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Background: Essential oils, often referred to as “liquid gold,” are renowned for
their broad biological activity. Ancient Egyptians used essential oils’ antibacterial
and antiseptic effects to preserve mummies, ancient Greeks used olive oil for sun
protection, and ancient Chinese used essential oils to treat wounds. When
essential oils are applied to the facial skin, their potent anti-inflammatory,
antioxidant, and antibacterial pharmacological characteristics provide various
benefits, including sunscreen, skin-whitening, and anti-aging effects.

Purpose: This paper aims to summarize the application of plant essential oil in
skin whitening, anti-inflammatory, antioxidant and antibacterial in recent years,
and deeply analyzes the internal relationship between essential oil and modern
drug delivery system, expounds how to overcome the limitations of essential oil
through specific drug delivery system, to enhance its biological activity and
stability, realize sustained release and reduce its potential toxicity, and also
discusses the positive effects of essential oil on brain function through
olfactory pathway, emphasizes the possible safety risks in the use of essential
oil, and puts forward corresponding suggestions for use.

Methods: Using keywords such as “essential oils,” “antioxidant,” “anti-tyrosinase,”
Antibacterial Effects and anti-inflammatory,” “anti-anxiety,” and “drug carrier
delivery systems,” a comprehensive search was conducted in the PubMed,
CNKI, Baidu, and Wanfang databases to summarize articles from the past
5 years. Further screening was performed to select studies demonstrating the
efficacy of essential oils through topical or external application.

Results: Various essential oils showed their efficacy as strong oxidants,
antibacterial agents, anti-inflammatory agents, and skin-whitening agents.
Combined with a new drug delivery system, it not only enhances the
biological activity of essential oil but also reduces the inherent defects of
essential oil, such as volatility, irritation, and toxicity, and has a targeted
delivery effect. At the same time, the integration of essential oil into skin care
products canmake use of the dual functions of smell and the epidermal system to
nourish and repair the skin and maximize the pharmacological effects of
essential oil.

Conclusion: This review delves into the application of essential oils and delivery
systems, advocating for a broader integration of natural plant resources with
modern technology. By strategically utilizing essential oils, we can promote the
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sustainable development of the global economy. However, extensive clinical trials
are still required to evaluate the effectiveness and safety of essential oil delivery
systems.
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1 Introduction and historical uses of
essential oils in skincare

Essential oils (EOs) are concentrated plant extracts obtained through
processes such as steam distillation (Kapadia et al., 2022). They are
typically extracted from the leaves, flowers, skins, roots, seeds, pericarps,
and other parts of aromatic plants and consist of a variety of volatile
chemical metabolites, such as terpenes, esters, alcohols, and aldehydes
(Bolouri et al., 2022). Owing to their diverse biological activities,
environmental friendliness, and ease of acquisition, EOs have long
been used in various traditional medicine approaches (Khalil et al., 2021).

EO applications date back thousands of years to ancient
civilizations such as Egypt, Arabia, Greece, and China (Long et al.,
2022). In ancient Egypt, EOs with antibacterial and preservative
properties, such as Boswellia sacra Flück., Commiphora myrrha
(T.Nees) Engl., and Cinnamon (Cinnamomum verum J. Presl), were
used to embalm bodies during mummification (Vora et al., 2024).
Similarly, Lavender (Lavandula angustifolia Mill.) was used in
traditional medicine across Asia, Europe, ancient Greece, and Rome,
and is mentioned in both the Bible and ancient Jewish texts for its anti-
inflammatory and antibacterial effects (Hancianu et al., 2013). The
ancient Romans applied oils, including EOs from Clove (Syzygium
aromaticum (L.) Merr. and L.M.Perry) and Lavender, on their skin for
fragrance, whereas the Greeks used olive oil as sunscreen (Liu and
Zhang, 2017). Monoï oil, widely used among the Tahitian tribes in
Polynesia for skincare, is primarily applied to hydrate the skin and
safeguard it against sun exposure (McMullen and Dell’Acqua, 2023). In
1919, French chemist René-Maurice Gattefossé accidentally burned his
hand during a laboratory explosion. Subsequently, he used Lavender
EO to treat the infected wound and discovered its remarkable healing
effects. This discovery has prompted researchers to conduct in-depth
research on the medicinal value of EOs and promote the wide
application of EOs in medical and skin care fields.

This paper summarizes the latest research findings and academic
perspectives on the applications of plant EOs in skin whitening, anti-
inflammatory, antioxidant, and antibacterial treatments, along with a
brief introduction to the structure and function of the skin. It provides
an in-depth analysis of the intrinsic relationship between EOs and drug
delivery systems, elucidating how specific drug delivery systems can
overcome the limitations of EOs. Additionally, the paper discusses the
positive effects of EOs on brain function through the olfactory pathway
and highlights potential safety risks associated with their use, offering
corresponding recommendations. These insights provide valuable
references for further research.

2 Constitution of the skin

The skin serves as the body’s first line of protection against
harmful external stimuli and performs several crucial functions.

First, it prevents excessive water loss, thereby preserving the body’s
hydration balance (Afshari et al., 2024). Secondly, the skin acts as an
effective barrier against toxins and infections. As shown in Figure 1,
facial skin primarily comprises the epidermis, dermis, and
subcutaneous tissue (Nascimento et al., 2024). Keratinocytes
within the epidermis play a key role in forming the skin’s
protective barrier and help distribute melanin produced by
melanocytes. Melanocytes in the basal layer of the epidermis are
responsible for melanin synthesis and influence skin color. EOs can
interact with stratum corneum proteins, causing conformational
changes that disrupt the lipid phase, thereby weakening the skin
barrier. This process promotes the transdermal delivery of both
hydrophobic and hydrophilic metabolites, enhances the deep
penetration of active metabolites, and improves the anti-aging
and whitening properties of products (McMullen and Dell’Acqua,
2023; Yang et al., 2024a). Below the epidermis lies the dermis, which
is rich in collagen and elastic fibers that provide skin elasticity and
firmness, maintaining a youthful appearance. The subcutaneous
layer, comprising fatty tissue, lymphatic vessels, nerves, and blood
vessels, provides nourishment and support. Moreover, the skin plays
a pivotal role in metabolic processes, material absorption, and
protection against biological, physical, and chemical threats
(Michalak et al., 2021). In summary, the skin is not only a
protective barrier but also an organ essential for maintaining
overall physical health and beauty.

3 Pharmacological activities of
essential oils

3.1 Whitening effect of essential oils

Melanin, the primary pigment in human hair, eyes, and skin, is
synthesized in melanosomes within melanocytes (Yu et al., 2024).
Tyrosinase (TYR) is a vital copper-containing metalloenzyme
crucial for melanin synthesis in mammals (Ma and Lu, 2020). In
melanocytes, tyrosine undergoes a series of oxidation processes
mediated by TYR and other enzymes. Specifically, tyrosinase-
related protein (TRP) converts dopachrome into 5,6-dihydroxy
indole-2-carboxylic acid (DHICA), while TRP-1 facilitates the
conversion of DHICA to indole-5,6-quinone-2-carboxylic acid,
ultimately resulting in melanin production. The microphthalmia-
associated transcription factor (MITF) plays a pivotal role in
regulating the expression of TYR, TRP-1, and TRP-2, thereby
significantly impacting melanin synthesis. Furthermore, MITF is
activated through Mitogen-Activated Protein Kinase (MAPK)
signaling cascades, which stimulate melanogenesis in response to
diverse external stimuli (Kim et al., 2021; Yang et al., 2023a). This
process is summarized in Figure 2. The synthesized melanin is
subsequently released from melanocytes into the intercellular space
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as pigment particles and gradually transferred to the cytoplasm of
surrounding keratinocytes, ultimately reaching the stratum
corneum. While an appropriate amount of melanin protects the
skin from detrimental environmental factors (He et al., 2023), an
excess can lead to pigmentation issues, a dull skin tone, and spot
development (Nurani et al., 2023).

Kojic acid, arbutin, ascorbic acid, and hydroquinone (Draelos
et al., 2020; Mahalapbutr et al., 2023; Zahoor et al., 2023) are well-
known chemical inhibitors of TYR. However, their use can pose
potential health risks. Since 2001, hydroquinone has been excluded
from skincare products due to cancer risks associated with

continuous exposure (Zolghadri et al., 2023). Kojic acid, while
effective for skin whitening, is limited by its carcinogenic
potential and instability during storage (Liu et al., 2024a). When
arbutin is applied to the skin, microbes or ultraviolet radiation
(UVR) can convert it into hydroquinone (Boo, 2021). Conversely,
plants are increasingly valued in skin-whitening cosmetics, with up
to 3/5 of products in medical skincare deriving from plant-specific
metabolic metabolites (Capetti et al., 2021). Plant extracts and
metabolites have demonstrated efficacy in preventing excessive
melanin formation in the epidermis (Kanlayavattanakul and
Lourith, 2018). For instance, in vitro experiments utilizing EO

FIGURE 1
Schematic diagram of facial skin composition.

FIGURE 2
Flow chart of melanin formation.
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TABLE 1 Skin whitening effect of different EOs.

EOs Plant
material

Major constituent Method Effect References

Aralia elata (Miq.) Seem Flower γ-tocopherol;
cyclotetracosane

In vitro, α-MSH stimulates
B16BL6

B16BL6 cells were treated with
EOs at a concentration of 200 μg/

mL, the anti-melanogenesis-
related responses reached their
maximum (inhibition of MITF,

TYR, TRP-1, and TRP-2
expression, and downregulation of

MAPKs phosphorylation)

Kim et al. (2024)

Etlingera elatior (Jack)
R.M.Sm

Leaf a-pinene; humulene In vitro, melanoma cell lines
(A375 and B16F10)

The IC50 for reducing melanin
content in A375 and B16F10 cell

lines was 252.12 ± 3.02 and
253.56 ± 3.65 μg/mL, which is

approximately 2.8-fold lower than
kojic acid

Sangthong et al.
(2022)

Hypericum empetrifolium
Willd

Above ground;
Root

alloaromodendrene; α-
pinene

In vitro, TYR inhibition test The EO exhibits moderate anti-
TYR activity at a concentration of

200 μg/mL compared to the
standard compound

Boga et al. (2021)

Litsea cubeba (Lour.) Pers Fruit geranial (α-citral); neral (β-
citral)

In vitro, TYR inhibition test;
B16-F10 melanoma cell line

EO inhibits TYR activity; at a
concentration of 80 μg/mL, the
viability of B16-F10 cells decreases

to its lowest level

Qiu et al. (2022)

Alpinia nantoensis F.Y.Lu
and Y.W.Kuo

Leaf; Rhizome α-pinene and D-limonene In vitro, 20 μM FSK stimulates
B16-F10

At a concentration of 100 μg/mL,
the EO exhibited stronger
inhibition of melanogenesis

compared to arbutin or kojic acid;
Suppression of MITF activity

Kumar et al. (2020)

Mentha × piperita L Leaf Menthol; D-limonene In vitro, TYR inhibition test suppression of TYR expression Pavlić et al. (2021)

Dalbergia pinnata (Lour.)
Prain

Leaf Elemicin; Methyl eugenol In vitro, TYR inhibition test; In
vivo, zebrafish embryos test

At a concentration of 0.02 mg/mL,
the EO achieved a TYR inhibition
rate of 74%, whereas arbutin at the
same concentration showed an
inhibition rate of approximately

51%; at 30 mg/L, the EO
demonstrated more pronounced

anti-melanogenic effects
compared to arbutin

Zhou et al. (2020)

Origanum vulgare L Above ground β-caryophyllene epoxide In vitro, TYR inhibition test The TYR inhibitory activity of the
EO is 26.5% ± 0.3%

Moghrovyan et al.
(2019)

Melaleuca quinquenervia
(Cav.) S.T.Blake

Leaf 1,8-cineole
α-pinene; viridiflorol

In vitro, α-MSH stimulates B16 suppression expression of melanin
and TYR

Chao et al. (2017)

Juniperus phoenicea L leaves; berries α-pinene In vitro, α-MSH stimulates B16 At a concentration of 20 μg/mL,
the EO significantly reduces TYR

activity

Mansour et al.
(2023)

Sigesbeckia glabrescens
(Makino) Makino

Flower lauric acid; methyl
undecanoate

In vitro, α-MSH stimulates
B16BL6

At a concentration of 20 μg/mL,
the EO reaches its peak inhibition

of TYR activity (126.75% ±
0.60%); suppression expression of
MITF, TYR, TRP-1, and TRP-2

Lee et al. (2023)

Agathis dammara (Lamb.)
Rich. and A. Rich

Leaf δ-cadinene; γ-gurjunene In vitro; TYR inhibition test; In
vivo, zebrafish embryos test

At a concentration of 43.48 μg/mL,
the EO reduces melanin formation
in zebrafish embryos by 50%,
outperforming kojic acid

Ho et al. (2023)

Impatiens textori Miq Flower Palmitoleic acid;
palmitelaidic acid

In vitro, α-MSH stimulates
B16BL6

The concentration of EO was
200 μg/mL, which significantly

inhibited TYR activity;
suppression of TYR, MITF, and

melanin

Won et al. (2022)

Wood α-terpineol; shonanic acid Hsiao et al. (2021)

(Continued on following page)
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from Echinophora chrysantha Freyn and Sint. Have demonstrated
an inhibitory effect on TYR activity, subsequently affecting melanin
synthesis and reducing its content (Kanbolat et al., 2024). In vivo
experiments on zebrafish have demonstrated that Boswellia
papyrifera (Caill. Ex Delile) Hochst. EO can effectively inhibit
melanin production, with no significant toxic effects observed
within the tested concentration range (Yan et al., 2024). Table 1
summarizes plant EOs that exert skin-whitening effects by inhibiting
the expression of melanin, TYR, or TRP through in vivo or in vitro
experiments.

3.2 Anti-aging effect of essential oils

The aging of facial skin is a progressive process, resulting
from the interplay between internal aging factors and external
influences (Carvalho et al., 2023; Liu et al., 2024c). Signs such as
increased wrinkles, reduced firmness and elasticity, dry
keratinization, and excessive pigment deposition indicate a
loss of skin suppleness due to aging (Banov et al., 2023).
Prevailing theories on skin aging highlight the roles of free
radicals (Harman, 1956) and photoaging (Fisher et al., 1996).
The antioxidant activity of EOs efficiently counteracts free

radicals, thereby slowing the aging process (Maache et al.,
2023). EOs also absorb UV rays, reducing skin damage and
promoting the repair and regeneration of skin cells.

3.2.1 Free radical theory
Harman introduced the free radical aging hypothesis in 1954,

suggesting that both internal and external oxidants and free radicals
damage cells, altering their structure and function (Harman, 1956).
External factors, such as light, radiation, and heavy metals (Chen
et al., 2023a; Xie et al., 2020), as well as normal cell metabolism,
produce free radicals. Increased free radical levels accelerate aging
and contribute to aging-related diseases (Tamagno et al., 2022).
Normally, the body’s antioxidant system mitigates free radicals to
prevent their accumulation (Di Meo and Venditti, 2020). However,
with age, the body’s defenses weaken, leading to an abnormal
accumulation of free radicals, particularly reactive oxygen species
(ROS). Excess ROS reacts with unsaturated fats, creating lipid
peroxides (LPO) through lipid peroxidation (Zhou et al., 2024),
thereby damaging cellular membranes and organelles. This process
contributes to cell damage, necrosis, aging, and an increased risk of
disease. High free radical levels can also cause protein breakdown,
DNA mutations, and potentially cancer (Bakheit et al.,
2024) (Figure 3).

TABLE 1 (Continued) Skin whitening effect of different EOs.

EOs Plant
material

Major constituent Method Effect References

Calocedrus formosana
(Florin) Florin

In vitro, α-MSH (100 μM) and
FSK (20 µM) stimulates

B16-F10

At a concentration of 80 μg/mL,
the melanin inhibition effect of the
EO is comparable to that of kojic
acid at 200 μg/ML; The activity of
TYR and the expression of TRP-1,

TRP-2, and MITF were
significantly inhibited

Camellia japonica L Seed Hexamethy-
lcyclotrisiloxane

In vitro, α-MSH stimulates
B16-F10

suppression of TRP-1, TRP-2, and
melanin

Ha et al. (2021)

IC50, half-maximal inhibitory concentration; TD50, half-maximal toxicity dose; μM, micromolar; B16-F10, malignant melanoma cell line of C57BL/6 J mice; A375, human melanoma cell line;

B16BL6, melanoma-associated cell line; α-MSH, Alpha-Melanocyte-Stimulating Hormone; B16, melanoma-associated cell line.

FIGURE 3
Schematic diagram of aging caused by free radicals.
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TABLE 2 Antioxidant effects of different EOs.

Eos Plant
material

Major constituent Method Effect References

Thymus pulegioides L Above ground Thymol; Carvacrol In vitro, DPPH At a concentration of 1 mg/mL,
its activity is stronger than that of

vitamin E

Dong et al. (2023)

Thymus thracicus
Velen

Thymol

Thymus serpyllum L Oxygenated monoterpenes

Salvia acerifolia B.L.
Turner

Above-ground
part of full
flowering

1,8-cineole; camphor In vitro, ABTS; Detection of ROS
and Antioxidant Enzymes’

Activity

Suppression ROS/stimulates
GST, CAT

Badalamenti et al.
(2023), Henríquez et al.

(2023)

Origanum aciculare
(Waldst. and Kit.)

Kuntze

Leaf Carvacrol; p-cymene;
Eucalyptol

In vitro, DPPH Radical scavenging rate of EO is
higher than that of BHT

Zejli et al. (2023)

Pistacia lentiscus L Fruit Limonene; α-pinene In vitro, DPPH, ABTS, FRAP The antioxidant activity range is
29.64 ± 3.04 to 73.80 ±

3.96 μg/mL

El Omari et al. (2023)

Curcuma alismatifolia
Gagnep

Rhizome Camphor; Curzerenone In vitro, DPPH, ABTS The IC50 in DPPH tests is 19.1 ±
0.16 μg/mL; the IC50 in ABTS
tests is 15.24 ± 0.17 μg/mL

Mohanty et al. (2023)

Curcuma aromatica
Salisb

Xanthorrhizol; Curlone (β-
Turmerone)

The IC50 in DPPH tests is 23.1 ±
0.18 μg/mL; the IC50 in ABTS

tests is17.4 ± 0.18 μg/mL

Curcuma aeruginosa
Roxb

γ-Gurjunene; (Z)-
Caryophyllene

The IC50 in the DPPH tests is
36.8 ± 0.14 μg/mL; the IC50 in the
ABTS test is 29.4 ± 0.17 μg/mL

Curcuma longa L Leaf α-phellandrene; 2-carene In vitro, DPPH, ABTS IC50 = 10.04 ± 0.03 μg/mL for
DPPH assays; IC50 = 14.12 ±

0.21 μg/mL for ABTS

Visakh et al. (2023)

Cinnamomum
malabatrum (Burm.f.)

J. Presl

Leaf linalool; caryophyllene In vitro, DPPH, ABTS, FRAP The IC50 in the DPPH test is
21.50 ± 0.17 μg/mL; the IC50 in

the ABTS tests is 36.91 ±
0.41 μg/mL

Kuttithodi et al. (2023)

Ocimum
americanum L

Leaf Camphor; limonene In vitro, DPPH; ABTS; FRAP;
metal-chelating techniques

DPPH radical IC5013.42 ±
1.03 μg/mL); ABTS activity of
2085.07 ± 7.43 µM TEAC/g oil

Mahendran and
Vimolmangkang

(2023)

Ocimum basilicum L 3,7-dimethyl-, (Z)-(-citral)
Estragole

DPPH radical IC5011.56 ±
0.89 μg/mL; ABTS activity of

2,842.12 ± 10.39 µM TEAC/g oil

Laurus nobilis L Leaf 1,8-cineole sabinene;
linalool

In vitro, DPPH Antioxidant activity 76.84% Ailli et al. (2023)

Pistacia lentiscus L 3-methylpentylangelate Antioxidant activity 71.53%

Cedrus atlantica
(Endl.) Manetti ex

Carrière

Wood β-himachalene Antioxidant activity 62.38%

Mentha × piperita L Leaf; Flower Carvone; Limonene In vitro, DPPH DPPH radical IC50 15.93 mg/mL Zekri et al. (2023)

Kaempferia galanga L Rhizomes trans-ethyl
p-methoxycinnamate

In vitro, DPPH, ABTS, Hydroxyl
radical scavenging activity,

Reducing power assay; In vivo,
zebrafish embryos test

Attenuated MDA, ROS
generation, cell death, and lipid
peroxidation/increase in SOD,

CAT, GSH-Px

Wang et al. (2023b)

Rosmarinus
officinalis L

Branch Camphor; verbenone In vitro, DPPH, ABTS Suppression of ROS Huang et al. (2023)

Lavandula angustifolia
Mill

Flower linalool; borneol In vitro, DPPH EOs in Capracotta areas DPPH
radical IC50 26.26 mg/mL

Caprari, et al. (2023)

Zingiber officinale
Roscoe

Rhizomes zingiberene; (+)-β-cedrene In vitro, DPPH Free radical clearance rate of
~95% at a concentration of 0.25%

Zhang et al. (2022a)

(Continued on following page)
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Synthetic antioxidants, such as butylated hydroxyanisole and
2,6-di-tert-butyl-p-cresol, are widely utilized in the food and
skincare sectors (Xu et al., 2021). However, research suggests that
theymay increase the risk of cancer (Riaz et al., 2023). Consequently,
EOs have garnered remarkable interest due to their superior
antioxidant properties and safety profile. They contain various
antioxidant metabolites that effectively eliminate excess free
radicals, donate electrons or hydrogen, and inhibit lipid
peroxidation, thereby preventing skin damage and aging.
Notably, the anti-aging effects of EOs are achieved by inhibiting
free radical-driven signal transduction (Guo et al., 2021). Table 2
summarizes EOs with antioxidant properties and briefly presents the
relevant experimental results.

3.2.2 Photoaging theory
The skin, which covers approximately 1.5–2 m2 of the human

body, serves as its primary physiological barrier (Xu et al., 2023) and
encounters external stimuli such as UVR, smoke, and harmful
pollutants (Ge et al., 2024). UVR, particularly UVA (wavelength
range 320–400 nm) and UVB (wavelength range 290–320 nm)
(Gęgotek et al., 2017), is a major exogenous factor contributing
to skin aging (Yang et al., 2023b). Prolonged UVR exposure can lead

to hyperpigmentation, skin laxity, severe wrinkling, and an
increased risk of skin cancer (Kim et al., 2023; Liu et al., 2024b).
UVR also triggers skin inflammation, increasing ROS levels that
activate signaling in keratinocytes and fibroblasts, thereby
upregulating matrix metalloproteinases (MMPs) (Sim et al.,
2023). These proteolytic enzymes degrade collagen, elastin, and
other connective tissue proteins, disrupt the extracellular matrix,
and inhibit new collagen synthesis (Apte and Parks, 2015).
Specifically, UVR exposure enhances the activity of MMPs—such
as collagenase, 92-kd gelatinase, and stromelysin—in the skin
(Birkedal-Hansen, 1987). As a result, these enzymes accelerate
the breakdown of endogenous type I collagen fibers by up to
58%, thereby accelerating the skin aging process. Moreover,
adverse skin reactions from the overuse of chemicals in
sunscreens are becoming more common (Messias et al., 2023).
Therefore, identifying natural and effective sunscreen metabolites
is critical. EOs have shown significant potential in sun protection
due to their ability to absorb UV radiation while scavenging free
radicals, ultimately reducing photodamage and delaying skin aging.
The EOs listed in Table 3 are renowned for their sun protection
efficacy and demonstrate significant potential for natural skincare
applications.

TABLE 2 (Continued) Antioxidant effects of different EOs.

Eos Plant
material

Major constituent Method Effect References

Artemisia annua L Leaf; Stem Artemisinone; (+)-α-pinene In vitro, DPPH, Hydroxyl radical
test

DPPH clearance rate is 40.03%,
and the hydroxyl radical
clearance rate is 92.97%

Panyod et al. (2024)

Cinnamomum
bodinieri H. Lév

Leaf Citral; Neral; geranial In vitro, DPPH, ABTS, FRAP DPPH IC50 = 6.887 ± 0.151 mg/
mL; ABTS IC50 = 19.08 ±

0.02 mg/mL

Ling et al. (2022)

Epilobium
angustifolium L

Leaf α-caryophyllene oxide;
eucalyptol

In vitro, DPPH 2.445 ± 0.025 mg Trolox/g EOEa
in DPPH

Nowak et al. (2021)

Ferulago abbreviata
C.C.Towns

Fruit (Z)-β-ocimene; α-
phellandrene

In vitro, DPPH DPPH EC50 = 68.75 μg/mL Narimani et al. (2022)

Aloysia citriodora
Palau

Leaf geranial; rans-1,2-Bis-(1-
methyl phenyl);
cyclobutene

In vitro, DPPH DPPH IC50 = 11.74 ± 0.18 μg/mL Jaradat et al. (2021)

Eucalyptus grandis W.
Hill

Leaf 1,8-cineole; α-pinene In vitro, DPPH, ABTS DPPH IC50 = 42.5 mg/mL; ABTS
IC50 = 7.4 mg/mL

Zhou et al. (2021)

Syzygium aromaticum
(L.) Merr. and
L.M.Perry

Flower Eugenol In vitro, DPPH DPPH EC50 = 0.36 μL/mL Vella et al. (2020)

Dalbergia pinnata
(Lour.) Prain

Leaf Elemicin; Methyl eugenol In vitro, DPPH, ABTS DPPH IC50 = 0.038 mg/mL;
ABTS IC50 = 0.032 mg/mL

Zhou et al. (2020)

Anthemis palestina
(Reut. Ex Kotschy)
Reut. Ex Boiss

Above ground γ-muurolene; €-β-farnesene In vitro, DPPH DPPH IC50 = (1.00 ±
0.03) ×10−2 μg/mL

Al-Qudah et al. (2023)

Boswellia carteri Birdw Resin Limonene; α -phellandrene In vitro, DPPH DPPH clearance rate is
86.44% ± 2.12%

Obiș;tioiu et al. (2023)

Tetraclinis aphylla (L.)
Rothm

leafy branches Camphor; Bornylacetate;
Borneol

In vitro, DPPH, FRAP DPPH IC50 = 266.9 ± 5.4 μg/mL;
FRAP EC50 = 433.16 ±

4.13 μg/mL

Asbabou et al. (2024)

CAT, antioxidant enzyme catalase; GST, glutathione-S-transferase; SOD, superoxide dismutase; EC50, median effective concentration; MDA, malondialdehyde; GSH-Px, glutathione

peroxidase; FRAP, ferric ion reducing antioxidant power; DPPH:2,2-diphenyl-1-picrylhydrazyl; ABTS:2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid.
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3.3 Antibacterial effects of essential oils

Skin is not only a physical barrier isolating the body from the
outside world but also a habitat for various microorganisms
(Dessinioti and Katsambas, 2024). An imbalance in the skin
microbial community can lead to diseases such as acne, atopic
dermatitis, and eczema. Many chemical preservatives
(phenoxyethanol, methyl p-hydroxybenzoate [p-HBA], butyl
p-hydroxybenzoate [BuP], chlorobenzyl ether, and sodium
benzoate [SB]) are added to skincare products to prevent
microbial contamination during production, storage, and use,
and to prolong shelf life (Alshehrei, 2024; Głaz et al., 2023).
However, they cannot protect the skin from bacterial pollution
and may be harmful to users. For instance, p-HBA can impact
nervous system development in zebrafish (Merola et al., 2024) and
reduce male fertility (Shen et al., 2023). BuP is hepatotoxic in aquatic
animals (Yin et al., 2023), negatively affects heart development (Zhu
et al., 2023), and inhibits neural crest cell proliferation in zebrafish
larvae, causing craniofacial deformities (Li et al., 2023b).
Additionally, high concentrations of SB may be toxic to insects
(Asejeje et al., 2024). The accumulation of these chemical
preservatives on the skin may promote aging and pigmentation.
Excessive or improper use of chemical preservatives poses risks to

human health and the environment (Nowak-Lange et al., 2022). With
increasing awareness of health and environmental protection, the
reliance on chemical preservatives in skincare is a growing concern
(Jafarizadeh-Malmiri et al., 2022). Plant EOs, with their natural
composition, favorable safety profile, and potent antibacterial
properties, are frequently utilized as alternatives to chemical
preservatives (Cunha et al., 2022). As lipophilic substances, EOs
can disrupt lipids and proteins, increase membrane permeability,
and cause leakage of cellular contents (Álvarez-Martínez et al., 2021)
(Figure 4). For instance, in vitro studies show that Lemon verbena EOs
can damage the cell walls of cultivated yellow croakers, increasing
membrane permeability and causing leakage of cellular contents,
ultimately leading to cell death (Gao et al., 2023). The antibacterial
properties of plant EOs hold great potential for use as natural
preservatives (Table 4 summarizes the related EOs).

3.4 Anti-inflammatory effect of essential oils

Inflammation is a complex defense mechanism that counteracts
harmful external stimuli or abnormal internal signals. The immune
system plays a central role in this process by eliminating the cause of
disease and preserving the structural integrity of cells and tissues to

TABLE 3 Sunscreen characteristics of different EOs.

EOs/oil Major
constituent

Method Effect References

Boswellia papyrifera
(Caill. Ex Delile) Hochst

n-octyl acetate; α-pinene In vivo, Hairless rats irradiated by UVB Inhibition of MAPK (pERK, pJNK, and pp38) and
MMPs (MMP1 and MMP9)/Increase the expression

of TGF-β and procollagen I synthesis

Kotb et al. (2023)

Zingiber montanum
(J. Koenig) Link ex

A.Dietr

Sabinene; erpinene-4-ol In vitro, UVB-irradiated HDFn Inhibition of MMP/increased expression of type I
procollagen synthesis

Navabhatra et al.
(2022)

Oncosiphon
suffruticosum (L.)

Källersjö

Camphor; filifolone In vitro, SPF via UV spectroscopy SPF 2.299 Adewinogo et al.
(2021)

Coriandrum sativum L linalool In vitro, Screening of enzyme activities
related to skin aging; in vivo, anti-

wrinkle activity

Inhibition of the activity of collagenase, elastase, TYR,
and hyaluronidase activity, as well as the levels of
MDA, COX-2, PGE-2, MMP-1, JNK, and AP-1/
Increase the expression of TGFβ, TGFβII, and

SMAD3 protein levels

Salem et al. (2022)

Artemisia sieversiana
Ehrh

Artemisia ketone;
Artemisol

In vivo, UVB-irradiated mice Increased expression of SOD/Inhibition of MDA,
MMP-1 and MMP-3, as well as epidermal thickness,
inflammatory cell infiltration, collagen degradation,

and elastin aberrance

Zhou et al. (2022)

Magnolia sieboldii K.
Koch

β-elemene; γ-terpinene In vivo, UVB irradiated mice Inhibition of skin photoaging, TNF-α, IL-6, IL-10 Zhang et al. (2021)

Blumea balsamifera
(L.) DC.

caryophyllene; borneol

Calendula americana Mill α-Cadinol In vitro, SPF via UV spectroscopy SPF 8.36 Lohani et al. (2019)

Geranium acaule L Citronellol; geraniol SPF 6.45

Syzygium cumini (L.)
Skeels

α-pinene; β-pinene; €-β-
caryophyllene

In vitro, anti-aging experiment Inhibition of collagenase, elastase, and hyaluronidase
activity

Ashmawy et al.
(2023)

Kaempferia galanga L ethyl cinnamate In vitro, UVB-irradiated Moderate sun protective activity and reduce nitric
oxide production induced by LPS in macrophage cells

Chittasupho et al.
(2022)

IL-6, Interleukin-6; IL-1β, Interleukin-1β; COX-2, Cyclooxygenase-2; PGE2, Prostaglandin E2; MMP-1, and MMP-3, Matrix Metalloproteinases-1,-3; TNF-α, Tumor Necrosis Factor-α;
HaCaT, human keratinocyte cell line; HDFn, human dermal fibroblast cells; SPF, sun protection factor.
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maintain homeostasis. When the skin experiences irritation,
bacterial infection, or damage, an inflammatory response is
triggered. While moderate inflammation aids in repairing skin
damage, excessive inflammation can lead to chronic skin diseases
such as dermatitis, rosacea, and acne vulgaris. During this process,
immune cells, including T cells, B cells, and dendritic cells, secrete
inflammatory factors, most notably cytokines. Following skin
damage, keratinocytes also become activated. The recognition
and binding of specific pathogens or damaging factors to the
pattern recognition receptor TLR (toll-like receptor)4 on the cell
membrane triggers the release of inflammatory substances and
subsequent immune cell activation (de Sousa et al., 2023; Jiang
et al., 2020; Li et al., 2024a; Piipponen et al., 2020; Zhang et al.,
2024a) (Figure 5). Current primary treatments for inflammation
include corticosteroids, NSAIDs, and biologicals. However, drug
resistance compromises their efficacy, necessitating novel
therapeutic approaches (Russo et al., 2024). EOs exhibit potent
anti-inflammatory properties by reducing capillary permeability and
inhibiting both inflammatory cell activation and cytokine release.
Thus, EOs are increasingly used as alternatives to traditional drugs
for treating inflammation (Shen et al., 2017). For example, adapalene
(ADA) is a commonly used gel for treating acne. When a tea tree EO
nanoemulsion was combined with ADA, it produced a stronger
therapeutic effect than ADA alone in clinical experiments, without
increasing adverse effects (Najafi-Taher et al., 2022). Another
clinical study revealed that adding 3% kānuka EOs to cream
significantly improved eczema to a greater extent than the
vitamin C control (Shortt et al., 2022). Table 5 summarizes EOs
and their anti-inflammatory properties.

4 Challenges in essential oil application

In summary, EOs have unique biological activity and can be
used in medicine, food, and skin care products. However, their high

volatility and lipophilicity compromise stability during storage and
use, particularly upon exposure to light, heat, O2, and UVR. Such
exposure can diminish the active metabolites of EOs, thereby
decreasing their efficacy. More critically, EOs may produce
oxidation and isomerization products that are highly toxic and
allergenic (Yi et al., 2022). For instance, the main component of
anise, Clove, Cinnamomum verum J. Presl, and thyme EOs, trans-
anethole, isomerizes into cis-anethole under ultraviolet light or high
temperatures. Additionally, trans-anethole can be completely
oxidized into benzaldehyde or isomerized into cis-anethole after
being stored in light for 2 months at room temperature. Studies have
shown that cis-anethole may cause stronger skin irritation, such as
erythema, itching, and contact dermatitis, and increase the risk of
allergic reactions (Castro et al., 2010). Additionally, a patch test
conducted by Geier et al. on 12 EOs in 10,930 dermatitis patients
revealed that 908 patients (8.3%) reacted to at least one EO. Among
these, only six EOs (ylang-ylang, lemongrass, jasmine, sandalwood,
Clove, and neroli) elicited positive patch test reactions in more than
1% of the patients (Geier et al., 2022). Although sensitization
reactions to EOs do occur, they are generally uncommon.
Nonetheless, safety concerns in practical applications should not
be overlooked.

5 Essential oil’s drug delivery system

In summary, the volatility, instability, poor solubility, and skin
irritation of EOs lead to uneven curative effects and low
bioavailability, making it impractical to use them alone. However,
advances in natural plant research and the rapid development of
drug delivery systems offer new solutions to these issues. A drug
delivery system can effectively prevent the degradation of EOs by
encapsulating them in or adsorbing them onto carriers, thereby
improving their stability and bioavailability. These systems also
allow controlled and targeted release, enabling EOs to act on the

FIGURE 4
Schematic diagram of the antibacterial mechanism of EOs.
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TABLE 4 Antibacterial effects of different EOs.

EOs Plant
material

Major
constituent

Method Effect References

Salvia mirzayanii Rech.f.
and Esfand

Above ground (α)-terpineol; linalyl
acetate

In vitro, Antibacterial
Effects experiment

Against S. aureus, EOs demonstrate an MIC
of 1.65 μL/mL, an MBC of 6.25 μL/mL, and a
ZOI of 30 mm; Against E. coli, EOs show an
MIC of 3.12 μL/mL, an MBC of 50 μL/mL,

and a ZOI of 14 mm

Shaverdi et al.
(2024)

Tanacetum annuum L Above ground Chamazulene; Camphor In vitro, Agar disk
diffusion method

Inhibition of G+ bacterial growth Belcadi et al.
(2023)

Cinnamomum cassia (L.)
J.Presl

Bark cinnamaldehyde;
(+)-isomenthol

In vitro, Bacteriostatic
Circle

Inhibition of E. coli, B. subtilis, S. aureus, C.
albicans, and P. aeruginosa growth

Zhao et al. (2023)

Origanum vulgare L Leaves carvacrol; thymol

Eucalyptus globulus Labill Leaves Myrcene In vitro, Antibacterial
Effects experiment; MIC,

MBC assays

Inhibition of B. bronchiseptica, S. epidermidis,
and S. aureus growth

Nasir Shah et al.
(2023)

Rosmarinus officinalis L Leaves α-pinene; 1,8-cineole In vitro, paper disc
diffusion

Inhibition of S. typhi and S. aureus growth Hashemi et al.
(2023)

Tetraclinis articulata (Vahl)
Mast

Leaves bornyl acetate; α-pinene In vitro, disc-diffusion
technique; MIC, MBC

assays

Inhibition of G+, G-, C. albicans growth El Hachlafi et al.
(2024)

cardamom (Elettaria
cardamomum (L.) Maton)

Seed 1,8-cineole In vitro, agar disk
diffusion method

Inhibition of L. monocytogenes, S. aureus,
E. coli, and S. typhimurium growth

Sobhy et al. (2023)

Eucalyptus citriodora Hook Leaves monoterpenoid
aldehyde citronellal

In vitro, disc diffusion
method; Antifungal

activity

S. aureus DIZ: 32 ± 1.3 mm;C. albicans MIC:
65.1 ± 1.6 μg/mL

Fayez et al. (2023)

Eucalyptus camaldulensis
Dehnh

β-cymene; 1,8-cineole S. aureus DIZ: 34 ± 0.8 mm; C. albicansMIC:
45.3 ± 1.7 μg/mL

Eucalyptus ficifolia F.Muell trans-β-ocimene; 1,8-
cineole

S. aureus DIZ: 36 ± 1.0 mm;C. albicans MIC:
71.1 ± 3.6 μg/mL

Geranium acaule L Leaves Citronellol; terpinene In vitro, disc diffusion;
zone inhibitory

Inhibition of S. epidermidis and E. coli growth Tansaoui et al.
(2023)

Artemisia rutifolia Stephan
ex Spreng

Above ground α-thujone; β-thujone In vitro, Disc diffusion
method

Inhibition of Gram-positive bacteria and
fungi growth

Dylenova et al.
(2023)

Ocimum forskolei Benth flowering aerial
parts

methyl eugenol; eugenol In vitro, Well-Diffusion
Method

Inhibition of E. coli, P. aeruginosa, and S.
aureus growth

Bader et al. (2023)

Zingiber officinale Roscoe Rhizomes Limonene; camphene In vitro, Antibacterial
Effects experiment

Inhibition of S. aureus, E. coli, and C. albicans
growth

Berechet et al.
(2023)

Crithmum maritimum L Above ground γ-Terpinene; sabinene;
Thymylmethyl oxide

In vitro, agar diffusion
method; microdilution

assay

Inhibition of B. cereus; S. aureus; L.
plantarum; E. coli growth

Pedreiro et al.
(2023)

Cymbopogon citratus (DC.)
Stapf

Stem leaf geranial; neral In vitro, Antibacterial
Effects experiment

Inhibition of E. coli, S. aureus growth Gaspar et al.
(2022)

Helichrysum italicum
(Roth) G.Don

herb; Flower α-pinene; nerol In vitro, Antibacterial
Effects experiment

Antibacterial activity: the EOs from
inflorescences > herb EOs

Węglarz et al.
(2022)

Matricaria chamomilla L Flower cis-ene-yne-dicycloether In vitro, Broth
microdilution test

Inhibition of S. aureus, P. aeruginosa, E. coli
growth

Pastare et al.
(2023)

Chrysanthemum
morifolium Ramat

Flower; stems-
leaves; roots

caryophyllene In vitro, microdilution
method

S. aureus MIC: 10 mg/mL; P. acnes MIC:
25 mg/mL

Liu et al. (2022b)

Alpinia galanga (L.) Willd Flower Farnesen; aceteugenol In vitro, Antibacterial
Effects experiment

DIZ: 8.79–14.32 mm, MIC: 3.13–6.25 mg/
mL, MBC: 6.25–12.50 mg/mL

Tian et al. (2022)

ATP, adenosine triphosphate; ADP, adenosine diphosphate; G+, Gram-positive bacteria; G−, Gram-negative bacteria; MIC, minimum inhibitory concentration; MBC, minimum bactericidal

concentration; E. coli, Escherichia coli; B. subtilis: Bacillus subtilis; S, aureus: Staphylococcus aureus; C. albicans: Candida albicans; P, aeruginosa: Pseudomonas aeruginosa; B, bronchiseptica:

Bordetella bronchiseptica; S, epidermidis: Staphylococcus epidermidis; L, monocytogenes: Listeria monocytogenes; S, typhimurium: Salmonella typhimurium; S, typhi: Salmonella typhi; DIZ,

diameter of inhibition zone; ZOI, zone of inhibition.
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target area more accurately and effectively, reduce the toxicity, and
further expand their application scenarios (Figure 6) (Chhetri et al.,
2024; Lim et al., 2023; Ye et al., 2024).

5.1 Lipid-based delivery systems

5.1.1 Liposomes (LS)
LS are vesicular structures that spontaneously assemble from

one or more phospholipid bilayers surrounding an aqueous core,
capable of encapsulating hydrophilic molecules within their
internal aqueous phase and hydrophobic molecules within the
phospholipid bilayers (Bedoya-Agudelo et al., 2024). LS, as the
most mature nano-drug carrier, effectively addresses the instability
and low solubility of EOs caused by external factors (such as
reduced bioavailability) through the integration of EOs with LS
technology (Hedayati et al., 2024). For instance, embedding
Origanum Vulgar L. EO into LS can significantly enhance
antioxidant activity and increase cytotoxicity against MCF-7
cancer cells (Kryeziu et al., 2022). Nanoliposomes (NLS) are LS with
diameters typically under 200 nm, suited for high-precision targeting
and controlled-release applications, such as local dermatological
treatments and cancer therapy. Ellboudy et al. (2023) doped
Cinnamon EO into an NLS formula to enhance its stability, thereby
extending the release time and improving its antibacterial activity.

However, LS has limitations, such as poor repeatability, uneven
particle size, and remarkable lipid oxidation. Consequently, the

development of new carriers based on LS is on the rise. For
instance, Baldim incorporated CD in LS to deliver Lippia
sidoides Cham. and Syzygium aromaticum (L.) EO, finding that
the EOs-in-CD-in-LS systems retained volatile metabolites and
increased their physicochemical stability (Baldim et al., 2022).
Similarly, Gan et al. (2024) enhanced NLS using the layer-by-
layer electrostatic deposition method with chitosan and three
anionic polymers (pectin, gum arabic, and carrageenan) as the
first and second coating polymers, respectively, to encapsulate
lemongrass EO, resulting in improved EO stability.

5.1.2 Solid lipid nanoparticles (SLNs)
SLNs represent a novel colloidal drug delivery system that offers

better stability compared to traditional LS. Comprised of three main
metabolites—active metabolites (or drugs), solid lipids, and
surfactants (Subroto et al., 2023)—SLNs utilize commonly
biocompatible substances such as mono-, di-, and triglycerides,
fatty acids, fatty alcohols, and waxes for the lipid core (Llaguno-
Munive et al., 2024). The non-toxic and non-irritating nature of
these lipids makes SLNs particularly suitable for injured or inflamed
skin (Safta et al., 2024). Using a nanostructure design, EOs are
encapsulated in SLNs as submicron capsules or nanoparticles,
considerably enhancing the stability and bioavailability of the oils
(AbouAitah and Lojkowski, 2022). For instance, Fuentes et al.
(2024) developed an SLN delivery system based on Mentha ×
piperita L. EO and evaluated its thermal stability. The SLNs
markedly reduced the evaporation loss of active metabolites in

FIGURE 5
Schematic diagram of the anti-inflammatory effect of EOs (By Figdraw).
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TABLE 5 Anti-inflammatory effects of different EOs.

EOs Plant
material

Major
constituent

Method Effect References

Cinnamomum camphora (L.)
J. Presl

Branch and leaf linalool In vitro, LPS-stimulated
macrophages

Activates the Nrf2/HO-1 pathway and
reduces TNF-α, IL-6, and IL-1β levels

Zhang et al. (2024d)

Prunus humilis Bunge nucleolus amygdalin In vivo, DSS-induced
ulcerative colitis mice

Inhibits the PI3K/AKT pathway to
reduce the release of inflammatory

factors

Wang et al. (2024b)

Kaempferia galanga (L.) rhizomatous
root

Curcumol;
Curcumene

In vivo, GU rat model Promotes the expression of PGE2,
TGF-α, and EGF/inhibits NF-κB/

COX-2 pathway, thus reducing IL-8
and TNF-α

Liu et al. (2023)

Ferulago lutea (Poir.) Grande Umbellies of
seeds

α-pinene; limonene In vitro, LPS-stimulated
macrophages

Decreases NO release as well as iNOS
and pro-IL-1β protein levels

Alves-Silva et al.
(2023)

Lavandula angustifolia Mill flower Linalool In vitro, P. aeruginosa LPS-
induced inflammation model

Inhibits the expression of IL-6, IL-8,
IL-β, and TNF

Pandur, et al. (2021)

Salvia officinalis L acrial part 12-O-methyl
carnosol; eucalyptol

In vitro, COX-2 Inhibition
Assayt

Inhibition of COX-2 expression; IC50 =
5.3 ± 0.62 g/mL

Alomar et al. (2023)

Cedrus atlantica (Endl.)
Manetti ex Carrière

dry wood β-himachalene; α-
himachalene

In vitro, 5-LOX inhibition test Inhibition of 5-LOX expression El Hachlafi et al.
(2023)

Mesosphaerum suaveolens (L.)
Kuntze

Leaves B-caryophyllene;
phyllocladene

In vitro, LPS-induced
inflammation model

Inhibits the NF-κB pathway and
reduces the mRNA of iNOS and COX-
2, reducing the expression of IL-6, IL-

1β, TNF-α, and ROS production

Mohanta et al. (2023)

Citrus medica L skin d-limonene; γ-
terpinene

In vivo,ovalbumin-induced;
In vitro, LPS-induced
inflammation model

Suppresses the expression of IL-6, IL-
1β, and TNF-α

Feng et al. (2023)

Rosa rugosa Thunb flower Citronellol; farnesol In vitro, LPS-induced
inflammation in RAW

264.7 cells

Inhibition of the NF-κB pathway and
suppression of NO, ROS, and MDA

Raka et al. (2022)

Citrus maxima (Burm.) Merr acrial part D-limonene;
Laurene

In vitro, LPS-induced
inflammation model

Inhibits the expression of IL-6, TNF-α,
ROS, IL-1, and COX-2

Nikolic et al. (2023),
Zhang et al. (2022c)

Bursera graveolens (Kunth)
Triana and Planch

Fruits limonene In vivo, Edema caused by AA The thickness of mouse ear skin
decreased by 25%/Inhibits the

expression of IL-8, IL-17A, and IL-23

Sosa et al. (2023)

Dacryodes peruviana (Loes.)
H.J. Lam

Fruits α-phellandrene The thickness of mouse ear skin
decreased by 53.3%

Mespilodaphne acuminata
(Baker) Baill

Leaves €-methyl cinnamate The thickness of mouse ear skin
decreased by 33.42%/Inhibits the
expression of IL-17 A and IL-23

Melaleuca armillaris (Sol. Ex
Gaertn.) Sm

Leaves 1,8-cineole The thickness of mouse ear skin
decreased by 65.25%

Eugenia gracillima Kiaersk Leaves D-germacrene; γ-
muurolene-g

In vivo, Carrageenan-induced
paw edema and peritonitis

Inhibition of inflammation, as well as
leukocyte and neutrophil migration

Guedes et al. (2023)

Monarda didyma L Above-ground
part of flowering

Limonene;
eucalyptol; β-pinene

In vitro, LPS-stimulated
U937 cells

Inhibits TLR-4 signaling, reducing the
expression of IL-6 and upregulating

miR-146a

Fraternale et al.
(2022)

Blumea lanceolaria (Roxb.)
Druce

Leaves; Stem;
Roots

o-cymene; carvacrol
methyl ether

In vitro, RAW 264.7 cell
model; In vivo, carrageenan-
induced paw edema model

Inhibits the NF-κB pathway; the
phosphorylation of IκBα; and the

production of NO, TNF-α, IL-6, iNOS,
and COX-2

Do et al. (2022)

Origanum compactum Benth aerial part Carvacrol; thymol;
α-pinene

In vitro, 5-LOX inhibition
test; In vivo, carrageenan-
induced paw edema model

Inhibition of 5-LOX expression Al-Mijalli et al.
(2022)

Zingiber officinale Roscoe Rhizomes Zingiberene; (+)-β-
cedrene

In vivo, TPA-induced ear
swelling in mice

Inhibits the NF-κB pathway and
decreases COX-2 and IL-6 expression

Zhang et al. (2022a)

(Continued on following page)
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TABLE 5 (Continued) Anti-inflammatory effects of different EOs.

EOs Plant
material

Major
constituent

Method Effect References

Hedychium flavum Roxb flower β-pinene
α-pinene

In vitro, LPS-induced release
in RAW264.7; In vivo, xylene-
induced ear edema model

Suppresses iNOS, COX-2, IL-6, TNF-α,
and IL-1β expression as well as NO and
PGE2 release in vitro/the levels of TNF-
α, IL-6, and IL-1β were reduced in vivo

Tian et al. (2023)

DSS, dextran sulfate sodium; 5-LOX, lipoxygenase; NO, nitric oxide; iNOS, nitric oxide synthase; AA, Arachidonic Acid.

FIGURE 6
Summary of Different drug delivery system for EOs. Note: A, liposome; B, solid lipid nanoparticles; C, nanostructured lipid carrier; D, chitosan; E,
polymer micelle; F, micro/nano capsules; G, nanospheres; H, cyclodextrin; I, nanogel; J, nanoparticles; K, Pickering emulsion; L, nano/micron emulsion.
(By Figdraw).
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the EO, exhibited excellent thermal stability at 50°C and boosted the
EO’s antibacterial properties. Additionally, SLNs can enhance the
therapeutic efficacy of EOs. Due to their lipophilic nature and ease of
penetration through the bacterial cell wall, SLNs can facilitate the
delivery of Cinnamon EO across the cellular membrane, thereby
enhancing its antibacterial activity against E. coli (Nemattalab et al.,
2022). Similarly, Kotb et al. (2023) prepared Boswellia sacra Flück.
EO into SLNs (FO-SLNs) via high-shear homogenization and
assessed their anti-photoaging activity through in vivo
experiments, demonstrating that FO-SLNs provided enhanced
protection against UVB-induced epidermal thickening, dermal
collagen degradation, and a decrease in inflammatory cell
numbers compared to pure EO alone. While SLNs effectively
protect EOs and improve their stability, they also present
challenges such as complex production, high costs, and
stability issues.

5.1.3 Nanostructured Lipid Carriers (NLCs):
NLCs are second-generation lipid nanoparticles based on SLNs,

formed from a mixture of solid lipids (cocoa, murumuru butter, and
beeswax) and liquid lipids (olive oil or sesame oil). The presence of
liquid lipids creates larger cavities within the solid lipids, ensuring a high
drug-loading capacity and enhanced solubility of active metabolites.
Importantly, the active metabolites rarely leak during storage (Cimino
et al., 2021; Uchida et al., 2021). For instance, usingNLCs to encapsulate
Lippia sidoides Cham. and Caryophyllus aromaticus L. EOs results in a
high encapsulation efficiency of the marker compound, ranging from
84.6% to 100%, significantly enhancing the therapeutic efficacy of EOs
(Almeida et al., 2024). Pires et al. prepared seven types of NLCs; one
formulation composed of Geranium EO and beeswax allowed storage
for 210 days at 25°C. Meanwhile, NLCs prepared with encapsulated
lemongrass EOs using murumuru butter, Cinnamon EOs with cocoa
butter, Clove EOs, and Origanum vulgare L. EOs with beeswax
demonstrated that encapsulation can improve the bioavailability,
stability, and biocompatibility of EOs while reducing their
photodegradation and toxicity (Pires et al., 2024).

In the EO-NLC system, liquid lipids may consist solely of EOs or
be combined with additional liquid lipids to improve EO stability
and enhance therapeutic efficacy. For instance, Santos Pimentel et al.
(2024) prepared NLCs using Cinnamon, sage, and thyme as liquid
matrices, combined with other solid matrices and surfactants.
Experimental results demonstrated improved stability of all
developed EO-based NLC formulations, while bioactivity
remained unchanged. Satrialdi et al. (2024) prepared a Clove EO-
loaded NLC (COE-NLC) via an emulsification-ultrasonication
process, achieving an encapsulation efficiency of 97% and good
stability. Furthermore, compared to free COE, COE-NLC exhibited
enhanced free radical scavenging activity and effectively protected
fibroblast cells from oxidative stress. The capacity of NLCs for EO
loading is greater than that of LS and SLNs, although the use of
surfactants in the preparation process is inevitable.

5.2 Emulsion delivery system

5.2.1 Microemulsion (ME)
ME is a clear, uniform liquid mixture composed of a co-

surfactant, water phase, oil phase, and surfactant. MEs can be

categorized as O/W, W/O, or bicontinuous types. The nanoscale
droplets created by surfactants in ME weaken the skin’s barrier
function, making it suitable for transdermal drug delivery. The oil
phase can improve drug absorption efficiency at the site of action,
and using plant EOs, which dissolve the stratum corneum, as the oil
phase further enhances ME permeability (Chen et al., 2024; Thakur
et al., 2021). Wang et al. synthesized a ME of Matricaria recutita L.
EO (MRME) using the phase inversion emulsification method and
examined its anti-inflammatory and eczema-treating properties.
Their findings indicated that MRME improved EO stability,
lowered irritancy, and maintained anti-inflammatory and
eczema-treating effectiveness (Wang et al., 2024a). Meanwhile, an
ME loaded with Torreya grandis Fortune ex Lindl. EO (TaEO)
showed higher stability and enhanced biological activity than pure
TaEO (Wang et al., 2023a). Encapsulating Lavender, Basil, and
Clove EOs using an ME, antibacterial experiments demonstrated
more effective activity against S. aureus and E. coli at lower
concentrations than those of pure EOs (Manzoor et al., 2023).
Although ME significantly improves the efficacy of EOs, it has
certain limitations, such as low encapsulation efficiency, poor
stability, the use of surfactants during preparation, and residual
organic solvents.

5.2.2 Nanoemulsion (NE)
NEs are emulsion or colloidal dispersion systems composed of

two immiscible liquids formed by surfactants, oil, and water,
resulting in oil-in-water (O/W) or water-in-oil (W/O) types. Due
to their high stability and greater resistance to environmental
factors, NEs have found increased application in the food,
cosmetics, and pharmaceutical industries. They enhance the
stability, solubility, and bioavailability of active metabolites while
producing a sustained-release effect (Huang et al., 2024a; Pandey
et al., 2023; Shahabi et al., 2024; Sharma et al., 2024b). Sun et al.
prepared an NE of Litsea cubeba (Lour.) Pers. EO (LEON) using
ultrasonic emulsification; experimental data indicated that LEON
significantly enhances the antibacterial efficacy and antioxidant
capacity of the EO (Sun et al., 2024). Moreover, NE can also
improve the antibacterial effect of EOs. For example, the NE of
Callistemon citrinus (Curtis) Skeels EO exhibits 15 times the
antibacterial activity against E. coli compared to pure EO and
remains stable for up to 6 months (Haghbayan et al., 2024). Ling
et al. prepared traditional emulsions (BDT) and NE (Bneo) of
Illicium verum Hook. f. EO using ultrasonic methods;
antibacterial results showed that the antifungal activity of Bneo
against Fusarium proliferatum was 5.8 times higher than that of
BDT, with good stability (Ling et al., 2024). However, the process
inevitably requires surfactants and faces challenges related to
thermodynamic instability and high production costs.

5.2.3 Pickering Emulsion (PE)
Compared to emulsions traditionally stabilized with surfactants,

PEs utilize solid particles to stabilize oil–water mixtures, including
both O/W and W/O types. The stabilizing principle involves
creating a solid barrier around the oil droplets, effectively
isolating the oil phase from the water phase. The particles used
as stabilizers are diverse, encompassing materials such as chitosan,
starch, and cellulose. Owing to their low emulsifier dosage, ease of
operation, strong biocompatibility, and high safety, they are
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increasingly favored. PE serves as an excellent carrier for EOs by
reducing their sensitivity to evaporation and oxidation, thereby
improving stability (Apostolidis et al., 2023; Cahyana et al., 2022;
Pandita et al., 2024; Zhang et al., 2022b). For instance, a PE stabilized
by modified cinnabar can enhance the thermal stability and in vitro
dissolution rate of Acorus tatarinowii Schott EOs (Ru et al., 2024).
PE can also carry lysozyme and tea tree EO, maintaining lysozyme
activity while alleviating the volatilization of tea tree EO.
Furthermore, the synergistic effect of the two metabolites
exhibited a strong bactericidal effect against drug-resistant
bacteria in vitro (Yao et al., 2024). Additionally, PE can improve
the bioavailability of EOs, enhancing therapeutic efficacy and
enabling sustained release. The PE of Cinnamon EOs
demonstrates stronger antibacterial and antioxidant properties
than pure EOs (Ly et al., 2024).

5.2.4 Self-emulsifying drug delivery
systems (SEDDS)

SEDDS are homogeneous mixtures of oil, surfactant, and co-
surfactant. When in contact with an aqueous medium and subjected
to gentle stirring, they spontaneously form an emulsion
(AboulFotouh et al., 2017). Moreover, SEDDS avoid steps such as
heating or solvent evaporation that may damage EO active
metabolites or cause volatile losses, thereby overcoming issues
like poor solubility, limited absorption, and inadequate stability
(Liu et al., 2022a). For example, Chaisri prepared an SEDDS using
EOs from Cymbopogon citratus (DC.) Stapf and lemongrass, finding
that its stability was superior to that of the crude oils during both
long-term storage and accelerated conditions (Chaisri et al., 2024).
However, droplets formed by SEDDS for lipophilic, poorly water-
soluble drugs may not release the active metabolites at all (Malkawi
et al., 2020). An improved version, the Self-Nanoemulsified Delivery
System (SNEDDS), features smaller emulsion droplets and generally
better emulsifying properties, enabling the rapid formation of stable,
consistent emulsions. When combined with other medications,
Mentha × piperita L. and Lavender EOs can be encapsulated and
released at the absorption site without interference from the
surrounding environment (Ali et al., 2022; Alissa et al., 2023).
Nonetheless, research in this direction remains limited.

5.3 Microcapsules and nanocapsules

5.3.1 Microcapsules (MCs)
Introduced in the 1950s, MC technology involves encasing

microscopic particles or droplets in polymer materials to create a
core–shell structure. The outer layer protects the core (EOs) from
harsh external conditions by efficiently blocking light, oxygen, and
water. By precisely controlling the core material’s release, MCs mask
its original odor and color while optimizing properties such as
dispersion and solubility (Ma et al., 2024; Xiao et al., 2022). For
example, Zhu et al. prepared MCs containing tea tree EO, which
retained up to 87.1% of their content after high-temperature
treatment for 70 min. Additionally, MCs enhance the inhibitory
effect of EOs against S. aureus and E. coli (Zhu et al., 2024). While
providing sustained release, MCs encapsulating Clove EO also boost
the oil’s antioxidant properties (Li et al., 2024c). MCs containing
lime peel EOs demonstrate good thermal stability, withstanding

temperatures up to 122°C and maintaining an oil content of 38%
over 4 weeks at room temperature (Indriyani et al., 2024).
Composite MCs containing tea tree EO were fabricated using
gelatin, Arabic gum, and n-butyl cyanoacrylate as wall materials
via in-situ polymerization combined with composite solidification.
Test results indicate that these capsules exhibit exceptional stability
in osmotic environments and offer effective slow release and
antioxidant capabilities under typical skin conditions (Yang et al.,
2024b). However, MC preparation requires the use of surfactants.

5.3.2 Nanocapsules (NCs)
NCs, which have a smaller diameter than that of MCs, consist of

a core material designed to encapsulate lipophilic chemicals,
enclosed within a polymer shell. This design considerably
enhances the functionality of EOs by providing exceptional
stability and controlled-release characteristics (Zhang et al.,
2024b). Due to their nanoscale size, NCs can maintain prolonged
contact with the skin, offering enhanced residence time. For
example, NCs loaded with EO can completely inhibit
Pseudomonas acnes and scavenge ROS, thereby protecting human
skin cells and demonstrating strong skin permeability (Ivanova et al.,
2023). Compared to free EOs, NCs containing EOs from
Rosmarinus officinalis L. and Lavandula dentata L. improve
deposition in the stratum corneum (Silva-Flores et al., 2023).
Additionally, studies encapsulating basil EOs in NCs have shown
that the NCs effectively mask the EO odor while preserving their
antibacterial and antioxidant properties (Gorzin et al., 2024).

However, NCs require stringent storage conditions and are
prone to leakage. Conversely, lipid NCs (LNCs) represent a
monodisperse system capable of efficiently encapsulating
hydrophobic active metabolites and achieving sustained drug
release. For instance, combining Lavender oil with apocynin in
LNCs enhanced targeting efficiency and prolonged residence time
(Youssef et al., 2024). These LNCs also display superior permeability
properties. The resulting LO-LNCs have improved the penetration
of ASP through rat skin by encapsulating Lavender oil within LNCs.
In vivo pharmacokinetic studies have shown that transdermal
administration of LO-LNCs can quadruple the maximum plasma
concentration of ASP, increase its bioavailability by up to 52%, and
offer sustained release for up to 3 days compared to oral suspensions
(El-Tokhy et al., 2023).

5.4 Polymer and gel delivery systems

5.4.1 Polymeric Micelles (PMs)
PMs are self-assembled from amphiphilic copolymers, featuring

a hydrophobic core for drug loading and a hydrophilic shell for drug
absorption. As a delivery system for active molecules, PMs are easy
to prepare, have a high drug-loading capacity, and their surfaces can
be functionalized to achieve targeted delivery or extended
circulation (Lodovichi et al., 2022). However, in recent years,
there have been few studies on the encapsulation of EOs using
PMs alone, with most efforts combining them with other carriers.
For instance, Origanum vulgare L. Eos were first encapsulated into
PMs and then incorporated into a binary hydrogel based on a
Pluronic F127/L31 block-copolymer mixture. The pH compatibility
of the EO-loaded poloxamer binary hydrogel with skin was
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investigated, and it exhibited sufficient spreadability and
consistency. Furthermore, the formulation lowered the generation
of inflammatory cytokines and limited the migration and
proliferation of HaCaT cells (Bora et al., 2022). Most PM
delivery systems focus on a single component rather than a
complex EO, and future research should concentrate on loading
EO mixtures.

5.4.2 Nanogels (NGs)
NGs are nanoscale, three-dimensional network structures with a

particle size range of 20–200 nm. They encapsulate active
metabolites through self-assembly or crosslinking. NGs have
broad application prospects in local administration due to their
ease of use, high loading capacity, and excellent physical and
chemical stability. Compared to LSs and NEs, NGs exhibit
greater physical stability (Maurya et al., 2024; Zarenezhad et al.,
2021). In a comparison between an NG and an NE-containing
Cuminum cyminum L. EO, the IC50 value of the NG against A-375
human melanoma cells was lower than that of the NE. Furthermore,
the inhibition rates of 5,000 μg/mL NG and NE against
Pseudomonas aeruginosa and S. aureus were 100% and 80%,
respectively (Ranjbar et al., 2023). Chitosan is often used as the
cross-linking polymer in NGs. The EO of Zataria multiflora Boiss.
And nisin were co-encapsulated in chitosan NGs to extend the shelf
life of cheese. Experimental results demonstrated that within 60 days
of storage, the chitosan NG slowed pH changes in the cheese, and no
coliforms were detected, indicating sustained EO release (Hosseini,
et al., 2024). Moreover, NGs can reduce the EO-induced irritancy
caused by EOs. For instance, NGs containing Lippia sidoides Cham.
EOsEO did not exhibit acute skin irritation in a rat excisional wound
healing model and significantly reduced the final wound area (Pires
Rodrigues de Almeida Ribeiro et al., 2024). In addressing multidrug-
resistant strains, where effective treatments remain limited,
Aldawsari et al. successfully encapsulated lemongrass EO using
nanoparticles formulated with PVA and PLGA. This formulation
maintained EO stability and bioactivity while enabling precise
delivery to the target site, thereby enhancing LGO effectiveness
against antibiotic-resistant P. aeruginosa (Aldawsari et al., 2023).

5.4.3 Hydrogels
Hydrogels are hydrophilic, three-dimensional network gels

capable of retaining large amounts of water and exhibiting
excellent biocompatibility with bodily fluids. They can load active
metabolites and release them in a controlled manner, making them
suitable for the prolonged delivery of non-toxic, environmentally
friendly bioactive substances. Additionally, they exhibit good air
permeability and are used in wound healing (Alven et al., 2022;
Elshahawy et al., 2024). Patchouli EO (PEO) shows limited
absorption and low stability; therefore, a PEO-NE was developed
and incorporated into a hydrogel composed of ROS/thermo dual-
sensitive Bletilla striata polysaccharides. When administered
rectally, PEONE-RTH adhered to the inflammatory site for an
extended period and enhanced the antioxidant and repair
activities of the EO (Huang et al., 2024b). As an external wound
adhesive, hydrogels can load and promote the sustained release of
EOs at injury sites, thereby improving bioavailability. For example,
R. officinalis L., Curcuma longa L., and Thuja occidentalis L. EOs
were loaded into a CCFG-CA hydrogel film; in vitro studies

confirmed the film’s biocompatibility, antioxidant, and
antimicrobial properties. Furthermore, in vivo wound healing
studies showed that 14% of wounds healed and re-epithelialized
within 99 days, with the hydrogel degradation time extended to
15 days (Tanwar et al., 2024).

The combined use of carriers can further reduce EO volatility
and improve bioavailability. For example, Eucalyptus EOs in an NE
prepared by physical crosslinking, when incorporated into a
hydrogel, reduced the bacterial load of wounds and significantly
downregulated inflammatory factor expression in vivo (Cai et al.,
2023). In another example, a hydrogel containing an ME of Alpinia
officinarum rhizome EO was developed for local application; the
hydrogel maintained good physical stability after heating and
cooling cycles at 4°C and during long-term storage (3 months)
(Chittasupho et al., 2022).

5.5 Other delivery systems

5.5.1 Chitosan (CS)
CS, a polysaccharide derived from the deacetylation of chitin, is

a versatile and environmentally friendly biopolymer. Besides
exhibiting antibacterial, antioxidant, and antitumor properties, CS
is widely used due to its biodegradability, biocompatibility, and non-
toxic characteristics. In combination with EOs, the bioactivity of CS
can be further enhanced (Abenaim and Conti, 2023; Ding et al.,
2022; Liu et al., 2024f). For instance, the CS-thyme EO combination
retained an antiseptic effect after being stored for 12 days at low
temperatures (Liu et al., 2024d). Rosmarinus officinalis L. EO
exhibited high physical and chemical stability in CS and showed
the highest inhibitory activity against B. subtilis, E. coli, and free
radicals as measured by ABTS and DPPH assays (Akhter et al.,
2024). CS particles loaded with geranium and lemongrass EO
showed superior activity, better than that of pure CS or EO, by
reducing the mixed biofilm of C. albicans and Streptococcus mutans
on a glass slide and lowering the toxicity of EOs to RAW 264.7 cells
(Garcia et al., 2023).

CS nanoparticles (CSNPs) are nano-sized particles derived from
CS. By encapsulating Piper betle L. EO in CSNPs, the permeability of
the EO can be improved, showing better solubility and efficacy than
free EO (Muthusamy et al., 2024). In another study, SLNs and
CSNPs were used as carriers to load tea tree EO. The MICs of EO-
CS, EO-SLN, and pure EO against S. aureus and P. aeruginosa were
35 and 45, 130 and 170 μg/mL, and 380 and 410 μg/mL, respectively,
with EO-CS exhibiting a considerably high antibacterial effect (Vase
et al., 2023). While various EOs have been encapsulated by CS,
limitations such as mechanical strength and water solubility mean
that using CS as a sole carrier may not fulfill the requirements of
some applications. Consequently, it is often necessary to compound
or blend CS with other carriers, such as starch, cellulose, or protein,
which can increase production costs.

5.5.2 Cyclodextrin (CD)
CD is a water-soluble, biodegradable cyclic oligosaccharide that

produces a mixture of α-CD, β-CD, and γ-CD composed of 6, 7, and
8 glucopyranose units, respectively. The hydrophobic cavity of CD
can form complexes with various water-insoluble substances (such
as EOs), thereby enhancing its stability and solubility and delaying
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volatilization (Ma et al., 2023; Paiva-Santos et al., 2022; Rodrigues
Arruda et al., 2022). Among these, β-CD, containing seven sugar
units, is widely used owing to its moderate size, which allows it to
encapsulate most EOs with low sensitivity and irritation to the skin
(Wu et al., 2024). β-CD active bacterial nanocellulose (BNC)
nanopapers containing Salvia officinalis L. EO (SEO) were
prepared. Experimental results demonstrated that adding SEO-
βCD complexes improved the thermal properties of the BNC
nanopapers, enhanced the antibacterial effect against L.
monocytogenes, and increased antioxidant capacity
(Mohammadzadeh et al., 2024). Ben et al. prepared β-CD/
Eucalyptus globulus Labill. EO (EGEO) inclusion complexes, and
the results showed that compared to the free EO (8.38 ± 1.95 mg/g),
the β-CD/EGEO inclusion complexes exhibited an LC50 of 5.03 ±
1.16 mg/g against Ephestia kuehniella larvae, indicating enhanced
EO activity (Ben Amara et al., 2024). Preparing an inclusion
compound of fennel EO and hydroxypropyl-β-CD regulated EO
release extended its release duration and improved its stability under
varying temperature and relative humidity conditions (Song et al.,
2024). Through β-CD encapsulation, the release of Cinnamon EO
was delayed to about 90 h, achieving a high growth inhibition rate of
almost 100% for E. coli and S. aureus (Li et al., 2023a).

5.5.3 Mesoporous Silica Nanoparticles (MSNPs)
MSNPs possess a high surface area and well-ordered protective

pore structure, exhibiting excellent chemical stability,
biocompatibility, and biodegradability. Embedding EO into
MSNP can improve its stability and water solubility while
achieving more sustained therapeutic efficacy through controlled
release. After 2 months, the retention rate of the encapsulated
compound reaches 50%. The synthesis method of MSNPs is
simple and economical, making it suitable for large-scale
industrial production (Gulin-Sarfraz et al., 2022; Lai et al., 2023;
Weisany et al., 2024). The encapsulation of Lippia graveolens Kunth
EO in MSNPs preserved its antioxidant and antibacterial properties,
exhibiting a release rate of up to 42 days and inhibiting the growth of
pathogenic and spoilage microorganisms (Matadamas-Ortiz et al.,
2022). The surface modification of mesoporous silica particles
(MSPs) reduces the hydrophobicity of EO, improves its solubility
in the water phase, and enables it to penetrate into fungal cells,
destroying the cell membrane and eventually causing cell death.
Chakroun et al. encapsulated Ammoides pusilla (Brot.) Breistr. EO
(AP-EO) into MSPs using an impregnation method and coated the
surface with CS. In agar medium contact tests, the antifungal activity
of AP-EO in MSPs without CS increased threefold. However, the CS
coating slowed EO release. Therefore, using multiple carriers can
further improve the stability of EO, achieve slow release, and
enhance therapeutic effects (Chakroun et al., 2023).

To sum up, combining EO with modern drug delivery systems
can minimize their defects and fully exploit their therapeutic
potential. This section briefly summarizes modern drug delivery
systems for encapsulating EOs. However, it is worth noting that EO
delivery systems face some limitations. Therefore, researchers are
urged to develop new strategies to overcome these shortcomings and
optimize the effective delivery of EOs. For instance, Carneiro et al.
utilized HPH technology to prepare NEs and NLCs containing Piper
aduncum L. Eos, which were then thickened with hydrogel,
enhancing both the viscosity and skin adherence of the

nanoformulations (Carneiro et al., 2022). Chittasupho et al.
successfully applied Kaempferia galanga L. EOs in ME to
hydrogel, showing good physical stability and potential as a local
sunscreen preparation (Chittasupho et al., 2022). For another
example, garlic EO is limited in its application because of its
irritation, poor water solubility, and low bioavailability.
Therefore, Zhang et al. combined garlic EO with β-CD inclusion
liposome to prepare a double-layer delivery system, which not only
masked the smell of EO but also significantly improved its
embedding efficiency and reduced the release rate (Zhang et al.,
2024c). Elsewedy et al. integrated NE-containing fusidic acid and
Cinnamomum cassia (L.) J. Presl EO into a hydrogel matrix, which
prolonged the in vitro release time and enhanced the stability and
antibacterial effects (Elsewedy et al., 2024). New carriers or materials
have also been developed and utilized. For instance, a novel delivery
system of nanoemulgel, combining NE with a gel matrix, merges the
small particle size and high stability of NE with the controlled release
and good skin adhesion of the gel. This includes the Zanthoxylum
armatum DC. and R. officinalis L. EO nanoemulgel (Noor et al.,
2023) and the nanoemulgel of Pituranthos tortuosus EO (Bahloul
et al., 2024). Moreover, Fan et al. developed PE co-loaded with
tannic acid and Cinnamomum cassia (L.) J. Presl EO based on zein
and tannic acid complexes through interfacial engineering. This
improved the stability and controlled-release performance of EOs
compared to using PE alone (Fan et al., 2024). ME is widely used in
the field of EO encapsulation; however, a common limitation is the
use of potentially toxic surfactants and co-surfactants. Shen et al.
used rhamnolipids instead of surfactants with rose and eucalyptus
EOs to formulate MEs. Compared to regular emulsions, the EO-ME
exhibited better slow-release behavior. The EO-ME significantly
lowered the MIC against S. aureus (39 mg/L, compared to
1,250 mg/L with EO alone), demonstrating stable performance
during storage (Shen et al., 2024a). Furthermore, Cheng and
colleagues developed carrier-free nanodelivery systems
characterized by self-assembly from active metabolites without
surfactants or carriers (Cheng et al., 2024).

6 The drug delivery system enhances
the physical and chemical properties of
essential oil

One of the primary challenges in broadening the application of
EOs is enhancing their bioavailability. Over the past decade, the use
of drug delivery systems for encapsulating EOs has gradually
increased. Numerous studies show that these systems can
improve the stability and targeting of EOs, reduce their toxicity,
and facilitate slow release, thus effectively improving EO
bioavailability.

6.1 Sustained release of essential oil

Maintaining drugs within the therapeutic concentration range is
crucial for chronic diseases requiring long-term treatment.
However, frequent drug administration not only inconveniences
patients but can also lead to drug resistance. Research has shown
that drug delivery systems can maintain the slow release of EOs,
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achieving continuous treatment effects. For instance, Long et al.
conducted an in vitro release study on Ligusticum striatum DC. EO
(CXEO)-LS, which indicated a gradual increase in cumulative
release within 48–72 h and demonstrated good storage stability
at 4°C for at least 25 days (Long et al., 2023). Additionally,
researchers have developed a photoresponsive LS for the
controlled release of Alpinia galanga EO by utilizing the
photoreactivity of Pheophorbide-a. This system has shown strong
sustained-release effects and can be stored for up to 28 days at 4°C
(Ge et al., 2023). Shen et al. developed PEs using potato protein-CS
composite nanoparticles (PCCNs) for encapsulating Zanthoxylum
bungeanum Maxim. EO (ZBEO). Confocal laser scanning
microscopy revealed that PCCNs adsorbed onto the EO surface
to form a dense interfacial layer, significantly enhancing the stability
of ZBEO-PEs and enabling sustained EO release (Shen et al., 2024b).
Alam et al. encapsulated fennel EO (FEO) into poly (lactic-co-
glycolic acid) nanoparticles (FEO–PLGANPs) and incorporated
them into NGs. In an in vitro drug release study, over 60% of
the pure EO was released within 120 min, whereas the release
amounts for FEO–PLGANPs NGs and FEO–PLGANPs were
31.43% and 26.76%, respectively, indicating that encapsulation
within nanoparticles and NGs significantly delayed the drug
release rate (Alam et al., 2022). Thus, EO drug delivery systems
provide a viable solution for maintaining long-term therapeutic
concentrations and improving patient convenience.

6.2 Enhancing the stability of essential oil

The stability of EOs is often disturbed by external environmental
factors. Encapsulating EOs within drug delivery systems can effectively
isolate them from these external conditions, thereby improving their
physical and chemical stability. Wei et al. developed thyme EO-ME
(TEO-M) and incorporated it into pullulan-sodium alginate (PS) films,
finding that TEO-M endowed the PS films with antioxidant and UV-
blocking properties, which remained stable for 10 days at 4°C (Wei et al.,
2023). The NE of Calotropis gigantea EO remained stable after being
stored at various temperatures for 50 days (Sharma, et al. 2024a).
Cinnamon EO-MC prepared using the coagulation method extended
its shelf life beyond 10 days when applied to kraft paper wrapped
around citrus (Liu, et al. 2024e). Additionally, combining two carrier
systems can further stabilize EOs. Xing et al. prepared NEs
encapsulating Cinnamon EOs using hydroxypropyl-β-CD/lauroyl
arginate inclusion complexes and found that under 100 MPa
pressure and after seven cycles, the NEs exhibited excellent storage
stability and thermal stability (Xing et al., 2024).

6.3 Enhancing the targeting function of
essential oil

Drug delivery systems for EOs can be engineered to incorporate
specific ligands on the carrier surface, thereby enabling active targeting
of EOs to lesions through receptor-ligand interactions and enhancing
therapeutic efficacy. For instance, Mahmoud et al. encapsulated thyme
EO within O-quaternized, ultrasound-mediated deacetylated chitosan
NCs, which not only exhibited excellent stability and release properties
but also demonstrated selective targeting toward the SARS-CoV-2 virus

(Mahmoud et al., 2024). Researchers have developed a novel lipid
nanocapsule that encapsulates apocynin, is coated with lactoferrin, and
incorporates Lavender EO as a bioactive additive. This system
effectively targets the brain, where Lavender EO and apocynin work
synergistically to alleviate seizures induced by pentylenetetrazol
(Youssef et al., 2024). Additionally, Chen et al. prepared LS of Clove
EO by embedding casein using the freeze-thaw method and then
coupled Campylobacter jejuni antibodies to the LS surface via the
post-insertion method, producing protease-activated, antibacterial LS
with bacterial targeting capabilities (Chen et al., 2023b).

6.4 Reducing the toxic effects of essential oil

EOs are rarely applied directly to the skin without dilution
because they may cause severe irritation. Therefore, the EU
Cosmetics Regulation (EC) No 1223/2009 restricts the use of
certain EO metabolites (such as coumarin and camphor) and
mandates that known allergens (such as linalool and limonene)
be labeled when their concentrations exceed specified limits.
Additionally, products containing EOs must undergo safety
assessments before being marketed. In 2001, the Scientific
Committee on Cosmetic Products stipulated that the total
concentration of furocoumarins in cosmetics must not exceed
1 ppm (Kejlová et al., 2010). In practical applications, EOs are
typically diluted with carrier oils (such as vegetable oils, fixed oils, or
fats), cream bases, or gels, with concentrations generally ranging
from 2% to 5%. For more irritating EOs, the maximum dilution
concentration should be reduced to 0.5% to ensure safe use (Dontje
et al., 2024). Recent studies have shown that combining EOs with
drug delivery systems can effectively reduce their toxicity and skin
irritation. For instance, when using NLC to load Red Sacaca EO
(NLC-RSO), the cytotoxicity of NLC-RSO was significantly lower
than that of free RSO, indicating a cytoprotective effect of NLC on
EO delivery (Chura et al., 2023). When applied topically, Cinnamon
EOmay cause skin irritation and phototoxicity. However, Essid et al.
reduced its cytotoxicity by encapsulating Cinnamon EO in CSNPs,
achieving a fourfold decrease compared to pure Cinnamon EO
(Essid et al., 2023). Emtiazi et al. encapsulated Achillea millefolium
EO using NLS/nano-niosomes, noting that the encapsulated EO
exhibited lower toxicity than that exhibited by its non-encapsulated
form (Emtiazi et al., 2022). Alam et al. encapsulated FEO into
FEO–PLGANPs and further integrated them into NGs. In vitro cell
viability assays using the normal cell line L929 demonstrated that
both FEO–PLGANPs and FEO–PLGANPs NGs exhibited low
toxicity and excellent biocompatibility, making them highly
suitable for topical applications without irritation (Alam
et al., 2022).

7 Effects of plant essential oil-based
skin care on the nervous system

When individuals experience mental stress and fatigue,
neuromodulators are released from skin nerve fibers, which can
impair skin function and reduce its resilience to environmental
stressors. Due to their rich active metabolites, EO-based skincare
products not only nourish and repair the skin but also positively
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impact human psychology. For instance, a study showed that
inhalation of Vetiver EOs dramatically altered gene expression in
the lateral region of the central amygdala, displaying anti-anxiety
characteristics (Saiyudthong et al., 2015). Díaz-Cantón et al.
demonstrated that inhaling the EO of Litsea glaucescens Kunth
increases brain-derived neurotrophic factor levels in the brains of
mice, thereby exhibiting significant anxiolytic effects (Díaz-Cantón
et al., 2024). Li et al., using the Forced Swim Test, Sucrose Preference
Test, and Open Field Test, showed that inhaling Lavender EO
significantly alleviated depressive-like behaviors in rats
undergoing alcohol withdrawal (Li et al., 2024b). Sgoifo et al.

explored the stress resistance properties of EO-rich skincare
through self-administration experiments; their findings indicate
that this approach reduces stress and promotes psychological
recovery by lowering performance anxiety, state anxiety, and
nonverbal behavioral patterns (Sgoifo et al., 2021). Therefore,
incorporating plant EOs into skincare leverages the dual effects
of the olfactory and epidermal systems to nourish and repair the
skin, enhance the user’s emotional state, and regulate physiological
functions simultaneously. Figure 7 summarizes EOs used to improve
human negative emotions, and some EOs can produce dual
pharmacological effects, both through inhalation and topical

FIGURE 7
EOs with positive effects caused by inhalation. Note: Layer 1: EOs can be administered in two primary ways: inhalation and daubing. Layer 2:
Inhalation, represented by green, is associated with benefits such as anti-anxiety, anti-depression, anti-fatigue, and a refreshing effect, while topical
application, denoted by pink, delivers skin care benefits, including whitening, anti-aging, anti-bacterial, and anti-inflammatory properties. Layer 3: List the
EOs related to the second layer, respectively. Some EOs (marked in red font) can be inhaled and smeared at the same time, indicating that EOs can
nourish and repair the skin and also have a positive impact on the mental health of users. (By Figdraw).
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application, which can provide far-reaching effects when added to
skin care products.

8 Future perspectives and conclusion

As interest in natural and healthy skincare methods grows, EOs are
increasingly utilized in skincare for their unique efficacy and natural
purity. Projections for 2026 estimate that the global EO market will
reach $16 billion (Tsitlakidou et al., 2023). The skin-whitening, UV
resistance, antioxidative, antibacterial, and anti-inflammatory
properties of EOs are well recognized. However, several challenges
remain. First, the complexity of EOmetabolites makes them susceptible
to factors such as the plant’s growth stage, the specific parts used for
extraction (Al-Snafi et al., 2024), and the extraction techniques adopted
(Park et al., 2024). All these factors can significantly affect EO quality
and the concentration of activemetabolites. Additionally, isolating these
metabolites from complex mixtures is challenging, and their release
mechanisms are not yet fully elucidated. Second, direct application of
EOs on the skin may cause adverse reactions, including phototoxicity,
eye irritation, and skin allergies. Therefore, encapsulation represents a
crucial strategy for broadening the safe application of EOs. Third, as the
EO market continues to expand, counterfeit products and consumer
misinformation are becoming more prevalent, leading to suboptimal
usage outcomes.

Given the high sensitivity of EOs to environmental conditions, their
storage requires special considerations. Employing various carriers has
proven effective in mitigating the adverse effects of changes in O2,
temperature, humidity, and pH, thereby ensuring the quality and
stability of EOs. This paper briefly discusses several important
carrier delivery systems and related preparation technologies.
Combining EOs with these systems enhances their dispersion,
stability, and release kinetics, improving overall efficacy compared to
free EOs (Dupuis et al., 2022). However, several challenges persist. First,
many existing EO delivery systems are complex to prepare, costly, and
lack long-term stability. For instance, nano-lipid carriers may transform
into a thermodynamically stable crystalline state during storage,
reducing their drug-carrying capacity and potentially causing abrupt
drug release (Pereira et al., 2018). Second, safety concerns arise because
nanocarriers, while enhancing therapeutic effects by improving
permeability, also increase the risk of cytotoxicity and potential
harm to the nervous system. Moreover, the use of organic solvents
or surfactants in nanopreparation processes may leave residues that
adversely affect human health (Najahi-Missaoui et al., 2020). Third,
current studies typically focus on encapsulating a single EO with one
carrier; exploring the possibility of encapsulating multiple EOs within a
single carrier presents significant research opportunities. Fourth, each
delivery system has its limitations. Although combining two or more
carriers can further enhance EO stability, cost considerations must also
be taken into account.

In summary, to expand the application of EOs in the skincare
field, it is essential to advance experimental research on transdermal
drug delivery beyond in vitro studies and increase focus on both
acute and chronic toxicity, including potential impacts on the liver,
nervous system, and other organs following skin absorption. Further
investigation is required to determine safe concentration ranges and
ensure that experimental findings consistently translate into clinical
therapeutic outcomes. In addition, standardizing extraction

methods for various EOs, strengthening market regulation, and
establishing clear laws and guidelines are necessary steps to
safeguard consumers. Enhanced consumer education regarding
the safe use of EOs and the identification of counterfeit products
will also promote a healthier industry.

Concurrently, improving existing EO delivery systems by
enhancing encapsulation efficiency and optimizing sustained-release
performance to reduce toxicity and irritation while minimizing the use
of harmful solvents is a key research priority. Ultimately, establishing a
comprehensive safety evaluation system that spans from cell
experiments and animal models to human trials is vital for fully
assessing the potential risks of EOs. This comprehensive approach
will drive their application in skincare, offering a safer, more effective,
and environmentally friendly therapeutic solution.
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Glossary
EOs Essential oils

TYR tyrosinase

DHI 5,6-dihydroxyindol; DOPAdihydroxyphenylalanine

DHICA 5,6-dihydroxy indole-2-carboxylic acid

DCT Dopachrome tautomerase

TRP tyrosinase-related protein

MITF microphthalmia-associated transcription factor

MAPK Mitogen-Activated Protein Kinase

IC50 half-maximal inhibitory concentration

TD50 half-maximal toxicity dose

μM micromolar

ROS reactive oxygen species

B16-F10 malignant melanoma cell line of C57BL/6 J mice

A375 human melanoma cell line

B16BL6 melanoma-associated cell line

α-MSH Alpha-Melanocyte-Stimulating Hormone

B16 melanoma-associated cell line

UVR ultraviolet radiation

LPO lipid peroxide

USFA unsaturated fatty acids

ROS reactive oxygen species

CAT antioxidant enzyme catalase

GST glutathione-S-transferase

BHT 2, 6-di-tert-butyl-p-cresol

FRAP ferric ion reducing antioxidant power

DPPH 2, 2-diphenyl-1-picrylhydrazyl

ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid

EC50 median effective concentration

IL interleukin

IL-6 Interleukin-6

IL-1β Interleukin-1β

COX-2 Cyclooxygenase-2

PGE2 Prostaglandin E2

MMP-1 andMMP-3 Matrix Metalloproteinases-1,-3

TNF-α Tumor Necrosis Factor-α

HaCaT human keratinocyte cell line

HDFn human dermal fibroblast cells

SPF sun protection factor

SOD superoxide dismutase

GSH-Px glutathione peroxidase

MDA malondialdehyde

MIC minimum inhibitory concentration

MBC minimum bactericidal concentration

DIZ diameter of inhibition zone

TNF tumor necrosis factor

LPS lipopolysaccharide

DSS dextran sulfate sodium

PGE prostaglandin E

COX cyclooxygenase

TLR toll-like receptor

p-HBA methyl p-hydroxybenzoate

BuP butyl p-hydroxybenzoate chlorobenzyl
etherSBsodium benzoate

ATP adenosine triphosphate

ADP adenosine diphosphate

G+ Gram-positive bacteria

G- Gram-negative bacteria

ZOI zone of inhibition

MIC minimum inhibitory concentration

MBC minimum bactericidal concentration

E. coli Escherichia coli

B. subtilis Bacillus subtilis

S. aureus Staphylococcus aureus

C. albicans Candida albicans

P. aeruginosa Pseudomonas aeruginosa

B. bronchiseptica Bordetella bronchiseptica

S epidermidis Staphylococcus epidermidis

L. monocytogenes Listeria monocytogenes

S. typhimurium Salmonella typhimurium

S. typhi Salmonella typhi

DIZ diameter of inhibition zone

5-LOX Lipoxygenase

NO nitric oxide

iNOS nitric oxide synthase

AA Arachidonic Acid

LS Liposomes

NLS Nanoliposomes

SLNs Solid Lipid Nanoparticles

NLCs Nanostructured Lipid Carriers

ME Microemulsion

NE Nanoemulsion

PE Pickering Emulsion

SEDDS Self-emulsifying drug delivery systems

SNEDDS Self-Nanoemulsified Delivery System

MCs Microcapsules
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NCs Nanocapsules

PMs Polymeric Micelles

NGs Nanogels

CS Chitosan

CD Cyclodextrin

MSNPs Mesoporous Silica Nanoparticles.
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