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Introduction: Drug-drug interactions (DDIs) are an important issue in medication
safety and a potential cause of adverse drug events in the pre- and early post-
hematopoietic stemcell transplantation (HSCT). This study introducedaphysiologically
based pharmacokinetic (PBPK) modeling platform to evaluate complex DDIs in these
critical stages and to optimize dosing for personalized treatment.

Methods: PBPK models were developed using a bottom-up with middle-out
approach and executed with PK-Sim

®
software. Model validation required that

predicted PK values fall within a twofold range of observed data. Then, the validated
model was used to simulate alternative dosing regimens to achieve target
therapeutic levels.

Results: PBPK models were developed and evaluated for 13 drugs commonly
used in HSCT, including cyclosporine, tacrolimus, sirolimus, busulfan, phenytoin,
voriconazole, posaconazole, itraconazole, fluconazole, letermovir, fosaprepitant,
aprepitant, and omeprazole. Simulation results indicated marked DDIs in the pre-
and early post-HSCT phases, particularly involving cyclosporine and phenytoin.
Several drugs notably increased cyclosporine concentrations, while phenytoin
substantially reduced the exposure to other medications.

Conclusion: This PBPK modeling platform provides a robust tool for identifying
and mitigating DDIs in the pre- and early post-HSCT phases. By enabling the
optimization of treatment regimens, this model serves as a valuable tool for
improving drug safety and therapeutic outcomes for patients with HSCT.
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1 Introduction

Hematopoietic stem cell transplantation (HSCT) has become an important treatment
option for patients with defined congenital or acquired disorders of the hematopoietic system
(Gratwohl et al., 2010). During the pre- (day −6 to day −2) and early post- (day 2 to day 30)
HSCT phases, patients often receive complex regimens, including chemotherapeutic,
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immunosuppressive, and antimicrobial agents (Figure 1; Palmer et al.,
2016; Bolaños-Meade et al., 2019; Groll et al., 2021; Ljungman et al.,
2025). Certain combinations may produce drug-drug interactions
(DDIs), leading to undesirable adverse outcomes and increased drug
toxicity (Glotzbecker et al., 2012; Secoli et al., 2015; Pejčić et al., 2019).
This concern is particularly relevant for medications with a narrow
therapeutic index, such as busulfan, voriconazole, cyclosporine,

tacrolimus, and sirolimus (Table 1), which are more prone to
unanticipated DDIs when co-administered with enzyme inhibitors
or inducers (Palmer et al., 2016; Bolaños-Meade et al., 2019; Groll
et al., 2021). In recent years, the clinical use of some new drugs (e.g.,
fosaprepitant and letermovir) has further increased the complexity of
DDIs, so an accurate and reliable model for predicting DDIs is
required for dose optimization (Patel et al., 2017; Kim, 2018).

FIGURE 1
Regimens that may produce drug-drug interactions in the pre- and early post-hematopoietic stem cell transplantation (HSCT).

TABLE 1 Summary of potential drug-drug-interactions in patients with HSCT and therapeutic target.

Drugs Major metabolism and
transport pathwaysa

Pharmacogenomics
(CPIC)b

Mechanisma Therapeutic
target

Busulfan GST — — AUC of
900–1,350 μM min

Phenytoin CYP2C9, CYP2C19 CYP2C9 A strong hepatic drug-metabolizing enzymes inducer Cmin of 10–20 μg/mL for
epilepticus

Voriconazole CYP2C19, CYP2C9, CYP3A4 CYP2C19 A strong CYP2C19 and CYP3A4 inhibitor Cmin of 1–5 μg/mL

Posaconazole UGT — A strong CYP3A and P-gp inhibitor Cmin of ≥0.7 μg/mL

Itraconazole CYP3A4 — A strong CYP3A4 inhibitor; a P-gp and BCRP inhibitor Cmin of ≥0.5 μg/mL

Fluconazole Cleared primarily by renal
excretion

— A strong CYP2C19 inhibitor; a moderate CYP2C9 and
CYP3A4 inhibitor

—

Letermovir CYP3A, CYP2D6, P-gp, UGT1A1,
UGT1A3, OATP1B1, OATP1B3

— A CYP3A, CYP2C8, OATP1B1, OATP1B3, P-gp,
BCRP, BSEP, and MRP inhibitor; a CYP3A, CYP2C9,
and CYP2C19 inducer

—

Fosaprepitant Converted to aprepitant; CYP3A4,
CYP1A2, CYP2C19

— A weak CYP3A4 inhibitor —

Aprepitant CYP3A4, CYP1A2, CYP2C19 — Aweak-to-moderate CYP3A4 inhibitor; a CYP3A4 and
CYP2C9 inducer

—

Omeprazole CYP2C19, CYP3A4 CYP2C19 A moderate CYP3A and CYP2C19 inhibitor —

Cyclosporine CYP3A, P-gp — A CYP3A4 and multiple drug efflux transporters (e.g.,
P-gp) inhibitor

Cmin of 200–400 ng/mL

Tacrolimus CYP3A CYP3A5 A CYP3A4 and CYP3A5 inhibitor Cmin of 5–15 ng/mL

Sirolimus CYP3A4, P-gp — — Cmin of 3–8 ng/mL

afrom drugs.com website.
bfrom Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines; CYP, cytochrome P450; GST, glutathione S-transferase; UGT, UDP-glucuronosyltransferase; OATP, organic

anion transporting polypeptides; P-gp, P-glycoprotein; BCRP, breast cancer resistance protein; BSEP, bile salt export pump; MRP, multidrug resistance-associated protein; AUC, the area under

the curve; Cmin, trough concentration.
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Currently, clinically relevant DDIs can be queried through online
and offline interaction checkers, such as Drugs, Lexi-Interact, and
ePocrates, but the available clinical dosage suggestions are limited
(Storelli et al., 2018). However, model-informed precise dosing can
leverage pharmacokinetic (PK) models to tailor individualized dosing
(Darwich et al., 2021). Therefore, an increasing number of studies have
applied physiologically based PK (PBPK) models to predict drug PK
profiles by integrating drug property parameters with physiological
parameters of the organism. Unlike interaction checkers, PBPKmodels
are more prominent in describing time-variable concentrations of
drugs and predicting DDI in the early stages of drug development and
complex clinical scenarios, such as simultaneous inhibition and
induction of enzymes and transporters, complex transporter-
enzyme interplay, and genetic variations of cytochrome P450 (CYP)
enzymes (Vijaywargi et al., 2023; Foti, 2025). Accordingly, PBPK
models have been widely used in drug discovery and development
areas, including DDIs, organ injury, pediatrics, drug-gene interactions,
disease impact, and food effects (Sun et al., 2024).

To date, several studies have developed PBPK models to predict
the PK profiles of busulfan, phenytoin, voriconazole, posaconazole,
itraconazole, fluconazole, letermovir, omeprazole, cyclosporine,
tacrolimus, and sirolimus (Supplementary Table S1). However,
due to the different diseases or populations of concern, DDIs
caused by common drug combinations in patients with HSCT
have rarely been reported, such as busulfan in combination with
phenytoin, voriconazole or posaconazole in combination with
cyclosporine, etc. Furthermore, no PBPK model for fosaprepitant
and aprepitant has been reported. So, there is still a need for further
models and more comprehensive DDIs networks.

This study aimed to develop a PBPK modeling platform to
investigate the complex DDIs of 13 commonly used drugs in the pre-
and early post-HSCT phase, including busulfan, phenytoin,
voriconazole, posaconazole, itraconazole, fluconazole, letermovir,
omeprazole, fosaprepitant, aprepitant, cyclosporine, tacrolimus, and
sirolimus. Furthermore, dose optimization of the above drugs was
predicted for personalized treatment.

2 Materials and methods

2.1 Software

PBPKmodel development and simulations were performed with
PK-Sim® (Version 11.2, Bayer Technology Services, Leverkusen,
Germany). Clinical study data from published literature were
collected with the semi-automated tool WebPlotDigitizer
(Version 4.6, Ankit Rohatgi, Pacifica, CA, United States). For
plot generation, GraphPad Prism 8.0.1 (GraphPad Software Inc.,
San Diego, CA, United States) was used.

2.2 PBPK models development and
verification

PBPKmodels for 13 drugs were developed based on the bottom-
up with middle-out techniques (Sun et al., 2024), and the workflow
adopted for model development, verification, and application was
illustrated in Figure 2. Briefly, a PBPK modeling of a drug mainly

consists of expression profiles, individuals, populations, compounds,
formulations, administration protocols, and observed data. Protein
expression of enzymes and transporters was implemented using the
PK-Sim® database. Individuals or populations used to simulate the
different studies were modeled according to the corresponding study
reports, with age, weight, height, gender, and ethnicity (Supplementary
Material). If the demographic information was not found, a 30-year-
old male European was assumed, with the mean weight and height
characteristics in the software database. Other building blocks required
an extensive literature search to gain information about the
physicochemical properties and absorption, distribution,
metabolism, and excretion processes of the drug. Meanwhile,
plasma concentration-time profiles of intravenous and oral
administration in single or multiple doses from healthy individuals
or clinical studies were digitized and used for model development and
evaluation. Parameters that were not informed from the literature were
optimized, fitting the model to the observed PK data in the literature.

The predictive performance of PBPK models was initially
evaluated by comparing predicted plasma concentration-time
profiles to observed data. The PK parameters assessed were the
area under the curve (AUC) and peak plasma concentration (Cmax),
which were quantitatively assessed based on a predefined criterion of
two-fold range (0.5–2.0) of the predicted/observed ratio.

2.3 DDIs network modeling and verification

In the DDIs model, there are five specified types of inhibition,
including competitive, uncompetitive, non-competitive, mixed, and
irreversible inhibition. Inhibition types for different drugs are based
on literature reports, software databases, and optimization. Besides,
drug-mediated induction of enzymes and transporters was
expressed in terms of the maximum induction effect (Emax) and
the concentration supporting half of Emax (EC50).

The performance of the DDI model was evaluated by comparing
the predicted to observed victim drug plasma concentration-time
profiles when administered alone and during coadministration. The
metric to assess the DDI modeling performance was the predicted
DDI ratios of AUC and Cmax (AUC or Cmax of victim drug during
coadministration/AUC or Cmax of victim drug alone) to the
observed DDI ratios of AUC and Cmax. A two-fold error margin
(0.5–2.0) was set as the acceptance criterion.

2.4 Prospective PBPK DDI scenario for dose
optimization

To mimic the clinical setting, the verified model was used to
simulate the exposure of drugs that need therapeutic drug monitoring
(TDM), such as voriconazole, posaconazole, busulfan, cyclosporine,
tacrolimus, and sirolimus. A virtual population of 100 Japanese
individuals with the mean weight and height characteristics given
in the software database was generated. Subsequently, the fold change
in AUC or trough concentration (Cmin) at steady-state was calculated
during coadministration to when administered alone. Voriconazole
Cmin of 1–5 μg/mL, posaconazole Cmin of ≥0.7 μg/mL, itraconazole
Cmin of ≥0.5 μg/mL, busulfanAUCof 900–1,500 μMmin, cyclosporine
Cmin of 200–400 ng/mL, tacrolimus Cmin of 5–15 ng/mL, and sirolimus
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Cmin of 3–8 ng/mL are used as the therapeutic index for individualized
treatment (Palmer et al., 2016; Bolaños-Meade et al., 2019; Groll
et al., 2021).

3 Results

3.1 PBPK model building and evaluation

The PBPK models of three immunosuppressants (cyclosporine,
tacrolimus, and sirolimus), one chemotherapeutic agent and its
anticonvulsant prophylactic agent (busulfan and phenytoin), four
antifungal agents (voriconazole, posaconazole, itraconazole, and
fluconazole), one antiviral agent (letermovir), two antiemetic agents
(fosaprepitant and aprepitant), and omeprazole were developed and
comprehensively evaluated using the blood concentration-time profiles.
Among them, parameters for itraconazole, fluconazole, and omeprazole
were taken directly from the PK-Sim® database, and those for
voriconazole and tacrolimus were taken directly from the previously
established models (Gong et al., 2023; Wang et al., 2024). The rest of
drug parameters were gathered from the literature and optimized based
on blood concentration-time profiles from different literature, as
summarized in Supplementary Table S2.

Model performance was demonstrated by comparison of
predicted to observed plasma concentration-time profiles in
Supplementary Figures S1–S7, and predicted to observed AUC
and Cmax values was presented in Supplementary Table S3. As a
result, the predicted to observed AUC and Cmax ratios were within
0.53–1.71-fold error.

3.2 DDI network modeling

In this study, irreversible inhibition processes of CYP3A4 for
voriconazole and tacrolimus and CYP2C19 for omeprazole were
modeled using Ki (inhibition constant) and kinact (maximum
inactivation rate constant) values (Li et al., 2020; Loer et al., 2023);

the competitive inhibition of CYP450, organic anion-transporting
peptide (OATP) 1B1/3 and P-glycoprotein (P-gp) for posaconazole,
itraconazole, fluconazole, aprepitant, cyclosporine, tacrolimus, and
letermovir was modeled using Ki values (Gertz et al., 2013; Gerner
et al., 2022; Loer et al., 2023); the induction of CYP2C9, CYP2C19,
CYP3A4, UDP glucuronosyltransfer (UGT) 1A4 and glutathione
S-transferase (GST) A1 for phenytoin was implemented using
EC50 and Emax values (Rodriguez-Vera et al., 2023).

The performance of DDI models was evaluated by comparing
predicted to observed PK profiles of victim drugs with/without an
enzyme or transporter perpetrator coadministration (Supplementary
Figures S8–S14). In addition, the predicted to observed DDI AUC
ratios and Cmax ratios of all DDI studies were shown in
Supplementary Table S4, with a range of 0.54–1.86 for predicted
to observed parameters.

3.3 Prospective PBPK DDI scenario for dose
optimization

To show the utility of the model in personalized therapy, dose
adaptations for different DDI scenarios were simulated. Plasma
concentration-time profiles of victim drug during co-administration
of perpetrator drug were simulated and compared to those without
perpetrator drug (Figure 3). Notably, the coadministration of
voriconazole, itraconazole, posaconazole, fluconazole, or letermovir
increased cyclosporine Cmin of approximately 2.2-, 2.1-, 2.0-, 1.6-,
and 1.2-fold, respectively (Table 2). Conversely, coadministration of
phenytoin decreased cyclosporine Cmin, aprepitant AUC, fosaprepitant
AUC, busulfan AUC, and voriconazole Cmin by approximately 21.1%,
36.9%, 8.5%, 13.4%, and 51.0%, respectively (Figures 3a–d).

4 Discussion

Over the past decade, the use of PBPK modeling has been rising,
and regulatory agencies have issued DDI guidance highlighting the

FIGURE 2
PBPK modeling framework detailing the processes of model development and verification. ADME, absorption, distribution, metabolism, and
elimination; PK, pharmacokinetic; DDIs, drug-drug interactions.
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use of such modeling approaches (Sun et al., 2024; Paul et al., 2025).
Commonly used PBPK software packages include SimCYP
(Certara), GastroPlus (Simulations Plus), and PK-Sim (Open
Systems Pharmacology), among which PK-Sim is the only open-
source platform and is used for free. Alternatively, FDA reviewers
endorsed the predicted results for all three platforms (Sun et al.,
2024). This method using in HSCT has several advantages:

Firstly, it allows for the extrapolation of PK behavior of drugs in
healthy volunteers to diseased or special populations (e.g., the
elderly, children, pregnant women, and patients with hepatic and
renal insufficiency). Busulfan is a widely used chemotherapic agent
in pediatrics with HSCT. Given the narrow therapeutic index, it is
routinely dosed with TDM (Palmer et al., 2016). In this PBPK
model, age-dependent enzyme activity was tailored and evaluated
with an external dataset (Supplementary Tables S3, S4). The results
indicated that at the same dose (0.8 mg/kg), busulfan exposure in
children (979.4 ± 76.2 μM min) was lower than that in adults
(1,078.8 ± 103.9 μM min). When co-administered with phenytoin,

busulfan exposure in children (847.9 ± 68.4 μMmin) was even lower
(Figure 3c) and below the therapeutic window (AUC of
900–1,350 μM min; Palmer et al., 2016); while when increasing
busulfan dose to 1.0 mg/kg, the exposure (1,060.7 ± 95.5 μM min)
was sufficient.

Secondly, the model can assess inter-individual variability in a
virtual population by incorporating factors, such as age, gender,
ethnicity, and genetic polymorphisms. Voriconazole demonstrates
wide interpatient variability in serum concentrations due in part to
variant CYP2C19 alleles (Moriyama et al., 2017). In this PBPK
model, different CYP2C19 phenotypes were integrated into the
model as normal metabolizer (NM), intermediate metabolizer
(IM), and poor metabolizer (PM), with reference values for
CYP2C19 expression of 0.76, 0.40, and 0.01 μmol/L, respectively
(Wang et al., 2024). As shown in Figure 3d, AUC for CYP2C19 IMs
and PMs were 2.3- to 4.0-fold higher than those for CYP2C19 NMs.
The standard oral maintenance dose of voriconazole 200 mg twice
daily would be sufficient for CYP2C19 IMs and PMs to reach the

FIGURE 3
Simulated concentration profiles of drugs used in the pre- and early post HSCT. (a) Cyclosporine with different CYP450 inhibitors or inducers; (b)
aprepitant or fosaprepitant with phenytoin; (c) busulfan with phenytoin; (d) voriconazole with phenytoin for CYP2C19 normal metabolizers (NM),
intermediate metabolizers (IM), and poor metabolizers (PM); (e) cyclosporine with voriconazole for different CYP2C19 phenotypes; (f) tacrolimus with
voriconazole for different CYP2C19 phenotypes; (g) sirolimus with voriconazole for different CYP2C19 phenotypes; (h) posaconazole for different
formulations and dietary; (i) cyclosporine with voriconazole, letermovir, and phenytoin.
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tentative therapeutic range of 1.0–5.0 μg/mL for Cmin, while 400 mg
twice daily might be more suitable for NMs. Meanwhile, the DDIs
between voriconazole and three immunosuppressants were also
affected by CYP2C19 genotypes (Figures 3e–g). Similarly,
tacrolimus exhibited large inter-and intra-individual PK
variability, partly due to genetic variations in CYP3A5 (Birdwell
et al., 2015). Accordingly, different CYP3A5 genotypes were
integrated into the model as CYP3A5 expressers (*1/*1 or *1/*3)
and non-expressers (*3/*3), with reference values of 0.68 and
0.04 μmol/L for CYP3A5 expression in liver tissues, respectively
(Loer et al., 2023).

Thirdly, it enables investigation of the effect of factors, such as
formulations, administration routes, and food, on drug PK
parameters. In terms of posaconazole, the exposure for oral
suspension increased 2.5- to 3.0-fold when it was given with a
high-fat meal; whereas, exposures for tablets and capsules were not
markedly affected by food and were higher than that for oral
suspension (Krishna et al., 2012). During the modeling, intestinal
permeability and Weibull parameters were adjusted, and the final
model examined four scenarios (tablet or capsules, suspension with
dietary unknown, suspension with fasted, and suspension with fed)
to predict the influence of food intake and formulation on
posaconazole PK profile (Supplementary Table S3; Figure 3h).

Fourthly, the model supports the optimization of rational dosing
regimens by integrating therapeutics index or pharmacodynamic
indicators. Following HSCT, cyclosporine is commonly
administered in combination with voriconazole and letermovir,
which are both CYP3A4 inhibitors, and the latter is also an
inhibitor of P-gp transporter (Table 1). Thus, when co-
administrated with voriconazole and letermovir, simulations
showed that the steady-state Cmin of cyclosporine on day
6 increased 2.3-fold compared with cyclosporine (100 mg) alone

(Figure 3i; Table 2). Whereas, phenytoin is commonly used as
anticonvulsant prophylaxis for busulfan before HSCT. On
discontinuation of phenytoin, CYP450 activity may not be fully
restored for 7–10 days (Spriet et al., 2010), which may result in
decreased concentrations of cyclosporine, voriconazole, and
letermovir. Therefore, when phenytoin was administered 5 days
before the three drugs combination, simulation showed that
cyclosporine Cmin (173.2 ± 76.3 ng/mL) on day 6 was still lower
than that without phenytoin (240.6 ± 124.6 ng/mL) and also below
the therapeutic window (Cmin of 200–400 ng/mL). When increasing
cyclosporine dose to 150mg, the Cmin (261.3 ± 109.7 ng/mL) met the
requirements.

There are several limitations to the present PBPK model. Firstly,
the metabolism and DDIs were based on enzyme kinetic parameters
observed from in vitro experiments, while in vitro data may not
accurately describe drug changes in vivo. This is a common problem
with the PBPK model. To ensure the credibility of the final PBPK
model, the source of the model parameters was provided, and the
current PBPK models were created and refined by combining the
bottom-up and middle-out approaches, that is, modifying the
parameters to fit the observed data. Secondly, the population
parameters for patients with HSCT are currently lacking or
challenging to acquire, so this PBPK model does not take into
consideration the physiological differences in patients with HSCT.
Thirdly, the WHOmodel evaluation criteria were used in this study,
i.e., the predicted-to-observed ratio within a factor of 2 (WHO,
2010). As stated by Guest et al., this strategy results in a potential bias
toward successful prediction at lower interaction levels (Guest et al.,
2011). For observed DDI ratios of 1 (no interaction), the 2-fold
deviation would allow predicted DDI ratios between 0.5 (induction)
and 2 (weak to moderate inhibition), which could overstate the DDI
performance for weak interactions. Therefore, the methodology

TABLE 2 Simulated pharmacokinetic parameters of cyclosporine with different drugs.

Victim drug (cyclosporine) Perpetrator drug Predicted Cmin (ng/mL; mean ± SD) Cmin ratio

100 mg po bid — 104.9 ± 32.2 —

100 mg po bid phenytoin 100 mg po tid 82.7 ± 26.1 0.8

100 mg po bid letermovir 240 mg po qd 126.3 ± 49.7 1.2

100 mg po bid fluconazole 200 mg po qd 169.2 ± 67.6 1.6

100 mg po bid posaconazole 200 mg po tid 208.6 ± 113.1 2.0

100 mg po bid itraconazole 200 mg po qd 215.2 ± 119.1 2.1

100 mg po bid voriconazole 200 mg po bid for CYP2C19 NMs 233.8 ± 147.7 2.2

100 mg po bid voriconazole 200 mg po bid for CYP2C19 IMs 327.7 ± 193.3 3.1

100 mg po bid voriconazole 200 mg po bid for CYP2C19 PMs 422.7 ± 227.2 4.0

100 mg po bid voriconazole 200 mg po bid for CYP2C19 NMs;
letermovir 240 mg po qd

240.6 ± 124.6 2.3

100 mg po bid voriconazole 200 mg po bid for CYP2C19 NMs;
letermovir 240 mg po qd; phenytoin 100 mg po tid on
day −5 to −1

173.1 ± 76.3 1.7

150 mg po bid voriconazole 200 mg po bid for CYP2C19 NMs;
letermovir 240 mg po qd; phenytoin 100 mg po tid on
day −5 to −1

261.3 ± 109.7 2.5

Cmin, minimum plasma concentration on day 6; SD, standard deviation; NMs, normal metabolizers; IMs, intermediate metabolizers; PMs, poor metabolizers.
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proposed by Guest et al. may be more stringent for DDI prediction
assessment, accepting a 20% deviation for observed DDI ratios
approaching 1. Lastly, there is a lack of clinical validation for
prospective DDI scenarios for dose optimization, which needs
further research.

Despite its shortcomings, the most meaningful application of
PBPK is to obtain the data through prediction in the absence of
clinical data and to guide clinical research. In the future, benefiting
from the development of software platforms and a more
comprehensive understanding of human physiological changes,
especially when there are factors, such as disease, that lead to
physiological changes, which means that PBPK models will be
more widely applied in novel drug development and dose
optimization (Sun et al., 2024).

5 Conclusion

In conclusion, this study introduced a PBPK modeling
platform to predict potential DDIs and their impact on drug
exposure in patients in the pre- and early post-HSCT. By
enabling the optimization of treatment regimens, this model
may serve as a valuable tool for improving drug safety and
therapeutic outcomes.
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