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Traditional medicine encompasses a rich trove of knowledge and practices for
disease prevention, diagnosis, and treatment. However, it faces challenges such
as poorly defined compositions of preparations and limited high-quality efficacy
data. The development of artificial intelligence presents new opportunities for
traditional medicine research and applications, especially in predicting MDAs
(MDAs), which is of great significance for understanding disease mechanisms and
developing new treatments. This study proposes a MDAs prediction method
based on double variational autoencoders (DVAMDA). This method innovatively
integrates double variational autoencoders and multi-information fusion
techniques. Firstly, the graph SAGE encoder is utilized to preliminarily extract
the local and global structural information of nodes. Subsequently, the double
variational autoencoders are employed to separately extract the latent probability
distribution information of the initial input data and the graph-specific property
information from the output of the graph SAGE encoder. Then, these different
sources of information are fused to provide rich and powerful feature support for
subsequent prediction tasks. Finally, the Hadamard product operation and a deep
neural network are used to predict MDAs. Experimental results on the HMDAD
and Disbiome datasets show that the DVAMDA model performs outstandingly in
multiple evaluation metrics. The findings of this research contribute to a deeper
understanding of microbe-disease relationships and provide strong support for
drug development in traditional medicine based on MDAs. The relevant data and
code are publicly accessible at: https://github.com/yxsun25/DVAMDA.
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1 Introduction

As a core component of humanity’s medical treasure trove, traditional medicine has
provided a rich source of innovative inspiration for modern drug discovery through its
thousands of years of accumulated experience in disease prevention and treatment.
However, its modernization faces severe challenges: the ambiguity of complex formulas,
fragmentation of efficacy data, and complexity of microbe-disease association mechanisms
have made it difficult to precisely target key biological targets in traditional drug discovery.
In recent years, breakthroughs in artificial intelligence (AI) have opened new avenues to
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address these challenges-by efficiently processing high-dimensional
biological data and uncovering latent associations, AI can deeply
decode the complex relationships between microbial communities
and disease phenotypes, serving as a bridge between traditional
medical experience and modern precision medicine. Among these,
predicting microbe-disease associations (MDAs), a critical step in
understanding disease mechanisms and identifying drug
intervention targets, has emerged as a frontier direction for AI-
empowered traditional drug discovery. While existing methods have
made progress in MDA prediction. These methods can be divided
into three categories: matrix factorization-based methods, link
propagation-based methods, and deep learning-based methods.

Matrix factorization-based approaches have been pivotal in
predicting MDAs. A low-rank sparse matrix completion is used
to augment the association (Yu et al., 2024). A heterogeneous
network is constructed by disease and microbe similarities, and
then simplified the MDA prediction task into a low-rank matrix
completion problem (Liu Haiyan et al., 2023). The weighted
k-nearest neighbor algorithm and cross-domain matrix
factorization is used to optimize the association matrix for
prediction (Chen Jing et al., 2024). The generalized matrix
factorization based on weighted hypergraph learning is designed
to enhance the prediction (Ma and Liu, 2022). Low-rank
representation is used to fuse multiple similarity information to
capture more comprehensive features (Liu Jin-Xing et al., 2023).
Microbe-disease similarities and known associations are integrated
to build a heterogeneous network (Yan et al., 2021). Multiple
similarity measures are used to construct Kronecker similarities
(Xu et al., 2021). Matrix factorization-based methods play a
significant role in MDA prediction. However, they also face
challenges, such as dealing with complex data and improving
computational efficiency. These methods often struggle when the
data has high-dimensionality or complex non-linear relationships.
The computational cost of matrix operations, especially in large-
scale datasets, can be prohibitively high, limiting their practical
application in real - time or resource-constrained scenarios.

Link propagation-based methods provide an alternative way to
predict MDAs. Network topological similarity is used to constructed
a heterogeneous network and assigns its weights (Luo and Long,
2020). A computational model of node-information-based link
propagation is designed for MDAs (Peng Li et al., 2020). PU
learning is used to select reliable negative samples and the
Mahalanobis distance function with the k-nearest neighbor
algorithm is used for prediction (Wang Jianru et al., 2023).
Multiple similarities are integrated by two-tier bi-random walk
and the weighted k-nearest neighbor algorithm is used for
prediction (Yin et al., 2023). A bi-directional heterogeneous
microbial disease network is constructed by integrating multiple
similarities, including Gaussian kernel similarity, microbial function
similarity, disease semantic similarity, and disease symptom
similarity and the neighbor information of the network is learned
by random walk (Guan et al., 2022). A new method is designed by
integrating multiple data sources and path-based heteSim scores
(Fan et al., 2019). A linear neighborhood label propagation with
multi-order similarity fusion learning is proposed for MDA
perdition (Chen Ruibin et al., 2024). Microbe and disease
networks with known associations are integrated to calculate
similarities (Yan et al., 2020). Network consistency projection

and label propagation are used together for MDA (Yin et al.,
2022). These methods leverage different network-based
techniques and algorithms to effectively predict MDA, but they
also face challenges like handling noisy data and improving
prediction accuracy in complex scenarios. Noisy data can lead to
inaccurate similarity calculations and network construction, thus
affecting the prediction results. In complex scenarios with many
interacting factors, it becomes difficult to accurately capture and
model all the relationships, resulting in lower prediction accuracy.

Deep learning-based methods have revolutionized the field of
predicting MDAs, offering advanced techniques to handle complex
data and capture intricate relationships. These methods can be
broadly classified into two categories: those centered around
neural network-based feature extraction and classification, and
those leveraging graph-based deep learning architectures.

Some methods focus on using neural networks to extract
features. A deep sparse autoencoder neural network is used to
extract effective features from the data and then a random forest
classifier is used to predict potential MDA (Wang Liugen et al.,
2023). A non-negative matrix tri-factorization model, bi-random
walk model, and capsule neural network are used together to extract
features from different perspectives (Peng et al., 2023). A specific
activation function and an initial weight optimizing method are used
to improve the training speed and prediction accuracy (Li et al.,
2021). The disease and microbe one-hot encodings are fed into
neural network, which is transformed into a low-dimensional dense
vector in implicit semantic space via embedding layer (Liu et al.,
2021). A large-scale information network embedding is designed for
network embedding (Wang et al., 2022). A dual network contrastive
learning is used to learn the representation (Cheng et al., 2023). A
text mining framework based on a pretrained model BERE is
designed for microbe-disease interaction extraction (Wu et al.,
2021). A multi-view multi-modal network and a multi-scale
feature fusion mechanism are used together (Wang Shuang et al.,
2024). These methods centered around neural network-based
feature extraction and classification have shown great potential.
However, they may suffer from issues such as overfitting, especially
when the training data is limited. Additionally, the interpretability of
these models is often poor, making it difficult to understand how
they arrive at their predictions, which can be a significant drawback
in medical applications where explainability is crucial.

Microbe-disease relationships are typically graph-structured
data, and many graph-based deep learning methods have been
designed. An autoencoder and adversarial regularization
mechanism is used to learn node representations (He et al.,
2024). Graph convolutional networks are used to learn the
embeddings of diseases and microbes that integrates various
associations and similarities (Wu et al., 2025). A graph attention
network which contains components like a decomposer, combiner,
and predictor is designed to effectively analyze and predict
associations (Liu et al., 2022). A microbe-drug-disease tripartite
network is constructed and furthered processed by a relation graph
convolutional network (Wang Yueyue et al., 2023). Multiple layers
of embedding features are learned by graph SAGE (Dai et al., 2023).
A novel graph autoencoder framework that utilizes decoupled
representation learning and multi-scale information fusion
strategies to efficiently infer potential MDAs (Wang Wentao
et al., 2024). Graph convolutional networks and multi-
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neighborhood graph convolutional networks are used for feature
extraction and structure information capture (Chen and Chen,
2024). A higher-order graph attention network is used to extract
the features for the node, and an inner product decoder is used to
reconstruct the MDA matrix (Wang et al., 2022). A graph
convolutional network to learn embeddings for diseases and
microbes, and a score function is used for prediction (Jiang et al.,
2023). Furthermore, deep sparse auto-encoder (Lu et al., 2023),
graph variational autoencoders (Zhu et al., 2024), generative
adversarial networks (Naik et al., 2024), multi-attention blocks
(Hua et al., 2022) are leveraged in the graph-based deep learning
architectures. These methods, while effective in capturing graph-
related information, face challenges like high computational
complexity due to the intricate graph operations. They may also
be sensitive to the quality of the graph construction, and small errors
in graph data can lead to significant deviations in prediction results.
Moreover, similar to other deep learning models, their
interpretability remains a challenge, which is a concern in
medical research and diagnosis.

To overcome the numerous problems of the above - mentioned
methods and further improve the prediction performance of MDAs,
this paper elaborately designs a prediction method based on double
variational autoencoders (DVAMDA). This method ingeniously
integrates double variational autoencoders and multi-information
fusion techniques to construct an efficient prediction framework.
Specifically, the graph SAGE encoder is first used to preliminarily
explore the local and global structural features of nodes, laying a
foundation for subsequent analysis. Subsequently, through the
uniquely designed double variational autoencoders, the latent
probability distribution information is extracted from the initial
input data, and the graph-specific property information, such as
node connectivity and neighborhood relationships, is mined from
the output of the graph SAGE encoder. Then, these three key types
of information from different sources are fused, providing more in-
depth and extensive feature support for subsequent analysis and
prediction tasks. Finally, the Hadamard product operation and a
deep neural network (DNN) are applied to accurately predict
MDAs. Through this series of innovative designs, DVAMDA is
expected to break through the limitations of traditional methods and
achieve better results in the field of MDA prediction.

Overall, our contributions are summarized as follows:

(1) The double variational auto-encoders are pivotal. They
extract latent probability distribution for both DNN-like
features and graph-related characteristics at different levels.
The use of different-level loss functions can guide the model
to learn more meaningful features at different levels, train the
model with limited samples and enable an increase in
network depth.

(2) The multi-information fusion technique effectively combines
various feature types. By integrating outputs from different
components, DVAMDA comprehensively leverages the
advantages of diverse feature sources.

(3) The sequential use of the Graph SAGE Encoder and GVAEs
for graph feature extraction has unique benefits. The Graph
SAGE Encoder captures the basic graph structure, and the
GVAEs refine and expand on these features considering graph
- specific properties.

2 Materials and methods

The proposed DVAMDAmethod for MDA prediction follows a
multi-step framework, which is shown in Figure 1. Firstly, it
constructs a microbe-disease graph to represent the relationships
between microbes and diseases. Then, a Graph SAGE encoder is
utilized to extract features from this graph. Next, variational auto-
encoders and graph variational auto-encoders are employed to
process and transform the features. After that, microbe-disease
graphs are fused to integrate different aspects of information.
Subsequently, microbe-disease pairs are constructed. Finally, an
MDA predictor is used to predict the associations between
microbes and diseases based on the processed data and features.

2.1 Microbe–disease graph construction

In this study, an in-depth exploration of MDAs was conducted.
The data was predominantly sourced from two authoritative databases.
The simple statistics for the sample information of these two MDAs
datasets are shown in Table 1. The initial one is the HMDAD database,
accessible via the URL http://www.cuilab.cn/hmdad. This database has
been meticulously curated and encompasses 450 experimentally
validated associations. These associations pertain to as many as
39 distinct diseases and 292 diverse microbes, as elaborated in
reference (Ma et al., 2017). The experimentally validated
associations are of paramount significance as they furnish reliable
evidence for the correlation between microbes and diseases.

The Disbiome database, with its official website at https://
disbiome.ugent.be/home, was also incorporated. The Disbiome
database is even more comprehensive, accommodating a total of
4351 associations. These associations span across 218 different
diseases and 1052 various microbes, as cited in reference
(Janssens et al., 2018). The all-encompassing nature of the
Disbiome database enriches the dataset and enables a more
profound analysis.

The MMDA database (Chen Jing et al., 2024) is meticulously
assembled by integrating data sourced from the HMDAD (Schriml
et al., 2022), Disbiome (Long et al., 2021), and Peryton (Hua et al.,
2022) databases. Prior to integration, a series of rigorous data
preprocessing steps are implemented, including de-duplication,
simplification, and removal of irrelevant items.

Additionally, semantic similarity features of diseases and
functional similarity features of microbes were extracted from the
disease ontology database (Schriml et al., 2022). By utilizing the
microbe-disease association matrix, the Gaussian kernel similarity,
cosine similarity, and SIGMOD functional kernel similarity for both
microbes and diseases were calculated (Li et al., 2021). Given the
MDAmatrixA ∈ Rm×n, wherem and n are numbers of microbes and
diseases, features of microbes M can be calculated by Equation 1:

M � GK + CS + SK( )/3 (1)
Where GK, CS and SK represent the Gaussian kernel similarity,
cosine similarity, and SIGMOD functional kernel similarity
for microbes.

Similarly, features of diseases D can be calculated by Equation 2:

D � GK + CS + SK( )/3 (2)
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As can be seen from Table 1, the number of microbes is larger
than that of diseases. Therefore, the dimension of M is greater than
that of D. To make the dimensions of the two consistent, the zero -
padding method is used to pad the dimension of D to be the same as
that of M, obtaining D+. Finally, D+ and M are concatenated row-
wise to derive the hypergraph node feature matrix X by Equation 3:

X � M;D+[ ] (3)

After obtaining the X, based on the MDA matrix, the observed
microbe-disease graph was constructed and denoted as
G � <V, E,X> . In this graph, V encompasses all microbes and
diseases, E represents the set of observed MDAs, andX is defined as
the initial node feature representation, which serves as the
fundamental input for subsequent graph-based analysis and
prediction tasks.

FIGURE 1
DVAMDA structure.

TABLE 1 Simple statistics for the sample information of Three MDAs datasets.

Data sets Number of microbes Number of diseases Number of microbe- disease associations

HMDAD 292 39 450

Disbiome 1052 218 4351

MMDA 1177 134 4499

Frontiers in Pharmacology frontiersin.org04

Ye and Sun 10.3389/fphar.2025.1578140

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1578140


2.2 Graph SAGE encoder

In the task of MDA prediction, effectively extracting feature
information from the constructed microbe-disease graph is of
crucial importance. The graph sample and aggregate encoder
(Graph SAGE encoder) (Hamilton et al., 2017) is a robust graph
neural network encoder. Unlike traditional encoders that necessitate
global training on the entire graph, graph SAGE learns node
representations through sampling and aggregating the neighbors
of nodes. This characteristic endows it with high efficiency and
scalability when processing large-scale graph data. Given the large
number of microbe and disease nodes and their intricate associated
edges in the microbe-disease graph, graph SAGE is particularly well-
suited for this task. Moreover, it can capture the local structural
information of nodes, which is instrumental in uncovering the
potential relationships between microbes and diseases. This, in
turn, lays a solid foundation for subsequent feature processing
and association prediction.

Given the constructed microbe-disease graph G � <V, E,X> ,
for each node v ∈ V, at the lth layer, the graph SAGE encoder
updates its feature representation by aggregating the features of its
neighbor nodes. The aggregation process (Jiang et al., 2023) can be
expressed by Equation 4:

hlv � σ Wl · AGGREGATEl hl−1u ,∀u ∈ N v( ){ }( ) +Wl · hl−1v( ) (4)

Where hlv is the feature vector of node v at the lth layer. Wl is the
trainable weight matrix at the lth layer. σ is an activation function,
such as rectified linear unit (ReLU), etc., which is used to introduce
non-linearity. AGGREGATEl(·) is the aggregation function at the
lth layer. Common aggregation functions include mean aggregation,
long short-term memory aggregation, and pooling aggregation, etc
(Hamilton et al., 2017). In this study, the mean aggregation is used,
due to its high computational efficiency, ability to retain overall
neighbor information, and smoothing effect on feature
representation. the mean aggregation (Hamilton et al., 2017) can
be calculated by Equation 5:

AGGREGATEl hl−1u ,∀u ∈ N v( ){ }( ) � 1
N v( )| | ∑

u∈N v( )
hl−1u (5)

After passing through multiple graph aggregation layers defined
by Equation 1, the encoded microbe-disease graph ~G � <V, E, ~X>
can be obtained. Here, ~X represents the mid-level features that
possess graph-specific properties, including node connectivity and
neighborhood relationships. The graph SAGE encoder is a typical
graph neural network, and the features ~X extracted by it can be
directly utilized for MDA prediction. However, in the microbe-
disease graph, the number of edges is relatively small, resulting in a
sparse graph structure. This sparsity issue leads to a limited amount
of training data. When dealing with such sparse graphs, setting a
large number of layers in the graph SAGE encoder is not advisable.
A deeper architecture may cause the model to focus too much on
the limited training data, capturing noise and idiosyncrasies rather
than the underlying patterns. As a consequence, the trained model
is prone to overfitting, thus failing to generalize effectively in
practical MDA prediction scenarios. To address these challenges,
double variational auto-encoders are further employed for feature
extraction.

2.3 Double variational auto-encoders

After passing through the graph SAGE encoder, there are the
original microbe-disease graph G and the encoded microbe–disease
graph ~G. For these two types of data, variational auto-encoders
(VAEs) and graph variational auto-encoders (GVAEs) are
respectively employed for further processing.

VAEs are selected to handle the initial input due to their ability
to learn a probabilistic representation of the data. In the context of
MDA prediction, the initial input data typically contains complex
and noisy information. Microbial and disease-related data can be
affected by numerous factors, such as environmental variables,
genetic diversities, and experimental inaccuracies. VAEs can
effectively model the distribution of this data in a latent space.
This latent space representation enables better handling of the
uncertainty and variability present in the data. By mapping the
input data to the latent space, VAEs can capture the underlying
patterns and structures related to microbes and diseases. This
probabilistic representation is valuable as it can provide insights
into the relationships between different data points and assist in
generating new data points similar to the original ones, which can be
useful for predicting novel MDAs.

The encoding process of a VAE maps the input data x ∈ X to a
posterior distribution q∅(Z|X) over the latent variables Z, where∅
represents the parameters of the encoder (Diederik and Welling,
2019). Typically, the encoder approximates the posterior
distribution (Diederik and Welling, 2019) as a Gaussian
distribution with mean μ and variance σ2, as specified by
Equation 6:

q∅ Z|X( ) � Ν z; μ∅ X( ), σ2∅ X( )( ) (6)

The mean μ∅(X) and variance σ2∅(X) are calculated by
Equations 7, 8:

μ∅ X( ) � Encoder∅ X( ) (7)
σ2∅ X( ) � Encoder∅

′ X( ) (8)

Here, Encoder∅ and Encoder∅′ are neural network functions
parameterized by ∅. Given that the sample size of MDA data is
relatively small, and the purpose of the double variational auto-
encoders is to extract features at different levels, the Encoder∅ only
consists of a single linear layer, and the Encoder∅′ only includes a
linear layer followed by a normalization layer, as shown in Figure 1.
The limited sample size restricts the complexity of the encoder
architecture to avoid overfitting. A simple linear layer in Encoder∅
can capture the basic linear relationships in the data. The addition of
a normalization layer in Encoder∅′ helps to standardize the output,
making the variance calculation more stable and facilitating better
training of the VAE model.

After the graph SAGE encoder processes the microbe-disease
graph and generates node embeddings, GVAEs are utilized. GVAEs
are specifically designed to handle graph-structured data within a
variational framework. The node embeddings obtained from the
graph SAGE encoder encapsulate both the local and global structural
information of the graph within a feature space. GVAEs have the
ability to further model the distribution of these embeddings in a
latent space while simultaneously taking into account graph-specific
properties such as node connectivity and neighborhood
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relationships. Node connectivity determines how closely related
different nodes are in the graph, and neighborhood relationships
describe the immediate and extended surroundings of each node. By
considering these properties, GVAEs can extract more refined and
graph-aware latent representations. These representations are of
utmost importance for accurately predicting MDAs as they are
capable of capturing the complex topological and relational
information present in the graph.

Given the ~G � <V, E, ~X> obtained by graph SAGE encoder,
the encoder of a GVAE maps the ~G to a posterior distribution
~q ~∅ ( ~Z| ~G) over the latent node embeddings ~Z. Similar to VAEs, it can
be modeled as a Gaussian distribution with mean ~μ and variance ~σ2,
as defined by Equation 9.

~q ~∅
~Z
∣∣∣∣∣∣ ~G( ) � Ν ~Z; ~μ ~∅

~G( ), ~σ2~∅ ~G( ))( (9)

The mean ~μ ~∅ ( ~G) and variance ~σ2~∅ ( ~G) are calculated using two
graph-neural network-based encoders, represented by Equations 10,
11, respectively.

~μ ~∅
~G( ) � GNNEncoder ~∅

~G( ) (10)
~σ2~∅

~G( ) � GNNEncoder ~∅
′ ~G( ) (11)

Where GNNEncoder ~∅ and GNNEncoder ~∅
′ are graph neural

network functions parameterized by ∅. Since the input of the
GVAE is the output of the Graph SAGE Encoder,
GNNEncoder ~∅ contains a single graph convolutional layer, and
GNNEncoder ~∅

′ contains a graph convolutional layer followed by a
normalization layer, as shown in Figure 1. The graph convolutional
layer in GNNEncoder ~∅ can effectively aggregate information from
neighboring nodes in the graph, leveraging the graph structure to
enhance the latent representation. The normalization layer in
GNNEncoder ~∅

′ helps to stabilize the variance calculation, which
is beneficial for the training of the GVAE model.

After passing through the double variational autoencoders
composed of VAEs and GVAEs, the encoding result Z from VAEs
and ~Z from GVAEs are obtained. The encoding result Z of VAEs
captures the latent probability distribution information of the initial
input data, highlighting the internal patterns and uncertainties within
the data. It provides a probabilistic understanding of the data, which
can be crucial for uncovering hidden relationships. The encoding
result ~Z from GVAEs further delves into the encoding results
processed by the graph SAGE encoder from the perspective of the
graph structure. It extracts latent features that aremore sensitive to the
graph structure, enabling a more comprehensive understanding of the
relationships between nodes in the microbe-disease graph. These
graph-structure-aware latent features are highly relevant for
accurate MDA prediction, as they can better represent the
complex topological and relational characteristics of the graph.

2.4 Multi-source information fusion

In the realm of MDA prediction, different encoders exhibit
distinct advantages and focal points during the data-processing
phase. The encoding result Z produced by VAEs captures the
latent probability distribution information inherent in the initial
input data. This is particularly significant as it accentuates the

internal patterns and uncertainties within the data. In the context
of MDA, where the data can be influenced by a plethora of factors
such as environmental variables, genetic diversities, and
experimental inaccuracies, the ability of VAEs to model the data
in a latent space provides a probabilistic understanding. This
understanding is crucial for uncovering hidden relationships
between microbes and diseases, as it can assist in generating new
data points similar to the original ones, which may be beneficial for
predicting novel associations.

On the other hand, the encoding result ~Z obtained from GVAEs
delves deeper into the encoding results processed by the Graph
SAGE Encoder from the perspective of the graph structure. GVAEs
are designed to handle graph-structured data within a variational
framework. The node embeddings from the graph SAGE encoder
already encapsulate local and global structural information of the
graph in a feature space. GVAEs, by taking into account graph-
specific properties like node connectivity (which determines the
degree of connection between different nodes in the graph) and
neighborhood relationships (describing the immediate and
extended surroundings of each node), can extract more refined
and graph-aware latent representations. These representations are of
utmost importance for accurately predicting MDAs, as they can
better capture the complex topological and relational information
present in the graph.

The output ~X of the graph SAGE encoder itself contains valuable
local and global structural information of the nodes. This information
is a result of the graph SAGE encoder’s unique approach of learning
node representations through sampling and aggregating the neighbors
of nodes, which endows it with high efficiency and scalability when
dealing with microbe-disease graph data.

Concatenating these three distinct sources of information, namely,
Z, ~Z, and ~X, enables the integration of information at different levels
and from different perspectives. The process of concatenation allows
for a more comprehensive representation of the microbe-disease
relationships. By combining the probabilistic information from
VAEs, the graph-structure-aware information from GVAEs, and the
structural information from the graph SAGE encoder, the new node
features can better capture the complex patterns in the microbe-disease
relationships. This comprehensive representation provides more
powerful feature support for subsequent analysis and prediction
tasks in the context of MDA.

Given the VAE result Z, the GVAE result ~Z, and the graph
SAGE encoder result ~X, they are fused according to Equation 12:

X̂ � Z, ~Z, ~X[ ] (12)

As a consequence, the fused microbe–disease graph can be
denoted as ~G � <V,E, X̂> . This fused graph, with its enriched
feature representation, has the potential to improve the
performance of MDA prediction models by providing a more
complete and accurate description of the relationships between
microbes and diseases.

2.5 Microbe–disease association predictor

Upon the construction of the fused microbe-disease graph, the
predictor focuses on the embedding vectors of a particular microbe
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node x̂m and a disease node x̂d derived from this graph. In the
domain of graph-based prediction models, many graph auto-
Encoder models, which are likely the underlying framework for
the predictor in this study, typically utilize concatenation or inner-
product calculations to carry out decoding tasks (Tan et al., 2023).
However, considering the relatively small scale of the microbe-
disease data, in order to alleviate the complexity for the
subsequent neural network to learn the relationship between x̂m

and x̂d, the Hadamard product is adopted to integrate the outputs of
x̂m and x̂d. Mathematically, this operation is expressed by
Equation 13:

ẑ � x̂m ⊙ x̂d (13)

Where the symbol ⊙ represents the Hadamard product
operation. This element-wise multiplication effectively combines
the features of the microbe and disease nodes at each corresponding
dimension, resulting in a new vector ẑ that encapsulates the joint
information of both nodes.

Subsequently, after the Hadamard product operation, the
resulting vector ẑ is then fed into a subsequent neural network
layer for predicting the association. This process can be represented
by Equation 14:

smd � DNNPredictor∅̂ ẑ( ) (14)

Here, DNNPredictor consists of multiple linear layers and
activation layers, all parameterized by ∅̂. The output smd

represents the predicted association score for the microbe m and
disease d pair. This score serves as an indication of the likelihood of
an association between the two entities, with higher values
suggesting a stronger potential association.

2.6 Optimization goals

The training of the model encompasses two primary types of loss
functions: the Kullback-Leibler (KL) divergence loss and the
predictor loss.

The KL divergence is a well-established metric for quantifying
the difference between two probability distributions. In the context
of the VAEs and GVAEs employed in the DVAMDA method, the
KL divergence plays a crucial role in ensuring that the learned
approximate posterior distribution of the latent variables closely
aligns with a predefined prior distribution. By minimizing the KL
divergence, the model is regularized, which in turn makes the latent
space more semantically meaningful and interpretable. This
regularization effect helps prevent overfitting and encourages the
model to learn more generalizable patterns in the data.

Specifically, the KL divergence losses for VAEs and GVAEs are
defined by Equations 15, 16:

KL q∅ Z|X( )����p Z( )( ) � 1
2
∑
D

i�1
σ2i + μ2i − log σ2i( ) − 1( ) (15)

KL(~q ~∅
~Z ~G)
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣~p ~Z( )( ) � 1

2
∑
D

i�1
~σ2i + ~μ2i − log ~σ2i( ) − 1( ) (16)

WhereD denotes the dimension of the latent space. These equations
quantify the dissimilarity between the learned posterior distribution

and the prior distribution, guiding the model to learn a latent
representation that adheres to the assumed prior characteristics.

The predictor loss, on the other hand, is intricately related to the
MDA predictor within the DVAMDA method. Its fundamental
purpose is to measure the disparity between the predicted
associations and the actual known associations present in the
training data. By minimizing this loss during the training
process, the model is optimized to make more accurate
predictions of MDAs.

Let smd represent the predicted probability of an association
between microbe m and disease d, and ymd denote the true label,
where ymd � 1 indicates an existing association and ymd � 0
indicates no association. The binary cross-entropy loss is utilized
to evaluate the predictor loss for this microbe - disease pair.
Mathematically, it is defined by Equation 17:

Lmd � −ymd log smd( ) − 1 − ymd( )log 1 − smd( ) (17)

This loss function penalizes the model more severely for
incorrect predictions, with the logarithm function amplifying the
cost of misclassifications. The total predictor loss Lpred over all
microbe-disease pairs in the training set S is computed by
Equation 18:

Lpred � 1
S| | ∑

m,d( )∈S
Lmd (18)

This average over all pairs in the training set provides a
comprehensive measure of the model’s prediction error with
respect to the known associations.

Consequently, the overarching optimization objective of the
model is formulated by Equation 19:

L � Lpred − β∅LKL∅ − β ~∅ LKL ~∅ (19)

This objective function balances the trade-off between
minimizing the predictor loss (to improve prediction accuracy)
and minimizing the KL divergence losses of the VAEs and
GVAEs (to ensure the quality and interpretability of the latent
space). The hyperparameters β∅ and β ~∅ control the relative
importance of the KL divergence losses in the overall
optimization process, allowing for fine-tuning of the model’s
performance based on the characteristics of the microbe-
disease data.

3 Results

3.1 Experimental setting

In this experimental investigation, two datasets, namely,
HMDAD and Disbiome, as presented in Table 1, were utilized to
validate the proposed DVAMDA. To comprehensively evaluate the
performance of the DVAMDA, a five-fold cross-validation
technique was employed. In the five-fold cross-validation
framework, the set of known MDAs was randomly partitioned
into five non-overlapping subsets. For each iteration of model
training, five of these subsets were designated as the training set,
while the remaining one subset was used as the test set. This process
was iterated five times, ensuring that every subset had the
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opportunity to serve as the test set. This approach helps to
provide a more accurate and robust assessment of the model’s
prediction ability, as it exposes the model to different
combinations of training and test data. Given the scarcity of
negative samples in the MDA data, a specific strategy was
implemented to address this issue. An equal number of unknown
associations as the number of known associations were selected
to serve as negative samples. This balanced sampling method is
crucial for obtaining reliable evaluation metrics, as it ensures that
the model is not biased towards the more abundant positive or
negative samples.

To quantitatively assess the performance of the MDA
predictions made by the DVAMDA model, several well-
established evaluation metrics were utilized. These metrics
include the area under the ROC curve (AUC), which measures
the model’s ability to distinguish between positive and negative
samples across all possible classification thresholds. A higher AUC
value indicates better discrimination power. The area under the
precision-recall curve (AUPR) was also employed. AUPR focuses on
the trade-off between precision (the proportion of true positives
among the predicted positives) and recall (the proportion of true
positives that are correctly identified). In addition, accuracy (ACC),
which represents the proportion of correct predictions (both
positive and negative) out of the total number of predictions, was
calculated. Precision (PRE), defined as the ratio of true positives to
the sum of true positives and false positives, and the F1-score (F1),
which is the harmonic mean of precision and recall, were also used.
These metrics together provide a comprehensive evaluation of the
model’s performance in terms of prediction accuracy, precision,
recall, and the ability to handle imbalanced data in the context of
MDA prediction.

3.2 Performance evaluation

To comprehensively assess the generalization capacity of the
DVAMDA model and analyze its performance variances across
different training and testing datasets, the outcomes of the five-fold
cross-validation were meticulously examined and are presented in
Tables 2, 3.

Table 2 details the five-fold cross-validation results obtained on
the HMDAD database. The AUC serves as a crucial metric for
evaluating the model’s ability to distinguish between positive and
negative classes across all possible classification thresholds. For the
five folds, the AUC values are 0.9515, 0.9736, 0.9448, 0.9641, and
0.9684 respectively, with an average value of 0.9605. A high average
AUC value indicates that the model exhibits excellent
discrimination ability in differentiating between positive and
negative samples within the HMDAD dataset. The AUPR is
another significant metric. For each fold on the HMDAD
database, the AUPR values are 0.9579, 0.9776, 0.9409, 0.9724,
and 0.9576, averaging 0.9613. This high average AUPR value
implies that the model performs quite well in optimizing the
precision-recall trade-off within the context of the HMDAD
dataset. The fold-specific ACC values are 0.8951, 0.9284, 0.8703,
0.9277, and 0.9077, with an average of 0.9058. This relatively high
average accuracy demonstrates that the model has a relatively high
overall prediction accuracy when tested on the HMDAD database.
The PRE values for the five folds are 0.9451, 0.9321, 0.8752, 0.9055,
and 0.8757, with an average of 0.9067. This average value suggests
that the model has a considerable proportion of correctly predicted
positive samples in the HMDAD database. For each fold on the
HMDAD database, the F1 values are 0.8881, 0.9278, 0.9120, 0.9077,
and 0.9177, with an average of 0.9107. This average F1 indicates that
the model achieves a relatively balanced performance in terms of
precision and recall on the HMDAD database.

Table 3 shows the 5-fold cross-validation results on the
DISBIOME database. The AUC values for the five folds are
0.9568, 0.9521, 0.9420, 0.9426, and 0.9454, with an average of
0.9478. The AUPR values are 0.9471, 0.9349, 0.9329, 0.9273, and
0.9338, averaging 0.9352. The ACC values are 0.8811, 0.8792,
0.8683, 0.8616, and 0.8638, with an average of 0.8708. The PRE
values are 0.8824, 0.8891, 0.8624, 0.8625, and 0.8675, with an
average of 0.8728. The F1 values are 0.8808, 0.8776, 0.8693,
0.8613, and 0.8630, with an average of 0.8704.

Table 4 presents the 5-fold cross-validation results of the
DVAMDA model on the MMDA database, which integrates data

TABLE 2 Results of 5-fold cross-validation on HMDAD database.

Index AUC AUPR ACC PRE F1

1 0.9515 0.9579 0.8951 0.9451 0.8881

2 0.9736 0.9776 0.9284 0.9321 0.9278

3 0.9448 0.9409 0.8703 0.8752 0.9120

4 0.9641 0.9724 0.9277 0.9055 0.9077

5 0.9684 0.9576 0.9077 0.8757 0.9177

Average 0.9605 0.9613 0.9058 0.9067 0.9107

TABLE 3 Results of 5-fold cross-validation on Disbiome database.

Index AUC AUPR ACC PRE F1

1 0.9568 0.9471 0.8811 0.8824 0.8808

2 0.9521 0.9349 0.8792 0.8891 0.8776

3 0.9420 0.9329 0.8683 0.8624 0.8693

4 0.9426 0.9273 0.8616 0.8625 0.8613

5 0.9454 0.9338 0.8638 0.8675 0.8630

Average 0.9478 0.9352 0.8708 0.8728 0.8704

TABLE 4 Results of 5-fold cross-validation on MMDA database.

Index AUC AUPR ACC PRE F1

1 0.9577 0.9572 0.8171 0.9755 0.7789

2 0.9408 0.9485 0.8176 0.9773 0.7799

3 0.9416 0.9447 0.7874 0.9681 0.7353

4 0.9546 0.9531 0.7851 0.9619 0.7334

5 0.9638 0.9608 0.7842 0.9733 0.7290

Average 0.9517 0.9529 0.7983 0.9712 0.7513
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from multiple sources to form a comprehensive dataset with
1177 microbes, 134 diseases, and 4499 associations. The model
achieves an average AUC of 0.9517 and AUPR of 0.9529,
demonstrating strong discriminative ability in distinguishing
positive and negative associations across all folds. The average
ACC is 0.7983, reflecting a relatively high overall prediction
correctness despite the dataset’s complexity. Notably, the model
excels in PRE, with an average of 0.9712, indicating a high reliability
of predicted positive associations. The F1-score, averaging 0.7513,
balances precision and recall, showcasing the model’s capacity to
handle imbalanced data. Overall, DVAMDA performs robustly on
MMDA, highlighting its effectiveness in capturing complex microbe-
disease relationships even in large-scale, heterogeneous networks.

In summary, the performance evaluation based on the five-fold
cross-validation on both the HMDAD and Disbiome databases
reveals that the DVAMDA model shows strong performance on
these two datasets.

3.3 Comparisons with existing methods

To comprehensively evaluate the efficacy of the newly-proposed
DVAMDA model, which ingeniously integrates double variational
auto-encoders and multi-information fusion techniques, a rigorous
comparative analysis is conducted against a selection of prominent
models that are widely utilized inMDA tasks. The comparisonmodels
incorporated in this study are elaborated upon in detail as follows:

BiRWHDMA represents a bi-random wandering-based
approach that operates within a heterogeneous network
framework (Zou et al., 2017).
MVGCNMDA is a multi-view graph augmented convolutional
network model, capitalizes on the power of graph convolutional
networks (Hua et al., 2022).
RNMFMDA focuses on the crucial aspect of reliable negative
sample selection which s based on the concepts of random
wandering with restart and positive unmarked learning (Peng
Lihong et al., 2020).
GATMDA combines graph attention networks and inductive
matrix complementation (Long et al., 2021).
NTSHMDA is a novel computational model that integrates
network topological similarity through random walk
algorithms (Luo and Long, 2020).
MDAKRLS is founded on Kronecker regularized least squares
with different Kronecker similarities (Cheng et al., 2023).
MNNMDA applies a matrix nuclear norm method to known
microbe and disease data (Liu Haiyan et al., 2023).
CMFHMDA decomposes the MDA matrix into lower-
dimensional matrices, representing the latent factors of
microbes and diseases (Ma and Liu, 2022).
NCPLP is built upon the principles of network consistency
projection and label propagation (Yin et al., 2022).
MSLINE integrates multiple similarities and large-scale
information network embedding based on known associations
(Wang et al., 2022).
DSAERF introduces RF as the final classifier model because it can
work effectively on large datasets and have high training speed
and accuracy (Chen Jing et al., 2024).

LRLSHMDA developes a semi-supervised computational model
by introducing Gaussian interaction profile kernel similarity
calculation and Laplacian regularized least squares classifier
(Wang et al., 2017).
ABHMDA developes a model of Adaptive Boosting by
calculating the relation probability of disease-microbe pair
using a strong classifier (Peng et al., 2018).

The HMDAD database, containing 292 microbes, 39 diseases,
and 450 experimentally validated associations, serves as a
benchmark for evaluating microbe-disease association prediction
models. Figures 2, 3 present the area under the receiver operating
characteristic curve (AUC) and the area under the precision-recall
curve (AUPR), respectively.

The proposed DVAMDA achieved an average AUC of
0.9605 and an AUPR of 0.9613, significantly outperforming
comparative methods. For instance, MVGCNMDA, a multi-view
graph convolutional model, achieved AUC and AUPR values of
0.9303 and 0.9194, respectively—highlighting DVAMDA’s
advantage in fusing latent probability distributions from raw data
with graph-structured features via dual variational autoencoders.
Traditional approaches like BiRWHMDA, relying on bi-random
walks in heterogeneous networks, lagged notably with AUC =
0.8804 and AUPR = 0.8344, demonstrating the limitations of
shallow topological similarity measures in capturing complex
associations. These results indicate that DVAMDA’s multi-
information fusion strategy enhances model generalization even
in small-scale, sparse datasets, enabling precise identification of
disease-related microbes.

The Disbiome database encompasses 1052 microbes,
218 diseases, and 4351 associations, presenting challenges due to
its large scale and heterogeneous structure. As shown in Figures 4, 5,
DVAMDAmaintained robust performance with an average AUC of
0.9478 and an AUPR of 0.9352, surpassing competing methods.
Compared to MVGCNMDA—achieving AUC = 0.9053 and
AUPR = 0.9234—DVAMDA’s Graph SAGE encoder, combined
with graph variational autoencoders, more effectively integrates
local neighborhood aggregation and global structural
information. This improves representation learning for nodes
with sparse connections. Methods like BiRWHMDA, which
exhibit sensitivity to noisy data and dependence on heuristic
similarity metrics, showed reduced performance (AUC = 0.9150,
AUPR = 0.8148). The results emphasize DVAMDA’s capability to
model graph-specific properties such as node connectivity and
neighborhood relationships, ensuring stable performance in
medium-scale networks and providing a reliable framework for
mining disease-associated microbiomes.

The MMDA database, integrating 1177 microbes, 134 diseases,
and 4499 associations from multiple sources, serves as a critical
testbed for large-scale, complex network scenarios. Figures 6, 7 show
that DVAMDA achieved state-of-the-art results with an AUC of
0.9517 and an AUPR of 0.9529, outperforming eight comparative
methods. Models such as ABHMDA and DSAERF-relying on
ensemble learning or deep autoencoders—lagged behind due to
limitations in fusing multi-source features and extracting
hierarchical graph structures, achieving AUC values of
0.9478 and 0.9354, respectively. Traditional approaches like
BiRWHMDA and NTSHMDA exhibited substantial gaps, with
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AUC values of 0.7045 and 0.7567, respectively. This highlights the
inefficiency of single-similarity metrics in heterogeneous networks.
DVAMDA’s superiority stems from its hierarchical framework: the
Graph SAGE encoder captures fundamental structural priors, while
dual variational autoencoders refine these features with probabilistic
and graph-specific information. This synergy enables robust
modeling of non-linear relationships and mitigates data sparsity,
establishing DVAMDA as a scalable solution for predicting
microbe-disease associations in large-scale networks and
supporting evidence-based traditional medicine discovery.

In conclusion, through the comparison presented in Figures 2–7,
it is evident that our DVAMDA model, with its innovative use of
double variational autoencoders and multi-information fusion,
demonstrates superior performance in predicting MDAs

compared to existing models, whether on the HMDAD database
or the Disbiome database.

3.4 Ablation study

To validate the role of each core component in the DVAMDA
model, an ablation study was conducted by removing key modules,
replacing graph encoding methods, and adjusting the link prediction
strategy. The performance results on the HMDAD, Disbiome, and
MMDA datasets (Table 5) reveal the critical contributions of the
graph neural network encoder, dual variational autoencoders
(DVA), and multi-information fusion strategy in capturing
complex microbe-disease associations.

FIGURE 2
AUCs of the performance comparison on HMDAD database.

FIGURE 3
AUPRs of the performance comparison on HMDAD database.
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3.4.1 Impact of key components removal
Six configurations were tested to evaluate the necessity of core

components, with each configuration integrating descriptions of
setups, performance, and mechanistic insights through coherent
narratives:

3.4.1.1 Full model (SAGE + DVA + Predictor)
As the baseline setup, this configuration combines the Graph

SAGE encoder, dual variational autoencoders (DVA, including
VAEs for modeling raw data distributions and GVAEs for
extracting graph-structured features), and a Hadamard product-
based deep neural network (DNN) predictor. It achieved state-of-
the-art performance with AUC values of 0.9605, 0.9478, and 0.9517,
and AUPR values of 0.9613, 0.9352, and 0.9529 on the HMDAD,
Disbiome, and MMDA datasets, respectively. All metrics were
optimal, demonstrating the synergy between Graph SAGE’s
extraction of nodal structural features, DVA’s fusion of latent
probability distributions from raw data and graph structures, and
the predictor’s capture of non-linear associations to form a
comprehensive feature learning and prediction framework.

3.4.1.2 Removing graph SAGE encoder (DVA + Predictor)
This configuration excludes the Graph SAGE encoder, directly

feeding raw node features (such as microbial functional similarities
and disease semantic features) into DVA for feature transformation
before prediction. Performance showed notable declines: the
HMDAD AUC dropped to 0.9476, a decrease of 1.3%; the
Disbiome AUC fell to 0.9333, a decrease of 1.5%; and the
MMDA AUC decreased to 0.9066, a decrease of 4.7%. This is
attributed to the critical role of Graph SAGE’s neighborhood
aggregation in extracting local and global structural priors;
without it, DVA processes raw features lacking structural context,
reducing the richness of latent representations.

3.4.1.3 Removing dual variational autoencoders (SAGE
+ Predictor)

Retaining the Graph SAGE encoder but removing DVA, this
configuration uses the encoder’s output features directly for
prediction via the Hadamard product and DNN. Moderate
performance reductions were observed: the HMDAD AUC was
0.9513, a decrease of 0.9% compared to the full model; the Disbiome

FIGURE 4
AUCs of the performance comparison on Disbiome database.

FIGURE 5
AUPRs of the performance comparison on Disbiome database.
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AUC was 0.9205, a decrease of 2.7%; and the MMDA AUC was
0.9020, a decrease of 5.0%. The mechanism behind this is that
without DVA, the model relies solely on Graph SAGE’s structural
features, missing the latent probability distributions of raw data (a
function of VAEs) and graph-specific properties (a function of
GVAE). This leads to a bias toward structural information,
ignoring deep associations in non-structural attributes such as
microbial functional similarities.

3.4.1.4 Retaining only graph variational autoencoders (GVA
+ Predictor)

By removing both the VAE and Graph SAGE, this
configuration uses GVAEs to process dimension-aligned raw
node features and extract graph-structured latent features (such
as nodal connectivity and neighborhood relationships) for
prediction. Substantial performance drops occurred: the
HMDAD AUC decreased to 0.9402, a decrease of 2.1%; the
Disbiome AUC fell to 0.9335, a decrease of 1.5%; and the
MMDA AUC dropped to 0.8765, a decrease of 7.5%. Although
GVAEs capture deep graph-structural features, the absence of

VAE’s modeling of raw data distributions (e.g., microbial
functions, disease semantics) restricts feature representations to
structural information, failing to integrate non-structural latent
associations that are critical for microbe-disease association
(MDA) prediction.

3.4.1.5 GVA with node degree features (GVA + degree
+ Predictor)

This configuration adds node degree, a handcrafted topological
feature measuring nodal connectivity, to GVA outputs for feature
fusion before prediction. Specifically, when constructing the
hypergraph G � <V, E, X> , the degree encoder processes node
degrees to capture structural context. It is integrated into the
feature-encoding stage, where it helps refine the initial node
feature matrix X. For the detailed process of using the degree
encoder, please refer to Reference (Tan et al., 2023). By encoding
degree-related structural information, it aids in better representing
microbes and diseases within the hypergraph framework. The
performance showed marginal declines or plateaus: the
HMDAD AUC decreased by 0.0006, the Disbiome AUC

FIGURE 6
AUCs of the performance comparison on MMDA database.

FIGURE 7
AUPRs of the performance comparison on MMDA database.
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decreased by 0.0028, and the MMDA AUPR experienced a
significant decrease of 4.9%. This indicates that node degree, as
a shallow topological metric, is redundant with the deep graph-
structural features learned by GVAEs and may introduce noise.
GVAEs already distill core neighborhood relationships through
variational inference, making handcrafted features unnecessary
and potentially detrimental to model efficiency.

3.4.1.6 Full model with node degree features (SAGE+DVA+
degree + Predictor)

By concatenating node degree with the outputs from Graph
SAGE, VAE, and GVAE for feature fusion in the full model, notable
degradations were observed: the HMDAD AUC was 0.9423, a
decrease of 1.9% compared to the full model; the Disbiome AUC
was 0.9302, a decrease of 1.8%; and the MMDA AUC was 0.9342, a
decrease of 1.8%. The reason lies in the fact that the full model’s
multi-information fusion already integrates structural, probabilistic,
and graph-specific features. Adding node degree introduces low-
value information that disrupts the consistency of deep-learned
features, confirming that end-to-end learning outperforms
manual feature engineering.

3.4.2 Effects of alternative graph
encoding methods

To validate the irreplaceability of the Graph SAGE encoder
together with DVA, three graph embedding techniques were
compared, such as Node2Vec (Grover et al., 2016), large-scale
information network embedding (LINE) (Tang et al., 2015), and
graph convolutional network (GCN), each differing in their
approach to structural encoding and scalability in sparse graphs:

3.4.2.1 Node2Vec
Node2Vec generates node embeddings via biased randomwalks,

balancing local (BFS) and global (DFS) structural exploration to
capture multi-scale relationships. However, in microbe-disease
networks—characterized by sparsity and complex long-range
associations-its performance was suboptimal, achieving
AUC ≤0.60 on HMDAD and ≤0.87 on Disbiome. The method’s
reliance on random walks led to insufficient exploration of global
structures in sparse graphs, limiting its ability to model high-order
nodal relationships essential for accurate MDA prediction.

3.4.2.2 LINE
LINE explicitly models first-order (direct edges) and second-

order (shared neighbors) similarities, making it efficient for large
sparse graphs. However, it underperformed in this task, with AUC
metrics comparable to Node2Vec (HMDAD ≤0.60,
Disbiome ≤0.87). The limitation stems from its focus on shallow
neighborhood statistics, which fail to capture the complex
topological and functional associations inherent in microbe-
disease networks. Specifically, LINE’s neglect of higher-order
structural dependencies (e.g., community-level interactions)
resulted in impoverished feature representations.

3.4.2.3 GCN
GCN aggregates features from nodes and their neighbors via

graph convolution, effectively capturing local structural
information. It achieved moderate performance (HMDAD
AUC = 0.9370) but still lagged behind Graph SAGE. The
shortfall arises from GCN’s reliance on full adjacency matrices,
which are inefficient and less robust for sparse graphs like MDAs. In

TABLE 5 Results of ablation study.

Method HMDAD Disbiome MMDA

AUC AUPR AUC AUPR AUC AUPR

Impact of Key Components Removal

SAGE + DVA + Predictor(DVAMDA) 0.9605 0.9613 0.9478 0.9352 0.9517 0.9529

SAGE + DVA + degree + Predictor 0.9423 0.9498 0.9302 0.9134 0.9342 0.9253

DVA + Predictor 0.9476 0.9511 0.9333 0.9175 0.9066 0.8608

GVA + Predictor 0.9402 0.9471 0.9335 0.9176 0.8765 0.8823

GVA + degree + Predictor 0.9396 0.9464 0.9307 0.9196 0.8853 0.8333

SAGE + Predictor 0.9513 0.9555 0.9205 0.9112 0.9020 0.9262

Effects of Alternative Graph Encoding Methods

Node2Vec + Predictor 0.5990 0.7173 0.8641 0.8774 0.8160 0.8532

LINE + Predictor 0.5986 0.7164 0.8663 0.8808 0.8261 0.8632

GCN + Predictor 0.9370 0.9433 0.9275 0.9092 0.8902 0.8858

Influence of Link Prediction Strategies

AdamicAdarMDA 0.5458 0.5915 0.7311 0.7318 0.4397 0.4933

MGAE 0.9031 0.8600 0.8850 0.8408 0.9258 0.9195

HLGNN 0.8258 0.8305 0.8035 0.8090 0.9442 0.9433
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contrast, Graph SAGE’s neighborhood sampling strategy reduces
computational complexity while preserving critical structural
information, making it better suited to the sparse and
heterogeneous nature of microbe-disease networks.

3.4.3 Influence of link prediction strategies
To assess the effectiveness of the proposed link prediction

strategy in DVAMDA, it is compared with three alternative
methods: (Adamic and Adar, 2003), masked graph autoencoder
(MGAE) (Tan et al., 2023), and Heuristic Learning Graph Neural
Network (HLGNN) (Zhang et al., 2024). These approaches
represent distinct paradigms in link prediction, ranging from
heuristic similarity measures to graph-based deep learning
techniques, allowing a comprehensive evaluation of DVAMDA’s
prediction mechanism.

3.4.3.1 AdamicAdarMDA
AdamicAdarMDA employs the Adamic-Adar index, a heuristic

metric that assigns higher weights to rare common neighbors
between network nodes, to measure the similarity between
microbes and diseases. This method is based on the assumption
that nodes sharing fewer common neighbors are more likely to be
associated. However, as shown in Table 5, its performance was
suboptimal across all datasets. It achieved AUC values of 0.5458 on
HMDAD, 0.7311 on Disbiome, and 0.4397 on MMDA. The
limitations arise from its dependence on shallow topological
features-specifically, first-order neighbor statistics-which fail to
capture the complex nonlinear relationships and multi-scale
interactions inherent in microbe-disease associations. In sparse
networks like MDAs, where direct connections are scarce,
heuristic measures often miss latent associations beyond simple
co-occurrence patterns, leading to poor predictive performance.

3.4.3.2 MGAE
MGAE is a graph autoencoder framework that masks node

features or edges during training to reconstruct the graph structure,
aiming to learn robust latent representations. While it utilizes deep
learning for feature extraction, its performance in MDA prediction
was moderate. It achieved AUC values of 0.9031 on HMDAD,
0.8850 on Disbiome, and 0.9258 on MMDA. The shortfall stems
from its focus on structural reconstruction rather than integrating
diverse feature types, such as microbial functional similarities and
disease semantic features. Unlike DVAMDA, which fuses
probabilistic, structural, and graph-specific information, MGAE
relies primarily on graph topological data, neglecting non-
structural attributes that are critical for capturing the biological
context of MDAs. This limitation becomes more pronounced in
heterogeneous networks where multi-source information is essential
for accurate predictions.

3.4.3.3 HLGNN
HLGNN integrates heuristic rules into graph neural networks to

guide link prediction, balancing data-driven learning with prior
knowledge. It demonstrated relatively better performance on the
MMDA dataset (AUC = 0.9442) but lagged behind DVAMDA on
HMDAD (AUC = 0.8258) and Disbiome (AUC = 0.8035). The
method’s reliance on handcrafted heuristics, such as path-based
similarity metrics, restricts its ability to adapt to the nuanced

patterns in microbe-disease interactions. In contrast, DVAMDA’s
data-driven approach—using the Hadamard product to fuse multi-
level features and a deep neural network (DNN) to model nonlinear
relationships—more effectively captures complex associations
without explicit prior assumptions. The DNN in DVAMDA can
automatically learn hierarchical representations from fused features,
enabling better generalization to unseen MDAs.

3.5 Case study

To validate the practical utility of DVAMDA in uncovering
biologically meaningful associations, we conducted case studies on
three diseases—type 1 diabetes (T1D), irritable bowel syndrome
(IBS), and liver cirrhosis-using the HMDAD and Disbiome datasets.
For each disease, all known microbe-disease associations were
excluded from the training data, and the pre-trained model was
employed to predict potential associations, with the top 10 ranked
microbes further validated against existing literature (Tables 6–8).

Table 6 presents the top 10microbes predicted by DVAMDA for
T1D, a chronic metabolic disorder linked to gut microbiota
dysbiosis. Notably, all predicted microbes are supported by
literature references (PMID: 20613793, 22043294), including
Cronobacter (rank 1) and Enterobacter (rank 2), which have been
implicated in intestinal mucosal immune activation and β-cell
dysfunction—key pathological pathways in T1D development.
Bacteroidetes (rank 3), validated by two independent studies,
highlights the model’s ability to prioritize microbes with multi-
source evidence. These results demonstrate DVAMDA’s capacity to
identify biologically relevant associations even in datasets with
limited disease-specific training samples (HMDAD: 39 diseases,
292 microbes), showcasing its robustness in sparse
microbial networks.

Table 7 focuses on IBS, a gastrointestinal disorder characterized
by gut-brain axis dysfunction. The top-ranked microbes
(Eubacteriaceae, Clostridiaceae, Alteromonadaceae) are all
supported by PMID 21741921, which reports their role in
modulating intestinal permeability and inflammation—hallmarks
of IBS pathogenesis. Coprococcus (rank 7, PMID: 17631127) is

TABLE 6 The top 10 potential microbes related to T1D identified by
DVAMDA.

Rank Microbe PMID

1 Cronobacter 22043294

2 Enterobacter 22043294

3 Bacteroidetes 20613793 22043294

4 Proteobacteria 22043294

5 Clostridium ramosum 22043294

6 Bacteroidaceae 20613793

7 Clostridium innocuum 22043294

8 Desulfotomaculum 22043294

9 Bacterium B4C2-5 22043294

10 Brenneria 22043294
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associated with altered short-chain fatty acid production in IBS
patients, while Ruminococcus (rank 9) and Lachnospiraceae (rank
10) are part of the core IBS microbiome identified in multiple cohort
studies. The consistency between predicted results and literature
evidence underscores DVAMDA’s accuracy in capturing disease-
relevant microbial taxa, even in complex multi-factorial disorders.

Table 8 illustrates predictions for liver cirrhosis, a progressive liver
disease often linked to gut microbiota translocation. Most predicted
microbes (Fusobacteria, Ruminococcus gnavus, Prevotella) are
validated by PMID 25079328, which identifies them as key players
in portal hypertension and hepatic encephalopathy. Streptococcus
salivarius (rank 3, PMID: 21741921) has been associated with
bacterial translocation in liver diseases, while Firmicutes (rank 9,
unconfirmed) represents a novel candidate yet to be experimentally
validated. This unconfirmed prediction highlights DVAMDA’s
potential to generate hypothesis-driven targets for mechanistic
studies, demonstrating its value as a discovery tool for unexplored
microbe-disease relationships.

These findings strongly suggest that the DVAMDA algorithm is
effective in predicting candidate microbes for a given disease. It can
potentially serve as a valuable tool for researchers to explore the
relationships between diseases and microbes, facilitating further in-
depth investigations into the underlying mechanisms and possible
therapeutic interventions.

4 Discussion

In this study, we successfully proposed the DVAMDA model
for predicting MDAs. The model constructs a complete and
efficient prediction system by integrating double variational
autoencoders and multi-information fusion techniques. Firstly,
the graph SAGE encoder is used to preliminarily extract the
local and global structural information of nodes, providing
basic data for subsequent processing. Subsequently, the double
variational autoencoders play a crucial role in separately extracting
the latent probability distribution information from the initial
input data and the graph-related specific property information
from the results of the graph SAGE encoder. Then, through the
information fusion strategy, these different types of information
are integrated to form a more representative feature
representation, providing strong support for the prediction task.
Finally, the Hadamard product operation and DNN are used to
predict MDAs. A large number of experimental results show that
the model exhibits excellent performance in multiple evaluation
metrics, effectively verifying its feasibility and superiority in MDA
prediction.

A key strength of the DVAMDA model lies in its ability to
translate microbial-disease associations into tangible benefits for
traditional medicine discovery, addressing a critical gap in empirical
drug development. By systematically predicting MDAs across
diverse disease categories, the model identifies microbial taxa that
serve as potential therapeutic targets, aligning with traditional
medicine’s focus on holistic microbial-host interactions. For
example, in the case study on type 1 diabetes, DVAMDA
prioritized gut microbes such as Cronobacter and Enterobacter,
which are linked to intestinal immune activation—a pathway
relevant to diabetic pathogenesis. Such predictions can guide the
screening of herbal compounds with known antimicrobial or
immunomodulatory effects, facilitating the development of
precision interventions.

Looking ahead, there are several promising areas for future
research. Firstly, exploring more advanced graph neural network
architectures could further optimize the DVAMDA model. For
example, investigating novel graph convolutional network
variants or attention-based graph neural network structures
might enhance the model’s ability to capture complex
relationships in the microbe-disease graph. This could potentially
lead to more accurate predictions of MDAs. Additionally,
developing more efficient feature fusion methods could be
beneficial. Instead of the current concatenation-based multi-
information fusion, exploring more sophisticated techniques such
as weighted fusion or hierarchical fusion might better integrate the
diverse information from different encoders, improving the model’s
performance.

TABLE 7 The top 10 potential microbes related to IBS identified by
DVAMDA.

Rank Microbes PMID

1 Eubacteriaceae 21741921

2 Clostridiaceae 21741921

3 Alteromonadaceae 21741921

4 Proteobacteria 21741921

5 Syntrophobacteraceae 21741921

6 Desulfovibrionaceae 21741921

7 Coprococcus 17631127

8 Dorea 21741921

9 Ruminococcus 21741921

10 Lachnospiraceae 21741921

TABLE 8 The top 10 potential microbes related to Liver cirrhosis identified
by DVAMDA.

Rank Microbes PMID

1 Fusobacteria 25079328

2 Ruminococcus gnavus 25079328

3 Streptococcus salivarius 21741921

4 Megasphaera 25079328

5 Prevotella 25079328

6 Clostridium 25079328

7 Coprococcus 25079328

8 Haemophilus parainfluenzae 25079328

9 Firmicutes Unconfirmed

10 Ruminococcus gnavus 25079328
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