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Intervertebral disc degeneration (IVDD) is a prevalent condition contributing to
various spinal disorders, posing a significant global health burden. Mitophagy
plays a crucial role inmaintainingmitochondrial quantity and quality and is closely
associated with the onset and progression of IVDD. Well-documented region-
specific mitophagy mechanisms in IVDD are guiding the development of
therapeutic strategies. In the nucleus pulposus (NP), impaired mitochondria
lead to apoptosis, oxidative stress, senescence, extracellular matrix
degradation and synthesis, excessive autophagy, inflammation, mitochondrial
instability, and pyroptosis, with key regulatory targets including AMPK, PGC-1α,
SIRT1, SIRT3, Progerin, p65, Mfn2, FOXO3, NDUFA4L2, SLC39A7, ITGα5/β1, Nrf2,
and NLRP3 inflammasome. In the annulus fibrosus (AF), mitochondrial damage
induces apoptosis and oxidative stress mediated by PGC-1α, while in the cartilage
endplate (CEP), mitochondrial dysfunction similarly triggers apoptosis and
oxidative stress. These mechanistic insights highlight therapeutic strategies
such as activating Parkin-dependent and Ub-independent mitophagy
pathways for NP, enhancing Parkin-dependent mitophagy for AF, and
targeting Parkin-mediated mitophagy for CEP. These strategies include the
use of natural ingredients, hormonal modulation, gene editing technologies,
targeted compounds, and manipulation of related proteins. This review
summarizes the mechanisms of mitophagy in different regions of the
intervertebral disc and highlights therapeutic approaches using mitophagy
modulators to ameliorate IVDD. It discusses the complex mechanisms of
mitophagy and underscores its potential as a therapeutic target. The objective
is to provide valuable insights and a scientific basis for the development of
mitochondrial-targeted drugs for anti-IVDD.
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1 Introduction

The intervertebral disc, a fibrocartilaginous tissue between
adjacent vertebral bodies, consists of the nucleus pulposus (NP),
annulus fibrosus (AF) and cartilage endplate (CEP) (Vergroesen
et al., 2015). It is a unique structure that provides segmental mobility
and is simultaneously responsible for the mechanical stability of the
spinal column (Wise et al., 2020). Specifically, the NP resides
centrally within the intervertebral disc, fulfilling the role of
enduring mechanical impacts (Kepler et al., 2013). Surrounding it
intactly, the AF is associated with the regulation of the occurrence of
intervertebral disc herniation (Gorth et al., 2020), while the CEP
interfaces with the vertebral bones and plays a crucial part in
regulating the transport of nutrients (Habib et al., 2023).
Residing in a naturally harsh microenvironment of hypoxia,
acidic pH, low nutrition and high mechanical loading, disc have
limited capacity for self-repair and are vulnerable to damage (Huang
et al., 2013).

Abnormal mechanical stresses, nutritional deficiencies, and the
aging process are recognized as inductive factors for regulated cell
death (RCD) in intervertebral disc cells (Vergroesen et al., 2015;
Yang et al., 2022; Yang et al., 2019; Kang et al., 2020a). This cellular
demise leads to the disruption of the normal architectural and
physiological functions of the disc, ultimately progressing to
intervertebral disc degeneration (IVDD) (Kepler et al., 2013;
Walter et al., 2011). IVDD further serves as a primary
contributor to a multitude of spinal disorders that pose a
significant global health burden (Liebsch and Wilke, 2022; Binch
et al., 2021). The escalating incidence of IVDD is poised to
exacerbate the global prevalence of pain, disability, and the
associated economic strain on healthcare systems (Collaborators,
2021; GBD, 2019 Diseases and Injuries Collaborators, 2020; GBD
2017 Disease and Injury Incidence and Prevalence
Collaborators, 2018).

Mitochondria serve as the “powerhouse” of cells, generating
energy in the form of ATP and participating in various vital cellular
processes (Dc, 2013). However, mitochondria are prone to damage,
leading to mitochondrial dysfunction and imbalance of cell
homeostasis, which are closely associated with the occurrence of
various diseases (Doblado et al., 2021). Thus, maintaining
mitochondrial homeostasis is of vital importance. Mitophagy
selectively eliminates damaged mitochondria and maintains their
quality stability. On one hand, mitophagy is capable of selectively
identifying and removing damaged mitochondria to prevent them
from causing further harm to cells. On the other hand, through
mitophagy, cells can adjust the quantity and quality of mitochondria
to adapt to different metabolic requirements and
microenvironmental changes (Pickles et al., 2018). This
contributes to ensuring that cells function optimally in different
physiological and pathological conditions.

Mitochondria play a crucial regulatory role in skeletal muscle
physiology, demonstrating stimulus-responsive alterations in
quantity, configuration, and performance under external stress
conditions (Wu et al., 2024). The metabolic functions of
mitochondria in hypoxic intervertebral disc environments have
been largely overlooked (Madhu et al., 2020). It is only in recent
years that steady advancements have been made in understanding
the association between mitophagy and IVDD, revealing a close

correlation between maintaining a healthy mitochondrial pool and
preventing IVDD (Lin et al., 2023). Emerging research findings have
facilitated the development of novel diagnostic protocols and more
targeted interventions (Vlaeyen et al., 2018). Due to the distinct
structures, physiological functions, and microenvironments of the
NP, AF, and CEP, the pathological processes and repair mechanisms
following injuries to these regions exhibit region-specific
characteristics (Kepler et al., 2013; Xu et al., 2024). This
heterogeneity profoundly impacts therapeutic targeting, as each
subregion faces unique mitochondrial challenges, necessitating
tailored strategies. In this review, we will summarize the
mechanisms of mitophagy in distinct regions of the intervertebral
disc, and discuss therapeutic strategies employing mitophagy
modulators to delay IVDD. The goal is to provide significant
insights that are broadly pertinent to enhancing human health
and quality of life for patients suffering from related conditions.

2 Methods

2.1 Information sources and search
strategies

A literature search was conducted in the PubMed from
inception to March 2025. The keywords “nucleus pulposus”
(6,796), “annulus fibrosus” (2,366), “cartilage endplate” (1,671),
“intervertebral disc” (43,493), and “intervertebral disc
degeneration” (13,699) were independently searched and then
combined with the terms “mitophagy” (Liebsch and Wilke, 2022;
Li et al., 2019), “mitochondria” (268,773), “mitochondrial
homeostasis” (27,901), and “mitochondrial dysfunction”
(103,290). Specifically, the combined searches retrieved
225 results. The reference lists of relevant studies were
additionally screened to identify potentially eligible articles. The
potentially eligible studies were then screened by three independent
authors (C.F., Z.H., and M.Z.). The screenings were cross-checked,
and any discrepancies were resolved through discussion with a
senior reviewer (X.F.). After this process, 23 articles were
ultimately included.

2.2 Eligibility criteria

Studies were selected according to the following criteria.
Inclusion criteria: 1) Original research articles investigating NP,

AF, or CEP in vitro or in vivo models; 2) Studies that explicitly
assessed mitophagy phenotypes.

Exclusion criteria: 1) Duplicate publications or studies with
overlapping datasets; 2) Articles lacking direct experimental
evidence on NP, AF, or CEP.

3 Results

3.1 Development of mitophagy in IVDD

During the past few decades, the research on mitophagy has
demonstrated consistent progress, and its exploration in IVDD has
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exhibited a notable development trend over the recent
years (Figure 1).

In the 1960s, based on the findings of electron microscope
studies, sufficient evidence existed to demonstrate the
degradation of mitochondria and other intracellular structures in
lysosomes within mammalian cells (Duve and Wattiaux, 1966). The
term “mitophagy” was initially proposed to delineate the process of
selective autophagy of mitochondria in 2005, highlighting its role as
a targeted defense mechanism (Lemasters, 2005). As the research
advanced, the synergistic regulation of mitophagy by PTEN induced
putative kinase 1 (PINK1) and Parkin was first elucidated in the
experiment, and studies suggest that PINK1 may be upstream of
Parkin in the regulatory pathway (Clark et al., 2006). Additionally,
the BCL2-interacting protein 3-like (BNIP3L) receptor, also known
as Nip3-like protein X (NIX) receptor, has also been proven to play a
crucial role in the selective elimination of mitochondria (Schweers
et al., 2007). By the 2010s, research into mitophagy mechanisms had
advanced significantly. Researchers have not only revealed a strong
link between mitochondrial fission, fusion mechanisms, and
mitophagy (Ding et al., 2010), but also, in 2014, identified that
PINK1 possesses additional phosphorylation sites, which are
capable of compensating for the function of Parkin in mitophagy
(Dave et al., 2014; Lai et al., 2015; Villa et al., 2017). Over the
following years, multiple PINK1-mediated mitophagy processes that
are independent of Parkin have been further validated and studied.
With advancements in gene editing and high-throughput
sequencing technologies, novel mitophagy-related genes have
been identified (Xie et al., 2019). Particularly, CRISPR-Cas9-
mediated mitochondrial genome editing has enabled successful
mtDNA modification while systematically identifying key
regulators of mitophagy (Bi et al., 2022). Recent research has
demonstrated the existence of machinery capable of delivering

mitochondrial constituents and membranes to lysosomes in the
absence of autophagy. For instance, inner mitochondrial membrane
(IMM)-mediated mitophagy and mitochondrial extracellular
vesicles (mitoEVs) are recognized as mechanisms for delivering
mitochondrial components to lysosomes, thereby compensating for
the deficiencies in canonical mitophagy (Konig et al., 2021; Saunders
et al., 2024; Iorio et al., 2024).

In the research on mitophagy and IVDD, a study in
2017 pointed out that mitochondrial dysfunction is associated
with the apoptosis of NP cells, suggesting that improving
mitochondrial dysfunction could be a new way for effectively
protecting NP cells (Xu et al., 2017). Subsequently, scientists
discovered that Parkin is involved in the pathogenesis of IVDD
and may serve as a potential therapeutic target for IVDD (Zhang
et al., 2018). The crucial role of PINK1 in eliminating damaged
mitochondria and alleviating the senescence of NP cells through the
mitophagy pathway was also revealed (Y et al., 2018). In 2019,
studies focused on the role of mitochondrial function in the
pathogenesis of AF-related IVDD (Wu et al., 2021; Xu W-N.
et al., 2019). In 2020, the importance of Parkin-mediated
mitophagy in the survival of CEP cells under pathological
conditions was unveiled (Kang et al., 2020b). In 2023, the role of
the NLRX1-SLC39A7 complex in orchestrating mitochondrial
dynamics and mitophagy to rejuvenate intervertebral disc
through modulation of mitochondrial Zn2+ trafficking was
unveiled (Song et al., 2024). These findings have provided new
insights into understanding the pathological mechanisms and
potential therapeutic approaches for IVDD. Concurrently, certain
medications have exhibited potential in addressing IVDD by
regulating mitophagy levels, bringing new therapeutic options
and directions insights for future research and treatment (Kang
et al., 2020a; Lin et al., 2020).

FIGURE 1
The development timeline of mitophagy in IVDD. PTEN, phosphatase and tensin homologue; PINK1, PTEN-induced putative kinase 1; BNIP3L,
BCL2-interacting protein 3-like; IVDD, intervertebral disc degeneration; NP, nucleus pulposus; AF, annulus fibrosus; CEP, cartilage endplate.
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3.2 Molecular mechanisms of mitophagy

This primarily procedure of mitophagy consists of several
sequential events: Firstly, damaged mitochondria depolarize and
lose membrane potential. Secondly, mitochondria are wrapped by
autophagosomes to form mitochondrial autophagosomes. Thirdly,
these mitochondrial autophagosomes fuse with lysosomes. Lastly,
the contents of the mitochondria are degraded by lysosomes (Xu
et al., 2020).

In diverse cellular environments, various stimuli can induce
mitophagy through multiple signaling cascades (Palikaras et al.,
2017). Mitophagy operates through distinct yet interrelated
mechanisms. These mechanisms can generally be categorized into
ubiquitin (Ub)-dependent and Ub-independent pathways
(Khaminets et al., 2016). The Ub-dependent pathways are further
divided into the Parkin-dependent and Parkin-independent
pathways (Birgisdottir et al., 2013; Chen G. et al., 2020) (Figure 2).

3.2.1 Ub-dependent pathways
The Ub-dependent pathways rely on extensive ubiquitination of

damaged mitochondrial surface proteins to promote mitophagy. In
the field of Ub-dependent mitophagy, the Parkin-dependent
pathway, mediated by the kinase PINK1 and the E3 ubiquitin
ligase Parkin, is the most extensively studied mechanism (Clark
et al., 2006; Ashrafi and Schwarz, 2013). PINK1, a highly conserved

mitochondrial protein encoded by the PARK6 gene, is involved in
regulating various cellular physiological processes, particularly
crucial for the mitochondrial function (Wang N. et al., 2020). In
healthy mitochondria, PINK1 is continuously imported into the
IMM and degraded, maintaining low expression levels (Narendra
et al., 2010; Jin et al., 2010; Yamano and Youle, 2013). However,
when mitochondrial membrane potential (MMP) is compromised,
leading to mitochondrial dysfunction, the import channel for
PINK1 into the IMM is blocked, causing its accumulation at the
translocase complex on the outer mitochondrial membrane (OMM)
of the damaged mitochondria [45, 46]. At this location,
PINK1 undergoes dimerization, triggering autophosphorylation
and activation (Gan et al., 2022; Rasool et al., 2022). The
activated PINK1 subsequently phosphorylates serine 65 of Ub
and the Ub-like domain of Parkin, resulting in the further
categorization of Ub-dependent mitophagy into Parkin-
dependent and Parkin-independent pathways (Uoselis et al.,
2023). In the Parkin-dependent pathway, Parkin, encoded by the
PARK2 gene, is responsible for conjugating Ub-molecules to
substrates (Riley et al., 2013). Autophagy receptor proteins, such
as optineurin (OPTN) and nuclear dot protein 52 (NDP52), play a
pivotal role in the PINK1/Parkin pathway (Lazarou et al., 2015; Heo
et al., 2015; Wong and Holzbaur, 2014). These autophagy receptor
proteins bind to ubiquitinated substrates and associate with
ATG8 family members, facilitating the capture of damaged

FIGURE 2
The overview of the mitophagy mechanisms. Note: Mitophagy can be categorized into Ub-dependent pathways (highlighted in yellow) and Ub-
independent pathways (highlighted in purple). Atg8yl-Mach, Atg8ylation machinery; OPTN, optineurin; NDP52, nuclear dot protein 52; LC3,
microtubule-associated protein1 light chain 3.
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mitochondria by autophagosomes through the Atg8ylation
machinery (Atg8yl-Mach). The Atg8yl-Mach is composed of the
ATG12-ATG5-ATG16L1 complex, which anchors ATG8 to the
autophagosome membrane by promoting its conjugation to
phosphatidylethanolamine, thereby promoting the formation and
expansion of autophagosomes on the surface of damaged
mitochondria. Members of the ATG8 family are divided into the
microtubule-associated protein one light chain 3 (LC3) and GABA
receptor-associated protein (GABARAP) subgroups. During the
downstream process of mitophagy initiation, ATG8 family
members play a crucial role in the fusion of autophagosomes
with lysosomes for the degradation of mitochondrial substrates, a
process primarily driven by the GABARAP subgroup (Nguyen et al.,
2016; Vaites et al., 2017).

In addition to the classical PINK1/Parkin pathway, there exist
other Ub-dependent pathways that are independent of Parkin. In
Parkin-independent mitophagy, activated PINK1 can directly
recruit autophagy receptor proteins to mitochondria by
phosphorylation of Ub at the serine 65 site. Next, the Ub chains
generated on OMM substrates serve as recruitment platforms for
Ub-binding autophagy receptor proteins, including sequestosome
one/p62 (SQSTM1/p62), neighbor of BRCA1 (NBR1), OPTN,
NDP52, and Tax1-binding protein 1 (TAX1BP1). These receptor
proteins function by initiating the formation of autophagosomes
(Lazarou et al., 2015; Richter et al., 2016). The aforementioned
OMM autophagy-related proteins contain both LC3-interacting
region (LIR) and Ub-binding domain (UBD), thereby mediating
the binding of LC3 to Ub chains on targeted mitochondria. As a
result, these proteins anchor ubiquitinated mitochondria to
autophagosomes (Fan et al., 2021).

3.2.2 Ub-independent pathways
Ub chains are not the only factor recruiting autophagy receptor

proteins. The autophagy receptor proteins on the OMM inherently
possess LIR. These autophagy receptors can directly bind to
LC3 without ubiquitination, thus initiating mitophagy. In
mammals, such receptors primarily include NIX receptor, BCL2-
interacting protein 3 (BNIP3) receptor, and FUN14 domain-
containing protein 1 (FUNDC1) receptor, among others (Lu
et al., 2023) (Figure 2).

NIX and BNIP3 share 56% homology and both contain the
BCL2 homology 3 (BH3) domain, which allows them to directly
bind to LC3 through their BH3 domains and induce mitophagy
(Novak et al., 2010). FUNDC1 can interact with LC3 to induce
Parkin-independent mitophagy under hypoxic conditions (Liu
et al., 2012).

3.2.3 Non-canonical pathways
Non-canonical autophagy, independent of autophagosome

formation, represents an endosomal-dependent mitophagy
pathway activated under specific stress conditions. Specifically,
upon mitochondrial DNA damage, mitochondrial nucleoids are
eliminated via the endosome-mitophagy pathway. MitoEVs that
bud from mitochondrial networks have been implicated as a means
of delivering mitochondrial components to lysosomes (Konig et al.,
2021; Iorio et al., 2024; Soubannier et al., 2012), thereby
compensating for deficiencies in canonical mitophagy (Towers
et al., 2021). In addition to mitoEVs-mediated mitophagy,

mitochondrial herniation leads to the exposure and
ubiquitination of the IMM, initiating the induction of an
apoptotic mitophagy sequestration pathway. IMM-mitophagy has
the potential to capture herniating mitochondria, theoretically
preventing mtDNA release into the cytosol at an earlier stage of
the process before any transcriptional response can be triggered.
Using proximity proteomics, researchers have also identified the
protein required for the clearance of mutated mitochondrial
nucleoids from the mitochondrial matrix. Among these,
ATAD3 and SAMM50 regulate both the architecture of
mitochondrial cristae and nucleoid interactions.
SAMM50 cooperates with the retromer complex protein
VPS35 to sequester mitochondrial DNA within endosomes,
thereby preventing excessive immune response (Sen et al., 2023).

4 Role of mitophagy in IVDD and
therapeutic approaches

4.1 Role of mitophagy in IVDD

4.1.1 Mitophagy in NP region of IVDD
The complex multi-tissue structure of the intervertebral disc

allows it to absorb and distribute mechanical stresses during physical
activities (Konig et al., 2021). Specifically, the NP is primarily
composed of NP cells and extracellular matrix (ECM), with the
ECM of the NP consisting of type II collagen and proteoglycans
(Risbud et al., 2015). NP cells maintain the biomechanical
homeostasis of the NP by synthesizing and secreting ECM
(Vamvakas et al., 2017; Lin J. et al., 2019; Silagi et al., 2018).
Nutrients and metabolites enter and exit the disc through
diffusion within the dense ECM (Wise et al., 2020). Evidence
suggests that IVDD initially occurs in the NP region of the disc
(Guerrero et al., 2021), and research on the mechanisms and
therapeutic strategies of IVDD has predominantly focused on NP
cells (Xin et al., 2022; Wu et al., 2022; Zhang et al., 2021; Sun et al.,
2022). Currently, the etiology of RCD induced by mitochondrial
dysfunction in NP cells involves multiple factors, including
inflammation, oxidative stress, nutrient deficiency, compression,
and hyperlipidemia (Figure 3).

Firstly, inflammation is considered a significant pathogenic
factor. Pro-inflammatory cytokines, such as interleukin-1β (IL-
1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6),
collectively accelerate the progression of IVDD by promoting
ECM degradation, chemokine production, immune cell
recruitment, and phenotypic changes in disc cells (Xu et al.,
2017; Zhang et al., 2018; Risbud and Shapiro, 2014; Peng et al.,
2022). The relationship between inflammation induction and
mitophagy has garnered attention from Zhang and his team
(Zhang et al., 2018). They made pioneering observations that
Parkin expression is not only elevated in degenerated human NP
but also increased in rat NP stimulated with TNF-α. Meanwhile,
TNF-α stimulates NP cells to produce more reactive oxygen species
(ROS), subsequently activating autophagy and apoptosis processes.
During this process, despite increased expression levels of LC3 and
Beclin-1, p62 levels also rise in NP cells, indicating impaired
autophagy flux. Dysfunction in Parkin-dependent mitophagy has
been confirmed as a pivotal cause. Further research has found that
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the NF-κB signaling pathway is a potential mechanism through
which pro-inflammatory cytokines exert their effects. Studies by
Zhao et al. (2020) and Yu et al. (2021) demonstrated that the
inflammation induced by TNF-α can affect mitochondrial
function in NP cells through the NF-κB pathway, which in turn
triggers a series of secondary phenotypic changes, including
exacerbated inflammation, oxidative stress, and pyroptosis.
Among these, infiltration and activation of immune cells further

amplify the inflammatory cascade, leading to aggravated
inflammation (Risbud and Shapiro, 2014). Cytokines induce
oxidative stress by increasing ROS accumulation (Yang et al.,
2023). Furthermore, pyroptosis is dependent on inflammasome
activation and is accompanied by the massive release of
inflammatory cytokines. Evidence suggests that activated
NLRP3 inflammasomes aggregate around mitochondria, and
their potential detrimental effects in IVDD have attracted

FIGURE 3
The mitophagy in distinct regions of IVDD NP, nucleus pulposus; AF, annulus fibrosus; CEP, cartilage endplate; ECM, extracellular matrix.
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widespread attention (Zhou et al., 2011; Xia et al., 2019).
NLRP3 inflammasome induces pyroptosis and release
inflammatory cytokines in NP cells, a process that promotes the
secretion of metalloproteinases and leads to NP degradation (Song
et al., 2017; A et al., 2020), thereby accelerating the pathological
progression of IVDD (Tang et al., 2021). Research by Peng et al.
(Peng et al., 2022) found that in a lipopolysaccharide (LPS) induced
inflammation model, activation of the NLRP3 inflammasome
promotes ROS production and inhibits mitophagy flux. This
leads to pyroptosis and apoptosis of NP cells, resulting in
accelerated degeneration of the intervertebral disc NP.

Secondly, mitochondria are both the primary source of cellular
ROS and highly susceptible to oxidative stress damage, leading to
dysfunction (Hm et al., 2015). Impaired mitophagy will result in
mitochondrial dysfunction and ROS accumulation (Zhang et al.,
2018; Lin Q. et al., 2019). ROS accumulation, in turn, leads to
exaggerated inflammation, disordered metabolism, and enhanced
apoptosis in cells (Zhou et al., 2011). Among the molecules triggered
by mitochondrial ROS, the NLRP3 inflammasome has been
extensively studied for its detrimental role in IVDD (Zhou et al.,
2011; Xia et al., 2019). Activation of the NLRP3 inflammasome can
elevate the production of IL-1β, which facilitates the secretion of
metalloproteinases and subsequently causes degradation of NP
tissue (Song et al., 2017; A et al., 2020). Furthermore, NLRP3 is
linked to the mitochondrial apoptosis pathway, programmed cell
death, and apoptosis through several mechanisms in NP cells (Wn
et al., 2019). In Wang et al.‘s (Y et al., 2018) study, treatment of
human NP cells with H2O2 led to impaired mitophagy, manifesting
as ROS accumulation, decreased ECM synthesis, and accelerated
senescence. These alterations collectively contributed to the
degeneration of NP cells. Additionally, tert-butyl hydroperoxide
(TBHP) is also widely used to simulate oxidative stress
environments. Various scholars (Xie et al., 2019; Lin et al., 2020;
Wang et al., 2018; Wn et al., 2019; Chen et al., 2019; Chen Y. et al.,
2020) have explored the role of mitophagy in TBHP-induced
oxidative stress using different experimental models, finding that
TBHP treatment results in impaired mitophagy in NP cells of the
intervertebral disc. This includes both the Ub-dependent classical
pathway, characterized by decreased expression levels of PINK1 and
Parkin proteins, reduced LC3 II/I ratio, and decreased MMP and
ATP levels, as well as BNIP3-mediated Ub-independent mitophagy
(Wang et al., 2018). BNIP3, initially identified as a pro-apoptotic
protein, features an atypical BH3 domain localized to the OMM.
Induction of BNIP3 triggers the translocation and activation of
BCL2-antagonist/killer 1 (BAK1) and Bcl-2 Associated X Protein
(BAX) to mitochondria, leading to increased mitochondrial
membrane permeability, subsequent release of cytochrome C
from mitochondria to the cytosol, and ultimately initiating the
caspase cascade of apoptosis. Emerging research has found that
BNIP3 also serves as a key receptor for mitophagy, playing a role in
promoting cell survival (Madhu et al., 2020). The bidirectional
functions of BNIP3 in apoptosis and mitophagy suggest that it
may be a critical regulator of cell fate (Madhu et al., 2023). The
aforementioned changes in mitophagy will further affect processes
such as apoptosis, senescence, ROS generation, and ECM
degradation, ultimately influencing the degeneration of the NP of
the intervertebral disc.

In addition to inflammation and oxidative stress, nutrient
deficiency and abnormal mechanical loads are also key risk
factors for IVDD. Wang et al. (2020b) found that nutrient
deficiency and aging can downregulate FOXO3, leading to
mitochondrial dysfunction and inhibited mitophagy, resulting in
increased NP cell apoptosis and ECM degradation. Abnormal
compressive forces, tensile forces, and increased matrix stiffness
all exert detrimental effects on disc cells (Wang D. et al., 2022; Xiao
et al., 2022; Wang et al., 2021). Further research has shown that
excessive mechanical stress applied to NP cells can also lead to
oxidative stress and mitochondrial dysfunction (Kang et al., 2020a;
Hu et al., 2022). Kang et al. (Kang et al., 2020a) found that
mechanical compression can cause mitochondrial dysfunction in
NP cells of the intervertebral disc, with increased ROS production,
exacerbated mitochondrial dysfunction, and increased apoptosis,
thereby promoting NP cell degeneration. Mitochondrial dysfunction
can further increase ROS production, leading to a vicious cycle
between mitochondrial dysfunction and ROS accumulation, causing
sustained oxidative damage (Chen et al., 2018).

Combining the above evidence, mitochondrial damage leads to
pathological phenotypes in NP cells, including apoptosis, oxidative
stress, senescence, ECM degradation and synthesis, excessive
autophagy, exacerbated inflammation, and pyroptosis (Table 1).

4.1.2 Mitophagy in AF region of IVDD
As the outer structure of the intervertebral disc, the primary

physiological function of the AF lies in its ability to effectively
encapsulate the NP, preventing its herniation through its unique
hydraulic sealing properties, and evenly distributing the various
pressures acting on the disc (Moore, 2006). The AF comprises two
distinct components: the inner AF, which is adjacent to the NP and
consists of chondrocytes with an ECMprimarily composed of type II
collagen; and the outer AF, which is mainly composed of fibroblast-
like cells with an ECM primarily composed of type I collagen. This
lamellar structure provides the intervertebral disc with high
flexibility and adaptability across multiple planes of motion,
ensuring the stability and normal function of the disc structure
(Smith et al., 2011; Roughley, 2004). The outer AF receives
nutritional support from capillaries within the surrounding soft
tissues, while the rest of the AF exchanges nutrients and metabolic
waste through a capillary network at the CEP via diffusion (Wise
et al., 2020) (Figure 3). Due to the unique structure and physiological
function of the AF, the pathological repair process following AF
injury exhibits distinct characteristics (Bailey et al., 2013). Clinically,
both acute trauma and chronic degeneration of the AF can
exacerbate IVDD. Studies have demonstrated that AF injury
contributes to disc instability and disrupts the intradiscal
microenvironment. Meanwhile, AF injuries often persist due to
insufficient endogenous repair capacity [105]. Histologically, AF
scar healing is predominantly characterized by disorganized type III
collagen deposition, with sparse type I collagen bundles observed in
the outer layer. The key subsequent effects include reduced
resistance to small molecule permeation, decreased tensile
strength, diminished disc height, NP fibrosis, and CEP
subchondral ossification (Kuivaniemi and Tromp, 2019). These
findings underscore the necessity of elucidating AF repair
mechanisms and their systemic impact on disc homeostasis.
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Oxidative stress and abnormal lipid metabolism are currently
recognized as significant factors inducing IVDD through
mitophagy-mediated AF damage. Xu et al. (Konig et al., 2021)

demonstrated that TBHP-induced oxidative stress can lead to
mitochondrial dysfunction accompanied by downregulation of
mitophagy levels. When mitophagy function is impaired,

TABLE 1 The role of mitophagy in IVDD.

Authors, year Target cell/tissue Stressors Phenotypes Mitophagy pathway Disease effect

NP

Zhang et al. (2018) Rat NP cells, Rat in vivo TNF-α ROS generation↑
Autophagy#
Apoptosis↑

Parkin-mediated mitophagy IVDD

Y et al. (2018) Human NP cells H2O2 ROS generation↑
ECM synthesis↓
Autophagy#
Senescence↑

Parkin-mediated mitophagy IVDD

Wang et al. (2018) Rat NP cells
Rat in vivo

TBHP ROS generation↑
Senescence↑
Apoptosis↑

Ub-independent pathways (BNIP3) IVDD

Xie et al. (2019) Rat NP cells
Rat in vivo

TBHP ECM degradation↑
Senescence↑
Apoptosis↑

Parkin-mediated mitophagy IVDD

Xu et al., (2019b) Rat NP cells
Rat in vivo

TBHP ROS generation↑
Excessive autophagy↑

Apoptosis↑

Parkin-mediated mitophagy IVDD

Chen et al. (2019) Rat NP cells
Rat in vivo

TBHP ROS generation↑
ECM degradation↑

Apoptosis↑

Parkin-mediated mitophagy IVDD

Chen et al. (2020b) Rat NP cells
Rat in vivo

TBHP ROS generation↑
Apoptosis↑

Parkin-mediated mitophagy IVDD

Wang et al. (2020b) Rat NP cells Starvation
Aging

ECM degradation↑
Apoptosis ↑

Parkin-mediated mitophagy IVDD

Lin et al. (2020) Rat NP cells
Rat in vivo

TBHP Autophagy↓
Apoptosis↑

p62↑ IVDD

Kang et al. (2020a) Human NP cells
Rat NP tissue

Compression ROS generation↑
Apoptosis↑

Parkin-mediated mitophagy IVDD

Peng et al. (2022) Rat NP cells LPS ROS generation↑
Pyroptosis↑
Apoptosis↑

p62↑ IVDD

Madhu et al. (2023) Rat NP cells
Mouse in vivo

LV-shBNIP3 ECM synthesis↓
Metabolic homeostasis↓

Ub-independent pathways (BNIP3) IVDD

Song et al. (2024) Human NP cells
Mouse NP cells
Rat in vivo

TBHP Excessive autophagy↑
Senescence↑

Parkin-mediated mitophagy IVDD

Gu et al. (2024) Human NP cells
Rat in vivo

IL-1β ECM synthesis↓
ROS generation↑
ECM synthesis↓
Senescence↑
Apoptosis↑

Parkin-mediated mitophagy IVDD

AF

Xu et al. (2019a) Rat AF cells, Rat in vivo TBHP Oxidative stress↑
Apoptosis↑

Parkin-mediated mitophagy IVDD

CEP

Kang et al. (2020b) Human CEP cells
Rat CEP cells

H2O2 Oxidative stress↑
Apoptosis↑

Parkin-mediated mitophagy IVDD

Note: “↑” for upregulation (increased expression); “↓” for downregulation (decreased expression); “#” for activated autophagy with impaired flux.

NP, nucleus pulposus; AF, annulus fibrosus; CEP, cartilage endplate; ECM, extracellular matrix; TBHP, tert-butyl hydroperoxide; ROS, reactive oxygen species; IVDD, intervertebral disc

degeneration; BNIP3, BCL2-interacting protein 3; LPS, lipopolysaccharide; LV: lentivirus.
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oxidative stress and apoptosis levels significantly increase,
accelerating the occurrence and progression of IVDD. Further
research revealed that SIRT2, upstream of this pathway, is a key
target that influences the expression levels of peroxisome
proliferator-activated receptor γ coactivator 1α (PGC-1α), Parkin,
and LC3 II, thereby regulating mitophagy.Wu et al. (Wu et al., 2021)
found that oxidized low-density lipoprotein (oxLDL) can promote
mitochondrial fission, further exacerbating mitochondrial
dysfunction and increasing AF cell apoptosis, thereby accelerating
the pathological process of IVDD.

In brief, oxidative stress and abnormal lipid metabolism are
crucial factors inducing IVDD through mitophagy-mediated AF
damage. The pathological phenotypes of AF cells resulting from
mitochondrial damage include apoptosis and oxidative
stress (Table 1).

4.1.3 Mitophagy in CEP region of IVDD
The CEP consists of a biological tissue layer rich in type II

collagen and chondrocytes, situated between the intervertebral disc
and adjacent vertebral body. It is similar to other articular tissues in
the body, and it exhibits the highest cellular density among all
structures of the intervertebral disc (Kirnaz et al., 2022). The CEP
serves as the primary pathway for nutrient delivery from vertebral
body capillaries to the disc, as well as for the excretion of waste
products from the disc. Degeneration of the CEP can hinder the
nutrition and waste exchange of the intervertebral disc, leading to
the disruption of its homeostasis and the initiation of IVDD (Wong
et al., 2019). Kang et al. (Kang et al., 2020b) investigated the
regulatory role of oxidative stress on mitophagy mechanisms in
CEP cells. Their study induced an oxidative stress state with H2O2,
resulting in mitochondrial dysfunction manifested as decreased
MMP, reduced ATP synthesis, increased ROS levels, and opening
of the mitochondrial permeability transition pore (mPTP).
Concurrently, mitophagy was inhibited, further exacerbating
cellular apoptosis and ultimately accelerating the progression of
IVDD (Figure 3).

In summary, impaired mitophagy function leads to a series of
pathological phenotypes in CEP cells, including enhanced apoptosis
and oxidative stress. Additionally, this mechanism has been
extensively studied in other articular cartilage tissues structurally
similar to CEP cells and has been shown to be closely related to the
pathological processes of these tissues (Sun et al., 2021) (Table 1).

Mitophagy, as an important mechanism for cellular self-renewal
and homeostasis maintenance, exhibits significant correlations with
various forms of RCD (Sun et al., 2018; Sun et al., 2019). It is
important to note that mitophagy is a double-edged sword.
Moderate mitophagy can protect cells from various external
stimuli, whereas excessive mitophagy can also accelerate cellular
apoptosis and the progression of IVDD (Kang et al., 2020a; XuW-N.
et al., 2019).

4.2 Therapeutic strategies for targeting
mitophagy in IVDD

Intervertebral disc cells reside in a physically avascular and
hypoxic microenvironment, primarily relying on anaerobic
glycolysis for energy production (Urban et al., 2004). Based on

this observation, it was once widely accepted in the academic
community that, compared to cells dependent on aerobic
metabolism, intervertebral disc cells contain fewer functional
mitochondria (Madhu et al., 2020; Gan et al., 2003). However,
subsequent studies have revealed the presence of a functional
mitochondrial network within NP cells, capable of adjusting
mitochondrial quantity through active mitochondrial flux to
match metabolic demands. Furthermore, intervertebral disc
metabolism is relatively active, and its internal cells, due to
oxygen scarcity, have developed compensatory mechanisms to
counteract relative hypoxia, including upregulation of HIF-1α
and others (Risbud et al., 2010; Theodore, 2020). Additionally,
mitochondrial dysfunction and abnormal mitochondrial
morphology can be observed in degenerated intervertebral disc
cells (Hu et al., 2022; Song et al., 2018). Consequently,
therapeutic strategies aimed to ameliorate IVDD through
modulation of mitophagy have emerged as a focal point of
current research, increasingly gaining attention and recognition
from scholars in the field.

4.2.1 Pharmacological interventions
Numerous natural products exhibit therapeutic potential for

improving IVDD bymodulating mitophagy levels. Hydrogen sulfide
(H2S), along with nitric oxide and carbon monoxide, is regarded as
one of three endogenously produced gaseous signaling molecules.
These molecules possess diverse biological functions, including anti-
inflammatory and anti-apoptotic effects, and exert impacts on
multiple key mechanisms and pathways both in vivo and in vitro
(Hu et al., 2007; Hu et al., 2009). Recent studies have demonstrated
that H2S effectively improves mitochondrial function by closing the
mPTP, enhancing MMP, and ATP levels, thereby reducing cellular
apoptosis and showing therapeutic potential for IVDD (Xu et al.,
2017). Salidroside, a phenylpropanoid glycoside extracted from
Rhodiola, and Polydatin, a resveratrol glycoside extracted from
the rhizomes of Polygonum cuspidatum, can both activate
mitophagy through a Parkin-dependent pathway, upregulate
Parkin protein expression, promote the reduction of ROS
accumulation, and effectively inhibit cellular apoptosis, thereby
ameliorating mitochondrial damage and apoptosis in NP and
CEP cells, respectively (Zhang et al., 2018; Kang et al., 2020b).
Notably, Polydatin can also simultaneously activate the
Nrf2 pathway, upregulating Nrf2 protein expression and its
nuclear translocation, further improving mitochondrial
dysfunction (Kang et al., 2020b). Urolithin A, a metabolite of
ellagitannins and ellagic acid abundant in pomegranates,
strawberries, and other nuts (Cerdá et al., 2005), can specifically
induce mitophagy both in vivo and in vitro (Ryu et al., 2016; Fang
et al., 2019). Mechanistic studies have shown that Urolithin A
inhibits NP cell apoptosis by activating mitophagy through the
AMPK pathway, thereby slowing down the progression of IVDD
(Lin et al., 2020). Honokiol, a natural flavonoid compound derived
from the roots and bark of Magnolia officinalis, also exerts
therapeutic effects by activating the AMPK pathway. Honokiol
demonstrates multiple pharmacological effects such as
antioxidant, anti-lipid peroxidation, anti-inflammatory, and
neuroprotective activities, showing therapeutic potential in
cartilage protection and IVDD (Chen et al., 2014; Chen et al.,
2015). To explore the mechanism of Honokiol-induced
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TABLE 2 Therapeutic strategies for IVDD through mitochondrial homeostasis regulation.

Category Treatment Region Regulator Mitochondrial autophagy/
homeostasis

Phenotype References

Natural
ingredient

H2S NP N/A Function:mPTP↓, MMP↑, ATP↑ Apoptosis↓ Xu et al. (2017)

Natural
ingredient

Salidroside NP N/A Function:ΔΨm↑, MMP↑
Mitophagy:Parkin↑

Autophagy↑
Oxidative stress↓

Apoptosis↓

Zhang et al.
(2018)

Natural
ingredient

Honokiol NP AMPK/PGC-1α/
SIRT3↑

Mitochondrial dynamics:Drp1↑, Fis1↑,
Mfn2↑

Mitophagy:BNIP3↑, LC3 II/I↑

Oxidative stress↓
Senescence↓
Apoptosis↓

Wang et al.
(2018)

Natural
ingredient

Sulforaphane NP AMPK/PGC-1α↑
Progerin↓

Function:ΔΨm↑, ATP↑
Mitochondrial dynamics: Drp1↓, Mfn1/2↑

Oxidative stress↓
Senescence↓
Apoptosis↓

ECM degradation↓

Xu et al. (2019b)

Natural
ingredient

Selenium NP Nrf2↑ Function:MMP↑, ATP↑
Mitochondrial dynamics:Drp1↓, Mff↓, Fis1↓,

Opa1↑, Mfn1↑, Mfn2↑

Oxidative stress↓
Apoptosis↓

Wang et al.
(2022b)

Natural
ingredient

Urolithin A NP AMPK↑ Function:MMP↑
Mitophagy:LC3 II↑, P62↓

Apoptosis↓ Lin et al. (2020)

Natural
ingredient

Mangiferin NP NF-κB↓ Function:MMP↑
Mitochondrial dynamics:Drp1↓, Opa1↑,

TFAM↑

Inflammatory↓
ECM degradation↓
Oxidative stress↓

Apoptosis↓

Yu et al. (2021)

Natural
ingredient

Polydatin CEP N/A Function:mPTP↓, ΔΨm↑, ATP↑
Mitophagy:Parkin↑

Oxidative stress↓
Apoptosis↓

Kang et al.
(2020b)

Hormone Melatonin NP N/A Function:ΔΨm↑, ATP↑
Mitophagy:Parkin↑, LC3 II/I↑, P62↓

ECM degradation↓
Apoptosis↑

ROS generation↓

Chen et al. (2019)

Hormone Cortistatin NP NF-κB↓
AMPK/PGC-1α↑

Function:ΔΨm↑, ATP↑
Mitochondrial dynamics:Drp1↓, Opa1↑,

Mfn1/2 ↑

ROS generation↓
NLRP3 inflammasome↓

Apoptosis↓

Zhao et al. (2020)

Gene Editing circ-ERCC2 NP miR-182-5p↓/SIRT1↑ Mitophagy:PINK1↓, Parkin↑, P62↓,
LC3 II/I↑

ECM degradation↓
Senescence↓
Apoptosis↓

Xie et al. (2019)

Gene Editing AV-Mfn2 NP Mfn2↑ Function:ΔΨm↑
Mitophagy:PINK1↑, Parkin↑, LC3 II/I↑

ROS generation↓
Apoptosis↓

Chen et al.
(2020b)

Gene Editing LV-FOXO3 NP FOXO3↑ Mitophagy:PINK1↑, Parkin↑, LC3 II/
I↑, p62↓

ECM degradation↓
Apoptosis ↓

Wang et al.
(2020b)

Gene Editing PC-
NDUFA4L2

NP NDUFA4L2↑ Mitophagy:Parkin↓, LC3 II↓, p62↑ ROS generation↓
Excessive autophagy↓

Apoptosis↓

Wn et al. (2019)

Gene Editing LV-NLRX1 NP SLC39A7 Mitochondrial dynamics:OMA1 (ns),
OPA1(ns), p-DNM1L (ns)

Mitophagy:PINK1(ns), Parkin (ns),
LC3 II/I↑

Senescence↓
ECM synthesis↑

Song et al. (2024)

Gene Editing si-SPP1 NP ITGα5/β1↓ Function:ΔΨm↑
Mitophagy:PINK1↑, Parkin↑, LC3 II/I↑,

p62↓, ATG5↑, LAMP1↑

ECM synthesis↑
Apoptosis↓
Senescence↓

ROS generation↓

Gu et al. (2024)

Gene Editing si-Drp1 AF N/A Function:MMP↑
Mitochondrial dynamics:Drp1↓

Apoptosis↓ Wu et al. (2021)

Targeted drugs MitoQ NP Nrf2↑ Function:mPTP↓, ΔΨm↑
Mitochondrial dynamics:Drp1↓, Mff ↓,

Fis1↓, Mfn1↑, Mfn2↑, Opa1↑
Mitophagy:PINK1↑, Parkin↑, LC3 II/

I↑, p62↓

Oxidative stress↓
Apoptosis↓

Kang et al.
(2020a)

(Continued on following page)
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SIRT3 expression enhancement, Wang et al. (Wang et al., 2018)
examined the activation of two major energy sensor molecules,
namely, AMPK and PGC-1α. By activating the AMPK pathway,
upregulating PGC-1α and SIRT3, regulating mitochondrial
dynamics, and enhancing mitophagy flux through the autophagy
receptor BNIP3, Honokiol protects NP cells from oxidative stress
damage, reversing the processes of aging and apoptosis (Wang et al.,
2018). Furthermore, natural isothiocyanate compounds such as
Sulforaphane, found in cruciferous vegetables, especially broccoli,
have been shown to improve mitochondrial dysfunction, reduce
mitochondrial morphological abnormalities, and enhance
mitochondrial dynamics. The specific mechanisms involve
upregulating PGC-1α expression and AMPK phosphorylation,
reducing ROS accumulation, delaying aging, inhibiting apoptosis,
and reducing ECM degradation (Xu X. et al., 2019). Mangiferin
exhibits potent free radical scavenging activity, with mango trees
serving as its primary and readily accessible source (Zhao et al.,
2017). It possesses multiple pharmacological potentials, including
antioxidant, anti-inflammatory, anti-diabetic, anti-hyperlipidemic,
and anti-atherosclerotic properties, with mechanisms involving the
counteraction of oxidative stress and mitochondrial dysfunction
(Alberdi et al., 2018; Li et al., 2019). Opa1, Drp1, and TFAM are
biomarkers of mitochondrial dynamics. Mangiferin not only
downregulates Drp1 expression but also upregulates Opa1 and
TFAM levels, thereby reducing inflammation, ECM degradation,
oxidative stress, and apoptosis (Yu et al., 2021). Selenium can also
reduce oxidative stress and cellular apoptosis by regulating
mitochondrial dynamics and the expression of autophagy-related
proteins (Wang P. et al., 2022) (Table 2).

Beyond natural products, certain hormones have also been
identified as possessing the potential to regulate mitophagy. For
instance, Melatonin, an endogenous molecule released by the pineal
gland, has been proven to effectively delay oxidative stress,
inflammatory responses, and apoptosis in osteoarthritis models
(Pei et al., 2009; Liu et al., 2013; Lim et al., 2012), while also
enhancing mitophagy levels in various tissues such as the brain
and liver (Lin et al., 2016; Kang et al., 2016). Chen et al. (Chen et al.,
2019) found that Melatonin can promote mitophagy by
upregulating Parkin protein expression and the LC3 II/I ratio,

thereby improving oxidative stress-induced mitochondrial
dysfunction and apoptosis, and exhibiting potential therapeutic
effects on IVDD. Cortistatin, a cyclic neuropeptide, is an
appealing therapeutic candidate in the treatment of degenerative
and inflammatory diseases (Gonzalez-Rey et al., 2007; Duran-Prado
et al., 2013; Gruber et al., 2014), including its role in mitigating TNF-
α-induced chondrocyte inflammation to counteract articular
cartilage degeneration in osteoarthritis (Zhao et al., 2019). Zhao
et al. (Zhao et al., 2020) discovered that Cortistatin inhibits apoptosis
by suppressing the NF-κB pathway and regulating mitochondrial
dynamics, thereby reducing ROS accumulation and
NLRP3 inflammasome activation. Specifically, in this study,
Cortistatin, by activating the AMPK/PGC-1α pathway,
upregulated the expression levels of fusion-related markers Opa1,
Mfn1, and Mfn2, while simultaneously downregulating the
expression of fission marker Drp1. Inhibition of proteins
involved in mitochondrial fission also demonstrated a positive
therapeutic effect on IVDD (Wu et al., 2021) (Table 2).

Targeted strategies aimed at mitochondrial function also
constitute effective avenues for regulating mitophagy and
ameliorating IVDD. Studies have confirmed that oxidative
products are significantly increased in IVDD, and inhibiting the
excessive production of ROS while promoting their clearance has
been demonstrated to effectively delay the progression of IVDD
[136–138] (Kang et al., 2020a; Suzuki et al., 2015). Among these,
activating the Nrf2 antioxidant defense system emerges as a potent
therapeutic strategy for IVDD. Nrf2, a crucial redox-sensitive
transcription factor, regulates the antioxidant system by
activating the expression of cytoprotective genes in response to
oxidative stress (Xiang et al., 2022). For instance, antioxidants such
as MitoQ and Mito-TEMPO significantly mitigate oxidative stress
and mitochondrial dysfunction by activating the Nrf2 pathway and
upregulating PINK1/Parkin-mediated mitophagy (Kang et al.,
2020a; Kang et al., 2020b).

4.2.2 Gene editing therapies
With the advancement of gene editing technology, an increasing

number of studies have begun to explore their potential in regulating
mitophagy and improving IVDD. For example, knocking down

TABLE 2 (Continued) Therapeutic strategies for IVDD through mitochondrial homeostasis regulation.

Category Treatment Region Regulator Mitochondrial autophagy/
homeostasis

Phenotype References

Targeted drugs Mito-TEMPO CEP N/A Function:ΔΨm↑, ATP↑, mPTP↓
Mitophagy:Parkin↑

Oxidative stress↓
Apoptosis↓

ROS generation↓

Kang et al.
(2020b)

Related protein HSP70 NP SIRT3↑ Function:MMP↑, ATP↑
Mitochondrial dynamics:Drp1↓, Mff↓, Fis1↓,

Mfn1↑, Mfn2↑, Opa1↑

Oxidative stress↓
Apoptosis↓

ECM degradation↓

Hu et al. (2022)

Related protein A20 NP NLRP3 inflammasome↓ Function:ΔΨm↑
Mitochondrial dynamics:Drp1↓, Mfn1↑

Mitophagy:p62↓

Oxidative stress↓
Pyroptosis↓
Apoptosis↓

ROS generation↓

Peng et al. (2022)

Related protein SIRT2 AF PGC-1α↑ Mitophagy:Parkin↓, LC3 II↓ Oxidative stress↓
Apoptosis↓

Xu et al. (2019a)

Note: “↑” for upregulation (increased expression); “↓” for downregulation (decreased expression); “ns” represents no significant difference.

MMP, mitochondrial membrane potential; mPTP, mitochondrial permeability transition pore; oxLDL, oxidized Low-Density Lipoprotein; TBHP, tert-butyl hydroperoxide; AV, adenovirus;

LV, lentivirus.
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PINK1 expression using sh-PINK1 can affect the mitophagy
process, leading to accelerated aging and increased ROS
accumulation (Y et al., 2018). Additionally, circERCC2 promotes
PINK1/Parkin-mediated mitophagy by downregulating miR-182-5p
and upregulating SIRT1, thereby reducing NP cell apoptosis,
senescence, and ECM degradation (Xie et al., 2019). Additionally,
overexpression of genes such as Mfn2 and FOXO3 has also shown
positive effects on mitophagy and IVDD treatment (Chen Y. et al.,
2020; Wang et al., 2020b).

During the development of IVDD, various risk factors have been
found to induce mitochondrial damage by inhibiting mitophagy,
ultimately leading to RCD of disc cells. Therefore, enhancing
mitophagy is considered a potential therapeutic approach for
alleviating IVDD (Wang et al., 2020c; Lan et al., 2022). However,
not all activation of mitophagy is positively correlated with halting the
progression of IVDD. Excessive mitochondrial fission and autophagy
can directly contribute to the occurrence and development of IVDD
(Lin et al., 2023). Prolonged duration of mechanical loading has been
reported to result in excessive removal of mitochondria bymitophagy,
thus exacerbating NP cell senescence, and inhibiting mitophagy can
have a positive effect (Huang et al., 2020). Further research has found
that overexpression of the NDUFA4L2 gene exerts a positive
therapeutic effect on IVDD by inhibiting excessive mitophagy
induced through the Parkin-dependent pathway (Wn et al., 2019).
NLRX1, as the only Nod-like receptor located inmitochondria, plays a
crucial role in sensing mitochondrial damage and regulating
mitochondrial function (Zhang et al., 2019; Killackey et al., 2022;
Killackey et al., 2023). Song et al. (Song et al., 2024) revealed that
mitophagy is activated in both NLRX1-overexpressing and NLRX1-
deficient NP cells exposed to oxidative stress. However, distinct
biological outcomes were observed. When NLRX1 was
overexpressed, pharmacological intervention targeting the NLRX1-
SLC39A7 pathway showed great potential for promoting disc
regeneration. Conversely, NLRX1 deficiency promoted PINK1/
Parkin-mediated mitophagy, inducing excessive mitophagy and
accelerating the progression of IVDD. Therefore, from a
mechanistic perspective, the zinc transporter SLC39A7, a novel
NLRX1-interacting protein, has been identified and proven to
regulate mitochondrial dynamics and promote beneficial and
synchronized mitophagy (Song et al., 2024) (Table 2).

4.2.3 Protein-based therapies
Proteins such as HSP70 also mitigate oxidative stress and

apoptosis by modulating mitochondrial dynamics and the
expression of autophagy-related proteins (Hu et al., 2022).
Furthermore, proteins including A20 and SIRT2 have been
identified as possessing potential to regulate mitophagy (Xu
W-N. et al., 2019; Peng et al., 2022). In the study by Peng et al.
(Peng et al., 2022), following LPS treatment, the mitochondrial
fission protein Drp1 translocated from the cytoplasm to
mitochondria, while the expression of Mfn1 significantly
decreased. A20 mitigated the LPS-induced changes and promoted
the normalization of mitochondrial morphology. A20 significantly
reduced the NLRP3 aggregation around mitochondria induced by
LPS. Analysis revealed that A20 protected NP cells from LPS-
induced mPTP collapse and massive ROS production. These
findings suggest that A20 may exert protective effects by
facilitating the elimination of ROS through mitophagy.

4.3 Mitochondrial dynamics

On the other hand, mitochondria are highly dynamic organelles
undergoing continuous fission and fusion, a process termed
mitochondrial dynamics (Westermann, 2010a). When cells
undergo metabolic or environmental stress, the quantity and
quality of mitochondria are regulated through continuous
processes of fusion and fission (Pernas and Scorrano, 2016; Kraus
and Ryan, 2017). Fusion aids in stress alleviation by mixing the
contents of partially damaged mitochondria as a form of
complementation. Fission is necessary for the generation of new
mitochondria, but it also contributes to quality control by enabling
the removal of damaged mitochondria and can facilitate apoptosis
under high levels of cellular stress (Youle and van der Bliek, 2012).
Mitochondrial fusion and fission are crucial for a wide range of
cellular functions, including energy metabolism, development, aging,
and cell death. Mitochondrial fusion and fission are crucial for a great
variety of cellular functions, including energy metabolism,
development, aging and cell death. The core mechanisms involved
have been identified and analyzed in diverse model organisms
(Westermann, 2010b). A delicate balance in mitochondrial
dynamics is conducive to maintaining a healthy mitochondrial
pool (Lee and Yoon, 2016). Disruption of this balance is associated
with various human diseases, including cancer, type 2 diabetes, and
osteoarthritis (Rovira-Llopis et al., 2017; Srinivasan et al., 2017; Yao
et al., 2019). Mitophagy and mitochondrial dynamics are interrelated
but distinct processes. During the process of mitochondrial fission,
damaged daughtermitochondria are first segregated and subsequently
targeted for elimination by lysosomes, thereby preventing their
reintegration into the pool of active and healthy mitochondria
through fusion (Kang et al., 2020a). Maintaining a healthy
mitochondrial pool is crucial for disc cells in both physiological
adaptation and pathological responses to external stimuli.
Therefore, in addition to direct interventions targeting mitophagy,
appropriate mitochondrial quality control also merits investigation.

5 Summary and prospects

IIVDD is closely associated with a range of spinal disorders,
including lumbar disc herniation, spinal canal stenosis, degenerative
spondylolisthesis, and scoliosis, which impose significant economic
burdens on both individuals and society (Hartvigsen et al., 2018).
During the progression of IVDD, various modes of RCD exist within
the intervertebral disc, such as apoptosis, pyroptosis, senescence, and
autophagy-dependent cell death, which can occur independently or in
combination (Yang et al., 2022). To date, effective therapeutic
strategies for IVDD are still under continuous exploration.

By Delving into the mechanisms underlying the role of
mitochondrial function in IVDD, the modulation of mitophagy has
emerged as one of the important directions for improving therapeutic
strategies for IVDD. Various interventions, including natural products,
hormones, targeted compounds, gene editing technologies, and related
proteins, have demonstrated positive effects on mitophagy, providing
new directions and strategies for the treatment of IVDD. However,
enhancing mitophagy is not always a favorable approach for treating
IVDD, and treatment decisions should be based on a clear
understanding of the molecular background. Therefore, whether
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mitophagy is beneficial or harmful to health depends on cellular and
microenvironmental factors (Zhou et al., 2019). Meanwhile, both
mitophagy and mitochondrial dynamics are key mechanisms for
maintaining mitochondrial homeostasis (K et al., 2018).

Current research still faces numerous challenges and unknown
areas, such as the interactions between different mechanisms and the
long-term safety and efficacy of intervention methods. Therefore,
future studies need to explore the specific mechanisms of these
strategies in greater depth and validate and optimize them in clinical
practice, aiming to provide more effective and safe treatment
options for patients.
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