*hr/mL), suggesting
that the model overestimated the distribution of the drug in the
tissue, resulting in lower simulated blood drug concentrations
than the observations. Therefore, by adjusting the Kp_scaler to
an extent, the drug distributed into the tissues was reduced,
thereby bringing the simulated drug concentration in the blood
to be closer to the observed value. The simulated plasma
elimination half-life (≈6 h) was shorter than the actual one
(28.37 h). The drug’s predicted clearance (CLapp = 14.83 L/h)
was higher than the observed value (2.5 mg Baxdrostat, CLapp =
3.28 L/h), suggesting that the actual drug clearance is faster than
predicted. By reducing the predicted CLapp, the biological half-
life was prolonged, bringing the modeled values closer to the
observed ones. The final calibration for parameters was Kp_scaler
* 0.85 and CLapp/4.7. The PK curve for Baxdrostat after
calibration is shown in Figure 3, and it can be seen that the
calibrated curve is closer to the observed one. The observed and
predicted (after calibration) MAE, MSE, RMSE and R2 values are
2.13, 10.87, 3.30 and 0.83, respectively. These two calibration

coefficients were also applied to the other compounds. The drugs’
parameters after calibration are shown in Table 4. The PK
parameters generated after Baxdrostat calibration can also be
seen in Table 3. The AUC0-24 and Cmax are closer to the observed
values after calibration.

3.1.3 Model validation with Lorundrostat and
Dexfadrostat

After calibration, the predictive ability of the model was
further validated by testing Lorundrostat and Dexfadrostat on
it. Figure 4 shows the predicted and observed PK results for
Lorundrostat and Dexfadrostat as semi-logarithmic curves. The
hollow markers in the figure are observations and the solid lines
are predictions. The predicted plasma concentrations of the
drugs Lorundrostat and Dexfadrostat for validation were
consistent with the concentration profiles observed in the
literature at the initial stage after the first dose. But the
plasma concentrations at the elimination stage of Lorundrostat
were high and the rates of elimination slowed for both single and
multiple doses, while the plasma concentrations of Dexfadrostat
at the elimination stage was low for single and multiple doses and
the elimination rates was fast. However, most of the ratios of
predicted-to-observed AUC0-24, Cmax, and Tmax for single-dose
and multiple-dose administration were within 1/2 to 2-fold
(Table 5), except the Cmax of Dexfadrostat at 4 mg for SAD,
and 4 mg, 8 mg, and 16 mg for MAD were not within the 2-fold
error range. The coefficient of determination (R2) of the predicted
and observed values of AUC0-24 and Cmax was 0.986 and 0.960,
respectively (Figure 5). The simulation was based on a single
virtual healthy subject. The results of the analyses showed that
the model reasonably predicted drug exposure within a certain
error range and is of great value for candidate screening.

3.2 Simulation of PK for all five compounds

After model validation, dosages of 0.5 mg, 1 mg, 3 mg, 10 mg,
and 30 mg were selected for SAD and MAD PK simulation for
Baxdrostat, BI689648, Dexfadrostat, and LCI699. Due to the large
dosage of Lorundrostat in the clinical trials, single dose of 5 mg,
10 mg, 20 mg, 50 mg and 100 mg, and multiple doses of 3 mg,
12.5 mg, 50 mg and 100 mg were selected for PK simulation. The
PK simulation results of all the compounds are shown in Figure 6.
The plasma drug concentration profiles of all the compounds
increased in a dosage-dependent manner as shown by the plasma
drug concentration graphs for single and multiple doses. The
predicted AUC0-24 and Cmax values for all the compounds are
provided in Supplementary Table S1, which shows that under
both single and multiple doses conditions, the AUC0-24 for
Baxdrostat, BI689648, and Dexfadrostat is higher than that of
LCI699 at equivalent doses; while the Cmax of LCI699 is slightly
higher than that of Dexfadrostat at the same dosage, its rapid
elimination resulted in a comparatively lower AUC0-24 than that
of Baxdrostat, BI689648, and Dexfadrostat at the same dosage.
Lorundrostat has the lowest Cmax at a single dose of 10 mg, but its
AUC0-24 is higher than that of both Dexfadrostat and LCI699 at
the same dosage, and the drug is eliminated slowly enough to
achieve a certain blood concentration at steady state.
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3.3 Simulation of PD for all five compounds

Clinical PD endpoints for ASIs are not limited to the change in
seated mean systolic blood pressure from baseline to 8 weeks of
treatment. For model construction, with limited in vitro clinical trial
data and inconsistent PD endpoint metrics, the choice of IC50 as an
input to the PD model allows for a direct comparison of the
inhibitory effects of different compounds on AS and 11β-
hydroxylase. Therefore, selective inhibition of AS without
affecting 11β-hydroxylase is an observable indicator for PD
evaluation in our study. By comparing the trend of the inhibition
rate of a compound on AS and 11β-hydroxylase with dosage change,
we can obtain the dosage range of the compound reaching the
optimal inhibition rate and can compare different compounds at the
same dosage or with the same inhibition effect. This analysis is
limited for not fully reflecting the PD endpoints of clinical trials, but

it can provide ideas for dosage recommendation and comparison of
the efficacy of different compounds. The Emax model was used to
predict the PD of all five compounds based on plasma free drug
concentrations, and the IC50 was used as an input parameter
(Table 6). For Baxdrostat, the IC50 is from the clinical data
(Bogman et al., 2017). For the other drugs, the IC50 data are
from monkey adrenal gland homogenate (Weldon et al., 2016;
Laffin et al., 2023). The enzyme inhibition rates of single and
multiple doses predicted for all the compounds are shown
in Figure 7.

It can be seen that the inhibition of the enzymes increased in a
dosage-dependent manner. As can be seen from the multiple
doses plot, when the steady state was reached, Baxdrostat at a
dosage of 3 mg showed a 65% inhibition of AS. When the dosage
was 10 mg, the inhibition rate of AS reached 85%, the inhibition
of 11β-hydroxylase began to increase significantly, and the

TABLE 2 ADME parameters of five ASIs predicted by ML before calibration.

Symbol Parameters (Unit) Baxdrostat BI689648 Lorundrostat Dexfadrostat LCI699

MW molecular weight (g/mol) 363.50 298.36 451.6 223.27 227.24

fup unbound fraction to plasma protein 0.26a 0.18 0.11 0.18 0.20

bpr blood-to-plasma ratio 0.96 1.04 0.66 0.74 0.77

gi_ka GI absorption rate constant (h-1) 0.96 0.73 0.36 0.86 1.63

CLapp clearance (L/h) 14.83 14.32 39.36 71.11 95.05

Vss_perKg Vss (L/kg) 1.37 1.29 1.54 1.67 1.58

kp_bone bone: plasma 2.55 0.24 0.33 1.21 0.73

kp_brain brain: plasma 45.07 0.22 0.29 1.03 0.63

kp_adipose adipose: plasma 18.05 1.29 2.20 11.88 6.58

kp_heart heart: plasma 7.31 0.37 0.46 1.55 0.97

kp_kidney kidney: plasma 7.12 0.28 0.30 0.81 0.55

kp_gut gut: plasma 9.81 0.30 0.36 0.98 0.64

kp_liver liver: plasma 4.75 0.23 0.26 0.76 0.50

kp_lung Lung: plasma 9.41 0.26 0.30 0.31 0.29

kp_muscle muscle: plasma 8.02 0.13 0.19 0.34 0.25

kp_skin skin: plasma 37.69 0.39 0.46 1.05 0.73

kp_spleen spleen: plasma 5.39 0.19 0.22 0.41 0.31

Kp_scaler Kp scaler 0.16 3.75 3.33 0.91 1.46

aThe fup of Baxdrostat is from the literature.

TABLE 3 Important PK parameters of 2.5 mg Baxdrostat simulated before and after calibration, and observed ones.

PK parameters Simulated before calibration Observeda Simulated after calibration

AUC0-24 (ng*hr/mL) 157.25 365.79 396.55

Cmax (ng/mL) 18.99 28.09 23.97

T1/2 (hr) 6.10 28.37 21.80

Tmax (hr) 1.20 3.00 1.80

aThe observed data are from the literature (Freeman et al., 2023).
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FIGURE 3
Observed and predicted (before and after calibration) plasma drug concentrations of 2.5 mg Baxdrostat over time.

TABLE 4 CLapp and Kp_scaler of five ASIs after calibration.

Symbol Baxdrostat BI689648 Lorundrostat Dexfadrostat LCI699

CLapp 3.15 3.05 8.37 15.13 20.22

Kp_scaler 0.14 3.19 2.83 0.78 1.24

FIGURE 4
Observed versus predicted PK profiles of Lorundrostat and Dexfadrostat at different dosages. (A) Simulated and observed profiles for a single dose of
Lorundrostat (5, 10, 20, 50, 100, 200, 400, 800 mg). (B) Simulated and observed profiles of Lorundrostat at multiple doses (40 mg, 120 mg, 360 mg). (C)
Simulated and observed profiles for a single dose of Dexfadrostat (1 mg, 2 mg, 4 mg, 8 mg, 12 mg, 16 mg). (D) Simulated and observed profiles of
Dexfadrostat at multiple doses (4 mg, 8 mg, 16 mg).

Frontiers in Pharmacology frontiersin.org08

Zhang et al. 10.3389/fphar.2025.1578117

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1578117


selectivity of the compound gradually decreased. Therefore, the
optimal dosage of Baxdrostat predicted in this study is 10 mg,
with an AS inhibition rate of 85%. In the clinical trials, after the
healthy subjects received a single increasing dosage of Baxdrostat,
the plasma aldosterone decreased in a dosage-dependent manner
with the maximum effect reached at 10 mg (Bogman et al., 2017).

The predicted best inhibitory effect of Baxdrostat was also
reached at 10 mg, with a strong inhibition of AS and weak
inhibition of 11β-hydroxylase, echoing the clinical trial data.
When BI689648 was administered at a dosage of 3 mg, the
inhibition of AS reached 90%, at which point the inhibition of
11β-hydroxylase began to increase and the side effects started to

TABLE 5 Ratio of predicted to observed Cmax, Tmax, AUC0-24 values for three ASIs at different dosages and dosing modules.

Name Dosage (mg) Dosing module Ratio

RCmax RTmax RAUC0-24

Baxdrostat 0.5 SAD 1.01 0.90 1.04

Baxdrostat 0.5 MAD 0.97 0.50 1.00

Dexfadrostat 1 SAD 1.98 0.68 0.88

Dexfadrostat 2 SAD 1.73 0.68 0.74

Dexfadrostat 4 SAD 2.54 0.69 1.11

Dexfadrostat 8 SAD 1.35 1.09 0.61

Dexfadrostat 12 SAD 1.28 1.09 0.66

Dexfadrostat 16 SAD 1.37 0.68 0.54

Dexfadrostat 4 MAD 2.40 0.50 1.26

Dexfadrostat 8 MAD 2.11 0.73 1.20

Dexfadrostat 16 MAD 2.14 1.31 1.11

Lorundrostat 5 SAD 0.76 0.93 0.73

Lorundrostat 10 SAD 1.08 0.93 0.88

Lorundrostat 20 SAD 1.17 0.93 1.50

Lorundrostat 50 SAD 0.84 0.94 1.28

Lorundrostat 100 SAD 0.61 0.94 1.09

Lorundrostat 200 SAD 0.54 1.40 1.08

Lorundrostat 400 SAD 0.66 1.40 1.31

Lorundrostat 800 SAD 0.86 0.94 1.55

Lorundrostat 40 MAD 1.12 0.77 2.00

Lorundrostat 120 MAD 1.26 1.07 1.72

Lorundrostat 360 MAD 1.02 1.10 1.35

TABLE 6 IC50 and selective index of five ASIs for 11β-hydroxylase and aldosterone synthase for PD prediction.

Name IC50 (nmol/L) and SI

LCI699
(Weldon et al.,

2016)

Dexfadrostat
(Weldon et al.,

2016)

BI 689648
(Weldon et al.,

2016)

Baxdrostat
(Bogman et al.,

2017)

Lorundrostat (Laffin et al., 2023;
Mineralys Therapeutics, 2023;

Shimizu et al., 2024)

11β-
hydroxylase

77 94 310 1,310 475

Aldosterone
synthase

10 2.5 2.1 13 1.27

SIa 7.7 38 149 100 374

aSI, is defined as the ratio of IC50 for 11β-hydroxylase over IC50 for aldosterone synthase.
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become apparent. Therefore, the optimal dosage of BI689648 is
3 mg, achieving an AS inhibition rate of 90%. At a dosage of 3 mg,
the inhibitory effect of Baxdrostat on AS was only 65%, which
was lower than that of BI689648 at the same dosage. When
Lorundrost was administered at a dosage of 3 mg, the inhibition
of AS reached 75%, which was slightly lower than that of
BI689648 at 3 mg, and was comparable to the effect of
BI689648 at 1 mg. As the dosage increased to 12.5 mg, the
inhibition of AS reached 90%, at that point the inhibition of
11β-hydroxylase began to increase. The inhibition at this point
was comparable to that of BI689648 at 3 mg. Therefore, the
optimal dosage of Lorundrost in our predicted PD is 12.5 mg, and
the inhibition rate of AS can reach 90%. With dosage increasing,
the inhibition of 11β-hydroxylase by Baxdrostat, Lorundrost, and
BI689648 becomes more pronounced. For Dexfadrostat and
LCI699, the inhibition of AS and 11β-hydroxylase are very
close to each other, thus neither drug is very selective.

4 Discussion

In this study, we used all available data of Baxdrostat to build
the best possible general AI-PBPK model for ASIs and used
clinical PK data for correction. Data from clinical PK trials of
Dexfadrostat and Lorundrost were used in subsequent external
validation to assess the model’s performance and generalizability
across clusters. This validation process allowed for an assessment
of the model’s ability to simulate biological processes, identify
biases, and refine its predictive capabilities, ensuring credibility
and reliability for real-world applications (Collins et al., 2024).
The validation component is therefore of great value in
improving the goodness of fit of the model. The results of
model validation showed that the ratios of most predicted-to-

observed AUC0-24 and Cmax values were in the range of 1/2-
fold–2-fold, reflecting the validity of the model in simulating PK
behaviors. Yet, four Cmax ratio data fell outside of this range,
suggesting deficiencies in parameter estimation. And in the
absence of sufficient clinical trial data to calibrate the model,
the predictions may be biased due to the lack of calibration
conditions (Huang et al., 2002).

PK prediction of all five compounds at the same dosage showed
that Baxdrostat, BI689648, Lorundrostat had higher AUC0-24 than
LCI699, and the highest drug exposure was found for BI689648,
followed by Baxdrostat, Dexfadrostat, and LCI699. The AUC0-24 of
Lorundrostat was intermediate between that of Baxdrostat and
Dexfadrostat for a single dose of 10 mg and multiple doses of
3 mg. The PD results corresponding to PK showed that when the
inhibition rate of 11β-hydroxylase did not start to fluctuate, the
compound with the highest selectivity for AS and 11β-hydroxylase
was Lorundrostat at 3 mg, followed by BI689648 at 1 mg, and
Baxdrostat at 3 mg, and their inhibition of AS could reach 80%, 75%
and 65%, respectively. This trend was consistent with the in vitro
observational data (Lorundrostat SI: 374, BI689648 SI: 149,
Baxdrostat SI: 100, Dexfadrostat SI: 38) (Weldon et al., 2016;
Bogman et al., 2017; Laffin et al., 2023; Shimizu et al., 2024).
LCI699 at a dosage of 0.5 mg exhibited a potent inhibition of
11β-hydroxylase activity, further substantiating the efficacy of
LCI699 as a 11β-hydroxylase inhibitor (LCI699 SI: 7.7) (Weldon
et al., 2016). The predicted PD trend matched the clinically observed
one, validating the capacity of the model in translational research.
Thus, PD prediction for more similar ASIs based on their structural
formulae could be performed to assess their potential (Mehić, 2011).
The pivotal Phase III clinical trial of Lorundrostat (Launch-HTN,
NCT06153693) successfully met its primary endpoint, resulting in a
16.9 mmHg reduction in systolic blood pressure after treatment with
Lorundrostat at 50 mg, in contrast to a placebo-adjusted reduction

FIGURE 5
Logarithmic coordinate plots of predicted versus observed values of AUC0-24 and Cmax for Baxdrostat, Dexfadrostat and Lorundrostat. The solid line
represents the linear regression fit of the data. (A) Predicted versus observed AUC0-24 with 2-fold and 0.5-fold deviation lines. (B) Predicted versus
observed Cmax with 2-fold and 0.5-fold deviation lines.

Frontiers in Pharmacology frontiersin.org10

Zhang et al. 10.3389/fphar.2025.1578117

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1578117


FIGURE 6
Predicted plasma drug concentration versus time curves for five ASIs at different dosages. (A) Blood drug concentration-time curves of Baxdrostat at
SAD. (B) Blood drug concentration-time curves of Baxdrostat at MAD. (C) Blood drug concentration-time curves of BI689648 at SAD. (D) Blood drug
concentration-time curves of BI689648 at MAD. (E) Blood drug concentration-time curves of Dexfadrostat at SAD. (F) Blood drug concentration-time
curves of Dexfadrostat at MAD. (G) Blood drug concentration-time curves of LCI699 at SAD. (H) Blood drug concentration-time curves of LCI699 at
MAD. (I) Blood drug concentration-time curves of Lorundrostat at SAD. (J) Blood drug concentration-time curves of Lorundrostat at MAD.
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FIGURE 7
Predicted inhibition rate versus time curves for five ASIs at different dosages. (A) Enzyme inhibition over time for Baxdrostat at SAD. (B) Enzyme
inhibition over time for Baxdrostat at MAD. (C) Enzyme inhibition over time for BI689648 at SAD. (D) Enzyme inhibition over time for BI689648 at MAD. (E)
Enzyme inhibition over time for Dexfadrostat at SAD. (F) Enzyme inhibition over time for Dexfadrostat at MAD. (G) Enzyme inhibition over time for
LCI699 at SAD. (H) Enzyme inhibition over time for LCI699 at MAD. (I) Enzyme inhibition over time for Lorundrostat at SAD. (J) Enzyme inhibition
over time for Lorundrostat at MAD.
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of 9.1 mmHg (p < 0.0001), as shown by automated office blood
pressure measurement at week 6. Additionally, the trial met a
predefined endpoint at the end of treatment (week 12), where
Lorundrostat at 50 mg led to a 19.0 mmHg reduction in systolic
blood pressure, against an 11.7 mmHg placebo-adjusted reduction
(p < 0.0001). This is of great significance for the treatment of
Uncontrolled or Resistant Hypertension with ASIs. It
demonstrates to some extent the feasibility of our PD prediction.
Thus, in the preclinical stage, PD prediction based only on limited
data and compounds structural formulae can provide ideas for
dosage recommendations and efficacy comparisons of different
compounds, and such predictive models are of great value.

Nevertheless, inconsistence existed between certain predicted
and observed parameters. Results of a randomized, placebo-
controlled, dosage-varied trial in adults with uncontrolled
hypertension taking two or more antihypertensive medicines
(Laffin et al., 2023) showed that Lorundrostat resulted in a
reduction in serum aldosterone at all dosages, and there were
only small increases in serum cortisol. In our predicted PD, the
inhibition rate of 11β-hydroxylase became apparent for
Lorundrostat at 12.5 mg, which showed some differences from
the results in human clinical trials. This may be due to that the
gene expression of CYP11B2 and CYP11B1 in the adrenal gland
is regulated by epigenetic modification, which contributes to
autonomous aldosterone and cortisol synthesis (Takeda et al.,
2023). In addition, the simulated inhibition rates did not take
into account the effect of differences in drug metabolism in vivo,
which involves highly complex cooperation between drug
transporter proteins and drug-conjugating and metabolizing
enzymes, as well as targeted programs of gene activation and
proteasomal degradation pathways. Moreover, drug transport
and metabolism in the intestine and liver mediate the systemic
delivery of therapeutic compounds (Staudinger, 2013). In
addition, using IC50 from different species as inputs to the
Emax model and drawing conclusions based on predicted PD
may be flawed and error-prone for predicting clinical
effectiveness. Cross-species and in vitro-in vivo extrapolations
require consideration of species-specific physiology, plasma
protein binding, enzyme and transport kinetics, and tissue-
specific gene expression profiles. Comprehensive
considerations can increase the accuracy of cross-species and
in vitro-in vivo extrapolations (Thiel et al., 2015).

Overall, for simulation of an ASI’s PD with the AI-PBPK
model, the bias in results predicted by the model arises primarily
from two factors: (1) the inherent imprecision of machine
learning in predicting compound-specific parameters,
influenced by the data sources and prediction methods
employed, and (2) the combination of ML prediction bias with
PBPK model bias, which amplifies inaccuracies in PK data and
subsequent PD modeling. These biases are inherent limitations of
current models, which hinder the models from fully accounting
for variations across individuals, races, and disease populations
(Cross et al., 2024). In 2024, Chen et al. systematically analyzed
the main factors affecting prediction accuracy through a model-
driven pharmacogenetic-pharmacodynamic (PG/PD)
exploration with a machine learning approach (Chen et al.,
2024). Approaches proposed by them to reduce bias include
sensitivity analyses to identify key parameters and improve the

relevance of data collection; the use of large-scale biomarker data
to improve PK/PD associations; and the use of multiple machine-
learning algorithms for cross-validation to improve the model’s
robustness (Chen et al., 2024).

From the perspective of model generalizability, the AI-PBPK
model can predict drug-specific parameters and PK exposure
based solely on a compound’s molecular structure. In a previous
work on proton pump inhibitors, the model validation showed a
Pearson correlation coefficient (r) between 0.84 and 0.89, with
consistent trends between predicted and observed PK data (Wu
et al., 2024). In the current case of ASIs, the model’s fit to AUC0-24

and Cmax was evaluated, both showing a coefficient of
determination greater than 0.95. From the existing work on
ASIs, there is considerable room for improvement in
predicting certain drug-specific parameters, such as clearance.
Overall, this study provides a method for predicting a
compound’s PK/PD based on its structural formula at the
drug discovery stage and presents an AI-PBPK/PD model for
ASIs, which can predict the PK characteristics of similar ASIs in
the human body, analyze the dose-exposure and exposure-effect,
etc., providing a reference for subsequent compound screening
and clinical research.

5 Conclusion

The AI-PBPK model was employed to predict the PK profiles
of five aldosterone synthase inhibitors, and the inhibition of
aldosterone synthase and 11β-hydroxylase by the five
compounds was predicted using a PD model based on their
free blood concentrations. It is realized that a compound’s
PK/PD in the human body can be obtained through
predictions based on its structural formula at the drug
discovery stage. This can accelerate ASIs screening, avoiding
the extensive trial and error process. Yet, there is still
considerable room for improvement in model fitting. We will
carry out more case studies to further prove the model’s
effectiveness and continuously optimize the model to improve
its overall prediction accuracy. With further improvement, our
AI-PBPK model on the B2O simulation platform shall have great
potential to predict the therapeutic effects of drug candidates at
the early stages of drug discovery.
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