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Chimeric antigen receptor (CAR) T-cell therapy has emerged as a
groundbreaking immunotherapeutic approach, particularly for
oncohematological patients who are refractory to conventional treatments. As
clinical trials expand the applications of CAR T-cell therapy beyond hematologic
malignancies, a critical understanding of its associated toxicities, particularly
cardiovascular complications, becomes imperative. This review synthesizes
current literature on the interplay between cytokine release syndrome (CRS)
and cardiotoxicity related to CAR T-cell therapy, emphasizing the potential
severity of these adverse events. While significant progress has been made in
managing CRS, the cardiac manifestations—ranging from mild events to life-
threatening complications—remain underreported in pivotal studies. We explore
the incidence and nature of cardiotoxicity in real-world and clinical trial settings,
identify risk factors contributing to cardiovascular events, and propose guidelines
for pre-therapy evaluations, post-infusion monitoring, and management
strategies. By highlighting the urgent need for heightened awareness and
proactive care, this review aims to enhance patient safety and optimize
outcomes in the evolving landscape of CAR T-cell therapy.
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Introduction

Cancer has become the leading cause of death globally, which has a profound impact on
the health of the population, the national economy, and the progress of society around the
world (Hafeez et al., 2020; Huang et al., 2024). Over the past three decades, remarkable
progress has been achieved in cancer treatment, evolving from surgery, radiotherapy, and
chemotherapy to targeted therapy, and more recently, immunotherapy (Baskar et al., 2012).
Immunotherapy encompasses a range of strategies, such as immune checkpoint inhibitors
(ICI), Chimeric antigen receptor (CAR) T-cell therapy, bispecific T cell engaging antibodies,
cytokine-based treatments (e.g., high-dose interleukin-2 [IL-2] and interferon-α[IFN-α]),
and monoclonal antibody therapies (June and Sadelain, 2018). Among these
immunotherapies, CAR T-cell therapy represents an innovative immunotherapy
approach that has achieved remarkable results in the treatment of hematological
malignancies (Huang et al., 2024). Up to now, the CAR T cells approved by the
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United States Food and Drug Administration (FDA) are designed to
target the CD19 antigen, which is highly expressed in B-cell
malignancies (Crees and Ghobadi, 2021). However, data from
clinical trials and observational studies indicate that this therapy
may be associated with a range of toxicities, especially cardiac
toxicities (Brudno and Kochenderfer, 2019). In this review, we
summarized the adverse cardiac events observed in clinical trials
of CAR T-cell therapy. We found that the underlying mechanisms
for their occurrence seem to be related to the abnormal
inflammatory activation observed in cytokine release syndrome
(CRS) (Camilli et al., 2023a). Based on the key pathways
involved in the currently understood mechanisms of CRS, we
provide monitoring and management strategies. These strategies
aim to enhance the safety of CAR T-cell therapy and expand its
scope of application (Brudno and Kochenderfer, 2024).

Chimeric antigen receptor (CAR) T-
cell therapy

T lymphocytes, also known as T cells, are a subtype of
lymphocytes that play a vital role in the adaptive immune system
by defending against disease-causing pathogens as well as protecting
the body from abnormal cells (such as tumor cells), which is called
immune surveillance (Schmid et al., 2006). Normal T cells trigger an
immune response when they recognize antigens presented to them
by antigen-presenting cells (APCs) that are coupled to major
histocompatibility complex (MHC) molecules. Cancer cells can
also express MHC molecules on their surface membranes
(Darragh and Karam, 2022). In addition, conventional T cell
therapy requires co-stimulation of other immune cells to trigger
cytokine release, cytotoxic activity, and proliferation to be sufficient
to induce an immune response (Gray et al., 2006).

CAR T-cell therapy, an innovative adoptive cell therapy that
represents a new paradigm for cancer management, gained attention
in 2012 after it was used to treat a pediatric patient with relapsed
acute lymphoblastic leukemia (ALL) (Gill, 2023). It stimulates a
direct anti-tumor response through the cell therapy mechanism of
in vitro transgenic T cells, and the preparation process takes
approximately 2–4 weeks (Nunes et al., 2024). CAR T cells are
not existing products, but autologous T cells are isolated from
peripheral blood of patients and collected by leukocyte apheresis
(Padmanabhan, 2018). Lentivirus or γ retrovirus vectors are used for
gene modification, allowing the required engineered CAR sequence
to be inserted and integrated into the genome of autologous T cells,
thereby leading to the expression of CAR on the surface of T cells, for
example, CD19 (Freyer and Porter, 2020; Perry and Rayat, 2021).
The transfected cells are then amplified in the laboratory using
various methods that rapidly proliferate in vitro to produce
therapeutic amounts, such as artificial APCs expressing
CD80 and stimulating cytokines such as IL-15 (Yoshikai and
Nishimura, 2000; Herrero-Beaumont et al., 2012). After
expanding these cells in vitro, they are reintroduced to the
patient, who receives lymphodepleting conditioning regime
(LDC) with cyclophosphamide or fludarabine 3–5 days prior to
administration, which inhibits the patient’s regulatory immune cell
population to promote the activation and proliferation of the
transfused CAR T cells in vivo (Shank et al., 2017). Thus, the

therapeutic effect of CAR T cells was enhanced. Preoperative
administration of acetaminophen and diphenhydramine should
be given 30–60 min before CAR T cell infusion (Geiger and
Howard, 2007). Shortly after infusion, the CAR T cells bind to
the target antigen and are activated, causing them to rapidly multiply
in the body and release inflammatory cytokines, which in turn
recruit other immune cells to the tumor site, such as macrophages.
These CAR T cells also exert cytotoxic effects by releasing cytotoxic
particles containing granzyme and perforin, and directly stimulate
tumor cell apoptosis by activating Fas/Fas-L and TNF-R pathways
that lead to tumor cell destruction (Figure 1) (Hay and Slansky,
2022). Most patients receive CAR T cell transfusions and are
monitored in the hospital for several days to weeks (Bachier
et al., 2019).

CAR is a synthetic transmembrane protein expressed on the
surface of immune effector cells and consists of 4 domains:
extracellular tumor antigen recognition domains, a hinge point
connecting extracellular components to cytoplasmic elements,
transmembrane domains, and intracellular domains derived from
T cell receptor (TCR) that trigger signaling mechanisms leading to
T cell activation (CD3ζ) or co-stimulatory domains (e.g., CD28, 4-
1BB and OX-40) (Maher et al., 2002; Sadelain et al., 2013). Single-
chain variable fragments of immunoglobulins are often used to
recognize target tumor antigens due to their high binding specificity,
subsequently leading to engineered T cell activation independent of
the MHC (Dai et al., 2016; Mohanty et al., 2019). In addition to their
immediate anti-tumor benefits, CAR T cells also provide long-term
benefits as they promote immune surveillance to prevent tumor
recurrence by continuously targeting malignant cells and assisting in
the activation of tumor-infiltrating lymphocytes (June and Sadelain,
2018). It is important to note that the activity of CAR proteins can
vary depending on the overall build design, and predicting the
effectiveness of CAR T-cell therapy infusion is difficult because each
CAR construct may have a different infusion effect (Letscher and
Reddy, 2024). But the ideal target, as well as amplification to achieve
sufficient numbers of CAR T, will promote targeting of rapidly
proliferating malignancies (Jadlowsky et al., 2025).

In clinical trials, CAR T-cell therapy has shown significant
efficacy in the treatment of a variety of highly relapsed/refractory
hematological malignancies (Goyco Vera et al., 2024). In 2017, the
FDA approved 2 CAR T-cell therapies: tisagenlecleucel and
axicabtagene ciloleucel (U.S. Food and Drug Administration,
2017; U.S. Food and Drug Administration, 2017), which are CAR
T cells targeting the B-cell receptor CD19, respectively for the
treatment of pediatric and young adults with relapsed/refractory
B-ALL and diffuse large B-cell lymphoma (DLBCL). Then, in July
2020, the FDA approved the CAR T-cell therapy brexucabtagene
autoleucel for the treatment of adult relapsed/refractory mantle cell
lymphoma (MCL) (U.S. Food and Drug Administration, 2020).
Lisocabtagene maraleucel was approved in February 2021 for the
treatment of adult relapsed/refractory large B-cell lymphoma
(LBCL) (U.S. Food and Drug Administration, 2021). The first
approved non-CD19 cell therapy was ldecabtagene vicleucel,
created against B cell maturation antigen (BCMA), which has
shown effectiveness in treating multiple myeloma (Ali et al.,
2016; Brudno et al., 2018). This treatment fundamentally changes
the paradigm of cancer treatment. Data from the World Health
Organization’s International Agency for Research on Cancer
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(IARC) for 2023 show that five-year survival rates for myeloma and
non-Hodgkin lymphoma improved from 32% and 56% in
1995–1997 to 58% and 74% in 2012–2018, marking significant
clinical achievements (Siegel et al., 2023). As a result of these
successes, CAR T cell immunotherapy is receiving increasing
attention from scientists, clinicians, the pharmaceutical industry,
and the general public, and several new clinical trials have been
initiated to expand the clinical applicability of CAR T-cell therapy
for cases such as chronic lymphocytic leukemia (CLL) and other
solid malignancies, for example hepatocellular carcinoma, breast
cancer, or pancreatic cancer (Mohanty et al., 2019). In addition, the
success of hematological malignancies has stimulated research on
CAR T-cell therapy for the treatment of autoimmune diseases, HIV
and other infections, and transplant rejection (Maldini et al., 2018).

Cardiotoxicity associated with CAR T-
cell therapy

While CAR T-cell therapy has shown strong clinical efficacy in
relapsed/refractory hematological malignancies, with a response rate
of up to 90%, it is limited by the incidence of severe life-threatening
cardiotoxicity of up to 26%, as most patients considered for this
treatment have cardiovascular comorbidities, and had previously
received high doses of cardiotoxic chemotherapy and radiation
(Neelapu, 2019). Manifestations may include tachycardia,
hypotension, arrhythmia, cardiomyopathy, heart failure,

pericardial disease, coagulation disorders, left ventricular systolic
dysfunction (LVSD), cardiogenic shock and death, and may occur at
various time points after CAR T-cell therapy has begun (Lyon et al.,
2022). Up to now, several prospective and retrospective reports have
highlighted the association between CAR T-cell therapy and adverse
cardiovascular events in children and adults, significantly affecting
morbidity and mortality (Burstein et al., 2018; Alvi et al., 2019;
Ganatra et al., 2020; Lefebvre et al., 2020).

In pediatric and young adult patients

In 2018, Burstein et al. reported the first study on cardiotoxicity
following CAR T-cell therapy, a retrospective analysis of 98 pediatric
and young adult patients receiving tisagenlecleucel for relapsed/
refractory ALL. 24 patients developed hypotension requiring
vasopressor support, with a mean duration of onset of 4.6 days,
and all had grade 3–4 CRS. Of these, 21 patients had life-threatening
symptoms requiring tozzizumab, and 10 patients had LVSD
revealed by echocardiography. Among these, 7 patients had
persistent LVSD at the time of discharge, but during follow-up,
the disorder had gradually resolved in 6 patients without any cardiac
events leading to death (Burstein et al., 2018).

In July 2020, Shalabi et al. reported a second retrospective study
of the effects of CD19 CAR T-cell therapy on cardiac function in
52 pediatric and young adult patients with relapsed/refractory
B-ALL or non-Hodgkin lymphoma. All patients were previously

FIGURE 1
Cardiovascular toxicities associated with CAR T-cell therapy. The figure illustrates the general CAR T-cell therapy and the specific mechanisms of
induced cardiotoxicity, as well as the associated assessment, monitoring, and management.
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exposed to anthracycline chemotherapy. 37 patients developed CRS,
9 had hypotension requiring vasopressor support, and 7 received
tozizumab or steroids. Of the patients who developed CRS, 6 had
post-infusion echocardiography showing cardiac insufficiency, of
which 4 had grade 3–4 CRS. Elevated troponin was observed in 4 of
13 patients with systolic dysfunction, and the left ventricular ejection
fraction (LVEF) decreased from 64% to 20%. 4 of the 6 patients with
cardiac insufficiency had resolved by day 28 after CAR T cell
infusion, and the remaining 2 patients showed complete cardiac
recovery at 3 months follow-up. Interestingly, these 2 patients had
the highest exposure to anthracyclines prior to treatment (Sadelain
et al., 2013; Shalabi et al., 2020).

Thus, clinical data in pediatric and young adults suggest that
cardiotoxicity following CAR T-cell therapy, though severe in some
cases, is generally reversible and does not have lasting effects.

In adult patients

In June 2020, Lefebvre et al. reported a retrospective study of
the effects of CD19 CAR T-cell therapy on cardiac function in
145 adult patients with DLBCL (30%), ALL (25%), or CLL (45%).
In the study, 60% of patients were exposed to anthracyclines.
Patients received commercially available (axicabtagene ciloleucel
and tisagenlecleucel) or non-commercially available CAR T cells.
The researchers identified 41 cases of major cardiac adverse events
(MACE) that developed 11 days after CAR T cell infusion, with
grade 3–4 CRS having a higher risk. 22 patients had heart failure
events, 12 episodes of atrial fibrillation, 2 other arrhythmia events,
2 episodes of acute coronary syndrome, and 2 cardiogenic deaths.
In addition, MACE was associated with statins, aspirin, insulin,
and patients with prior atrial fibrillation and elevated creatinine at
baseline (Lefebvre et al., 2020). Therefore, these results suggest that
patients with high-risk cardiovascular characteristics are more
likely to develop MACE.

In October 2020, Ganatra et al. published a retrospective
review of 187 adult patients treated with CD19 CAR T cells for
non-Hodgkin lymphoma to detect the incidence of
cardiomyopathy. 97 percent of the patients received
axicabtagene ciloleucel. A total of 155 patients had CRS, of
which more than 50% had grade ≥2 CRS. Of the 116 patients
who underwent continuous echocardiography, 12 developed new
or worsening cardiomyopathy, manifested by a mean decrease in
LVEF from 58% to 37% at 12.5 days after CAR T cell infusion. In
these 12 patients with cardiomyopathy, 6 LVEF recovered to
normal, 3 partially recovered, and 3 cardiogenic deaths. Similar
to previous studies, most patients with cardiomyopathy had ≥
grade 2 CRS. In addition, the researchers note that older patients
with hyperlipidemia, coronary artery disease, and the use of
renin-angiotensin inhibitors and β blockers are at increased
risk for cardiomyopathy. Interestingly, there was no significant
difference in exposure to anthracyclines or radiotherapy between
patients with cardiomyopathy and those without (Ganatra
et al., 2020).

Thus, clinical data in adults, compared to pediatrics and young
adults, suggest that cardiotoxicity in cases of grade 2 or higher CRS is
not always reversible, and that patients with increased
cardiovascular risk factors are at greater risk of fatal cardiac events.

CRS-mediated cardiovascular
dysfunction

Cardiotoxicity may be due to the direct or indirect effects of the
infusion of CAR T cells, and the mechanism revolves around three
pathways: “targeted, non-tumor” toxicity, “off-target, non-tumor”
toxicity, and CRS-mediated cardiovascular dysfunction (Joseph
et al., 2025). In “targeted, non-tumor” toxicity, T cells target
normal tissue cells that express tumor-associated antigens, such
as B-cell aplastic anemia observed with CD19 CAR, and
pulmonary edema caused by ERBB2 CAR (Chen et al., 2022).
In “off-target, non-tumor” toxicity, CAR T cells may also attack the
heart by cross-reacting with myocardial antigens from normal
tissue (Nunes et al., 2024). Linette et al. reported that 2 patients
receiving CAR T-cell therapy for melanoma targeting melanoma-
associated antigen 3 (MAGE-A3) developed fatal myocarditis and
cardiogenic shock. This is because CAR T cells exhibit an off-target
cross-reaction to titin, a sarcomere protein expressed in the
myocardium, which contains an epitope similar to that of
MAGE-A3. Notably, MAGE-A3 is widely expressed in
melanoma (Linette et al., 2013).

The key driver of cardiotoxicity associated with CAR T-cell
therapy is thought to be primarily CRS resulting from over-
activation of the immune system (Asnani, 2018; Zhao et al.,
2018). In retrospective analyses of patients receiving CAR T
treatment, the severity of CRS is typically closely associated
with the occurrence of cardiotoxicity (Lee et al., 2014;
Lefebvre et al., 2020). Cardiac events are mainly observed in
patients with CRS of grade ≥2 and are usually caused by elevated
troponin levels (Ghosh et al., 2020). Potential disease burden,
tumor load, the type of CAR T construct, the infused dose of CAR
T cells, and the addition of fludarabine in the lymphodepletion
regimen are key risk factors for the severity of CRS (Maude
et al., 2014).

In 2018, the American Society for Transplantation and Cellular
Therapy (ASTCT) released a consensus system for the clinical
grading of the severity of CRS, which is mainly based on fever,
hypoxia, and hypotension (Table 1). CRS is defined as any hyper-
physiological reaction caused by the activation or involvement of
endogenous or infused T cells and/or other immune effector cells
after any immunotherapy (Lee et al., 2019). Clinically, the
symptoms of CRS range from mild to severe and can rapidly
progress from fever, weakness, headache, rash, diarrhea, and
musculoskeletal pain to hypoxia, hypotension, tachycardia, left
ventricular systolic dysfunction, arrhythmia, elevated troponin,
coagulation disorders, pericardial disease, decompensated heart
failure, cardiogenic shock, and CRS may develop into a life-
threatening condition (Davila et al., 2014; Maude et al., 2014;
Lee et al., 2015; Ali et al., 2016).

CRS typically begins within the first week after CAR T cell
administration and can persist for up to 10–14 days, although
symptoms may be delayed (Santomasso et al., 2019). Clinical
data indicate that the incidence of CRS in patients receiving CAR
T treatment ranges from 35% to 94%, with the incidence of severe
CRS (≥ grade 3) ranging from 10% to 30% (Grigor et al., 2019). In
fact, every patient receiving CAR T-cell therapy is expected to, and
indeed hopes to, develop some degree of CRS, as grade 1 disease
indicates a response to the treatment.
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CRS is a systemic disease induced by the over-activation of
immune effector cells and the hyper-physiological levels of various
pro-inflammatory cytokines (Lee et al., 2019; Cobb and Lee, 2021). It
is characterized by a pro-inflammatory cytokine storm following cell
infusion and its interaction with the tumor microenvironment
(Hughes et al., 2024). After recognizing tumor antigens, CAR
T cells are activated and secrete large amounts of perforin,
granzyme, and inflammatory cytokines such as IFN-γ, tumor
necrosis factor-α (TNF-α), IL-2, IL-6, etc., to induce pyroptosis
of tumor cells and release a large number of damage-associated
molecular patterns (DAMPs) (Giavridis et al., 2018; Shimabukuro-
Vornhagen et al., 2018). Meanwhile, they can also directly activate
the other immune or non-immune cells, such as the monocyte/
macrophage system, through inflammatory cytokines, perpetuating
the vicious cycle of inflammation (Mosser and Edwards, 2008). In
CRS, macrophages are considered the primary source of pro-
inflammatory cytokines, such as IL-1, IL-6, IL-10, IFN-γ,
granulocyte-macrophage colony-stimulating factor (GM-CSF),
and inducible nitric oxide synthase (iNOS), among others (Hao
et al., 2020). Additionally, macrophage pyroptosis and further
DAMPs leakage amplify the inflammatory cascade, and secreted
catecholamines can also promote the release of other cytokines, thus
causing a distortion of the cytokine network (Johnson et al., 2005;
Flierl et al., 2007; Shaked et al., 2015). These cytokines may lead to
endothelial cell activation by regulating the angiopoietin-TIE2 axis
and releasing NO, subsequently resulting in hemodynamic
instability, capillary leakage, edema, organ hypoperfusion,
cardiovascular dysfunction, and consumptive coagulopathy, and
promoting cytokine production, thereby exacerbating CRS (Gust
et al., 2017; Hay et al., 2017; Chou and Turtle, 2019). In cancer
survivors treated with CAR T-cell therapy, persistent endothelial
activation leads to endothelial damage, driving chronic
inflammation, hypertension, and a prothrombotic state that
accelerates the development of atherosclerosis (Choi et al., 2025).

Among the cytokines involved, IL-6 is the most crucial
cytokine mediating CRS toxicity (Lee et al., 2014). Its level is
positively correlated with the severity of CRS, and it is a major
driver of the inflammatory activation cascade (Shimabukuro-
Vornhagen et al., 2018; Chen et al., 2022). IL-6 mainly interacts
with another membrane protein, gp130, either through “cis-
signaling” of the membrane-bound IL-6 receptor (mIL-6R) or
through “trans-signaling” of the soluble IL-6 receptor (sIL-6R),
activating the janus kinase/signal transducer and activator of
transcription 3 (JAK/STAT3) signaling pathway (Neelapu et al.,
2018). This leads to abnormal myocardial electrical activity and a
tendency towards arrhythmia, thus affecting normal cardiac

electrical activity (Alí et al., 2018). It has been shown that IL-6
gene knockout significantly reduced cardiomyocyte apoptosis in a
mouse model of dilated cardiomyopathy (Li Q. et al., 2019). In
addition, in sepsis-induced myocardial dysfunction model, IL-6/
STAT3 pathway interferes with endoplasmic reticulum (ER) and
mitochondrial function by regulating the expression of proteins
located in mitochondria-associated ER membranes, increasing
intracellular calcium level and leading to myocardial apoptosis
(Jiang et al., 2021). At the same time, IL-6/STAT3 pathway may
also activate PERK pathway, leading to imbalance of intracellular
calcium homeostasis and aggravation of myocardial dysfunction
(Men et al., 2023). Blockade of the IL-6 signaling pathway results in
the downregulation of pro-inflammatory cytokine secretion and
the resolution of most clinical manifestations of CRS (Li Y. et al.,
2019; Sterner et al., 2019). TNF-α can also induce the expression of
adhesion molecules in vascular endothelial cells by activating the
NF-κB signaling pathway, increase ROS production, and promote
inflammatory cell infiltration, leading to endothelial injury (Zhou
et al., 2017). In sepsis, IL-1β acts synergistically with TNF-α to
aggravate myocardial injury by disrupting the blood-brain barrier
and increasing mitochondrial membrane permeability,
mitochondrial dysfunction and energy metabolism disorders,
which aggravate inflammation and oxidative stress (Liu
et al., 2025).

Pre-treatment assessment and post-
infusion monitoring for cardiotoxicity

In real-world practice, factors such as advanced age, high
tumor burden, and baseline heart conditions may increase the
risk of cardiotoxicity due to reduced cardiac functional reserve or
an additive effect of CAR T toxicity on pre-damaged
myocardium, but these patients still routinely receive CAR T-
cell therapy (Costanzo et al., 2024). For example, one study found
that patients with underlying cardiac conditions had a higher rate
of cardiovascular events after CAR T-cell therapy that correlated
with the severity of CRS (Lefebvre et al., 2020). Therefore, pre-
treatment assessment of cardiovascular health and risk is crucial
for patients who require more intensive monitoring. The clinical
practice guidelines issued by the American Society of Clinical
Oncology (ASCO) outline evidence-based recommendations for
the prevention and monitoring of cancer treatment-related
cardiotoxicity (Slivnick et al., 2020). These recommendations
commence with a detailed history of cardiovascular symptoms
and physical examination, especially screening for cardiovascular

TABLE 1 Consensus cytokine release syndrome grading scale-the American society for transplantation and cellular therapy.

Clinical
symptoms

Grade1 Grade2 Grade3 Grade4

Fever (Temperature) ≥38°C ≥38°C ≥38°C ≥38°C

with Hypotension None Yes, but do not require
vasopressors

Yes, and require vasopressors with or without
vasopressin

Yes, and require multiple vasopressors
excluding vasopressin

and/or Hypoxia None Yes, and require low-flow (O2 ≤
6 L/min) nasal cannula

Yes, and require high-flow (O2 > 6 L/min) nasal
cannula, non-rebreather, or venturi mask

Yes, and require positive pressure (CPAP,
BiPAP, intubation, and mechanical ventilation)

BiPAP, biphasic positive airway pressure; CPAP, continuous positive airway pressure.
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risk factors prior to the initiation of treatment (Armenian et al.,
2017). All patients scheduled to receive CAR T-cell therapy
should undergo a comprehensive baseline cardiac screening
using cardiac biomarkers (cardiac troponin and natriuretic
peptides), 12-lead electrocardiogram (ECG), transthoracic
echocardiogram, cardiac magnetic resonance imaging (MRI),
stress tests, etc. (Dalal et al., 2022; Ganatra et al., 2022; Lyon
et al., 2022; Camilli et al., 2023a). Collectively, these may provide
additional key insights into the ability to tolerate hemodynamic
changes during treatment.

After treatment infusion, it is recommended to repeat cardiac
monitoring at 7 days and 3 months post-treatment, including
assessment of cardiac biomarker levels, 12-lead ECG, and
echocardiogram (Cho et al., 2024). Higher peak levels of
inflammatory factors such as IL-6 and IL-1, C-reactive
protein, ferritin, and troponin, together with CRS, may serve
as prognostic markers of cardiotoxicity in patients receiving CAR
T-cell therapy (Mahmood et al., 2023). Patients can be divided
into low-risk, intermediate-risk, and high-risk groups based on
their baseline N-terminal pro brain natriuretic peptide (NT-
proBNP) and troponin levels. In high-risk patients, weekly
echocardiography is recommended for 1 month and then
every 3 months for 1 year. Patients at intermediate risk can be
checked every 3 months; Low-risk patients can be tested every
6 months. At the same time, cardiac oncology clinics can consider
equipping patients with wearable ECG monitors to detect
arrhythmia in time and capture paroxysmal atrial fibrillation
or premature ventricular contractions during CRS recovery, so as
to take targeted interventions, but manual review is required
simultaneously (Cardiovascular Expert Committee of Chinese
Medical Doctor Association of Laboratory Medicine, 2024).
Patients in whom CRS of grade ≥2 is detected, as well as those
with new-onset or deteriorating heart failure or arrhythmia,
should be hospitalized for cardiac MRI or multiple-gated
acquisition (MUGA) scan, and the case should be reviewed by
the cardio-oncology team (Avelar et al., 2017; Jeong et al., 2019).
Subclinical fibrosis, as detected by cardiac MRI with measures
such as late gadolinium enhancement and extracellular volume
fraction, can be a useful tool for predicting late-onset
arrhythmias. Studies have shown that the degree of
myocardial fibrosis correlates with arrhythmic burden and that
fibrosis predicts arrhythmic events even in patients with higher
LVEF (Gulati et al., 2013; Bourke et al., 2024). Additionally, the
ASCO guidelines recommend that for asymptomatic high-risk
patients, echocardiography monitoring should be repeated
6–12 months after the completion of treatment (Armenian
et al., 2017).

Therapeutic management measures for
cardiotoxicity

Given the close association between CRS and CAR T cell related
cardiotoxicity, mitigating the progression of CRS to more severe
grades is of utmost importance in reducing the risk of cardiotoxicity
(Alvi et al., 2019; Lefebvre et al., 2020). The grading of CRS is helpful
in guiding treatment. Supportive care and antipyretics are
commonly used to manage mild CRS, including inotropic

support with dobutamine or milrinone when necessary (Faqihi
et al., 2020; Ashkar et al., 2025). The IL-6 receptor antagonist
tocilizumab was approved by the FDA for the treatment of CRS
in 2017 and is currently considered as the first-line treatment for
severe CRS secondary to CAR T-cell therapy (Le et al., 2018).
Corticosteroids such as dexamethasone and methylprednisolone
are regarded as the second line treatment for CRS refractory to
anti-IL-6R therapy (Lakomy et al., 2023; Mulvey et al., 2025).
Ongoing clinical trials of the IL-1 antagonist anakinra aim to
demonstrate its role as an emergency treatment option (Le et al.,
2018; Norelli et al., 2018; Camilli et al., 2023b). Typically, CRS
requires treatment in an intensive care unit (ICU) for the
administration of vasoactive and ionotropic medications, along
with aggressive respiratory support (Bellal et al., 2024). In addition,
strategies such as fractionated dosing, optimization of the CAR
structure, drugs targeting the JAK signaling pathway (such as
ruxolitinib and itacitinib), tyrosine kinase inhibitors (such as
dasatinib and ibrutinib), and other rational therapies (such as
the use of catecholamines or atrial natriuretic peptide, blocking
TNF-α, etc.) can also be used for management (Figure 1)
(Parampalli Yajnanarayana et al., 2015; Mestermann et al.,
2019; Huarte et al., 2020; Huarte et al., 2021). When
formulating management strategies, factors such as the pre-
treatment tumor burden and tumor type should be taken into
account. This is to alleviate symptoms without compromising the
therapeutic benefits of this potentially curative approach (Cobb
and Lee, 2021).

Conclusion and perspectives

In summary, with the expanded use of CAR T-cell therapy, the
survival rate of cancer patients has increased. However, the
treatment is limited by life-threatening CRS and associated
cardiotoxicity. Understanding the mechanisms underlying
cardiac injury and managing the cardiovascular toxicity of
treatment approaches will become increasingly important, as
this will enable monitoring, early intervention, and potential
prevention of cardiotoxicity (Simela et al., 2025). Novel cardiac
biomarkers and specific monitoring parameters not only help to
detect the early signs of toxicity and its severity, but also contribute
to enhancing clinical management and providing personalized
medical care to patients (Christenson et al., 2015; Singh et al.,
2015; Henri et al., 2016). Incorporating cardiovascular toxicity
monitoring into clinical trials will play a crucial role in improving
the safety of CAR T-cell therapy for cancer patients and fully
realizing its therapeutic potential (Cho et al., 2024). However, the
assessment of cardiotoxic outcomes may be biased by the selection
of patients in early-phase clinical trials and selective reporting in
retrospective studies. In recent years, various authorities are trying
to establish the standardization of cardiotoxicity monitoring of
CAR T-cell therapy, for example, the European Society of
Cardiology (ESC), American Heart Association (AHA) and so
on. Better preventive and treatment methods can be developed
through prospective studies of patients and multidisciplinary
integration among oncologists, oncohematologists, cardiologists,
and other specialists, so as to promote wider application of this
new therapy (Zhao et al., 2024).
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