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Introduction: Prior cohort studies reported paradoxical results between proton
pump inhibitor (PPI) usage and the risk of type 2 diabetes mellitus (T2DM). We
investigated the correlation between the use of PPIs and T2DM risk, constructed
predictive models, and identified the key genes involved.

Methods: In the correlation analysis, we extracted and analyzed the data from the
National Health and Nutrition Examination Survey (NHANES) database and the
FDA Adverse Event Reporting System (FAERS) database to examine the
relationship between the use of PPIs and T2DM risk. Then, a nomogram was
constructed to estimate the T2DM risk probability in patients treated with PPIs by
using the optimal predictors identified by the least absolute shrinkage and
selection operator and logistic regression methods. Finally, we investigated
the key genes modulated by PPI usage in patients with T2DM by combining
various bioinformatics techniques such as network pharmacology, difference
analysis, and weighted gene co-expression network analysis.

Results: In the NHANES database, regardless of whether PPI usage was merely
included or used to adjust for covariates, the binomial regression models
indicated a positive correlation between PPI usage and T2DM risk (all p <
0.001). In the FAERS database, the T2DM signal for patients using PPIs was
significant (lower limit of the reporting odds ratio was greater than 1). Sex,
race, age, educational level, obesity, hypertension, and high cholesterol were
included in the nomogram to predict the probability of PPI usage-induced T2DM
risk (all p < 0.05). By intersecting the key cluster and the intersection of PPI usage-
related genes and T2DM-related genes, we finally identified two crucial genes,
AGT and JAK2, that may be involved in PPI usage-induced T2DM risk.

Discussion: Our findings revealed that PPI treatment can increase the risk of
T2DM. Additionally, we were successful in constructing a new nomogram to
identify individuals at high risk of developing T2DM among patients using PPIs and
completed a preliminary exploration of possible gene targets and mechanisms.
Our study will be useful in alerting clinicians to the T2DM risk involved in PPI
treatment and allowing them to take early prevention and intervention measures.

KEYWORDS

proton pump inhibitors, type 2 diabetes mellitus, correlation analysis, prediction model,
gene identification

OPEN ACCESS

EDITED BY

Mohd Dilshad Ansari,
SRM University (Delhi-NCR), India

REVIEWED BY

Abdullah Al Marzan,
Toxicology Society of Bangladesh, Bangladesh
Santenna Chenchula,
All India Institute of Medical Sciences, India
Balamurali Venkatesan,
Dr. M.G.R. Educational and Research Institute,
India
Reaz Ahmmed,
University of Rajshahi, Bangladesh

*CORRESPONDENCE

Yin Zhang,
yizhen6221@163.com

RECEIVED 20 February 2025
ACCEPTED 21 April 2025
PUBLISHED 29 April 2025

CITATION

Liang C and Zhang Y (2025) Proton pump
inhibitors use and risk of type 2 diabetes
mellitus: correlation analysis, prediction model
construction, and key genes identification.
Front. Pharmacol. 16:1580090.
doi: 10.3389/fphar.2025.1580090

COPYRIGHT

©2025 Liang and Zhang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 29 April 2025
DOI 10.3389/fphar.2025.1580090

https://www.frontiersin.org/articles/10.3389/fphar.2025.1580090/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1580090/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1580090/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1580090/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1580090/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1580090&domain=pdf&date_stamp=2025-04-29
mailto:yizhen6221@163.com
mailto:yizhen6221@163.com
https://doi.org/10.3389/fphar.2025.1580090
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1580090


1 Introduction

Proton pump inhibitors (PPIs) directly block the final common
pathway of gastric acid secretion and are the most effective
inhibitors of gastric acid secretion at present. Since the
introduction of omeprazole in 1989, PPIs have gradually become
the primary drugs for the treatment of acid-related disorders, with
the virtues of consistent tolerance, excellent safety, and a stronger
ability to inhibit gastric acid (Strand et al., 2017). Several PPIs have
been developed, including omeprazole, pantoprazole, lansoprazole,
rabeprazole, esomeprazole, and dexlansoprazole, all of which have
been approved by several countries. Despite a consistently favorable
safety profile of PPIs over the past 3 decades of clinical practice,
some concerns have arisen about their adverse effects as a
consequence of their gradually universal popularity (Vaezi et al.,
2017; Elias and Targownik, 2019).

Diabetes is estimated to affect approximately 530 million adults
worldwide, with a global prevalence of 10.5% among adults aged
20–79 years. Total diabetes prevalence primarily reflects type
2 diabetes mellitus (T2DM), which accounts for 96.0% of
diabetes cases (GBD 2021 Diabetes Collaborators, 2023. T2DM is
a substantial public health issue worldwide. The pursuit of a link
between PPI usage and T2DM risk has yielded contradictory results.
A prospective analysis of 204,689 participants found that regular use
of PPIs was associated with a higher risk of T2DM and the risk
increased with longer duration of use (Yuan et al., 2021). However,
another retrospective cohort study with a follow-up period of 5 years
demonstrated a decreased risk of diabetes in upper gastrointestinal
disease patients who used PPIs (Lin et al., 2016). Thus, the
correlation between PPI usage and T2DM risk remains
unconfirmed.

The National Health and Nutrition Examination Survey
(NHANES) was conducted by the Centers for Disease Control
and Prevention, United States to gather health and nutrition
information from American households (Hartwell et al., 2019).
The FDA Adverse Events Reporting System (FAERS) database is
a spontaneous reporting system for adverse event (AE) reports
arising from the use of marketed drugs in large populations,
which can unearth overlooked or rare AEs in clinical studies
(Inácio et al., 2017). These two databases are able to utilize large-
volume datasets to examine the relationship between individual
drugs and individual diseases, and are powerful tools for detecting
adverse drug reactions (Li et al., 2024; Liang et al., 2024). Therefore,
we employed data from the NHANES and FAERS databases to
explore the correlation between PPI usage and T2DM risk.
Meanwhile, many researchers have used the NHANES database
to build various nomogram prediction models and to achieve
positive results (Mao et al., 2024; Wu C. et al., 2024; Wu W.
et al., 2024). After exploring the correlation between PPI usage
and T2DM risk, we used the NHANES database to construct a
predictive model of PPI usage-induced T2DM risk. Bioinformatics
technology is an effective approach for exploring the potential
mechanisms and key genes associated with the development of
disease and the effects of drugs (Xu et al., 2023). In our study,
we aimed to investigate the key genes involved in PPI usage-induced
T2DM risk by employing various bioinformatics techniques such as
network pharmacology, difference analysis, and weighted gene co-
expression network analysis (WGCNA). By exploring the

correlation between PPI usage and T2DM risk, predictive model
construction, and key genes identification, that is helpful for
clinicians to be alerted of the risk of T2DM caused by PPI usage,
and take early prevention and intervention measures.

2 Materials and methods

2.1 Sample population in the
NHANES database

The 1999–2017 dataset from the NHANES database was used in
our study. After excluding participants with missing information on
T2DM and covariates, we enrolled 35,683 participants. After re-
matching by propensity score matching (PSM), we re-studied
6,932 patients (Figure 1). We used the extracted data to
investigate the relationship between PPI usage and T2DM in the
following three models:1) incorporating PPI usage alone; 2) adjusted
for diseases (hypertension, high cholesterol, obesity) that affect
T2DM (Wang et al., 2021; Jayedi et al., 2022); 3) adjusted for all
covariates that are risk factors for T2DM (Wang et al., 2021; Jayedi
et al., 2022; Menke et al., 2015; Spijkerman et al., 2014). Additionally,
to discern the effect of different PPI usage on T2DM, we perform
subgroup analyses by omeprazole/esomeprazole/pantoprazole (n >
500 patients).

2.2 Primary variable information in the
NHANES database

The exposure variable of this study was the usage of PPIs. Data
on PPI use was gathered through the Prescription Medication
Section of the Sample Person Questionnaire. Six PPIs

FIGURE 1
Flowchart of subject selection in NHANES. NHANES, The
National Health and Nutrition Examination Survey.
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(omeprazole, pantoprazole, lansoprazole, rabeprazole,
esomeprazole, and dexlansoprazole) and 3,466 persons who used
PPIs were included in the final sample based on information
gathered from in-person interviews during the eleven NHANES
cycles. We defined T2DM as any of the following (American
Diabetes Association Primary Care Advisory Group, 2024): (1)
HbA1c levels ≥6.5%; (2) fasting glucose levels ≥126 mg/dL; (3)
serum glucose levels exceeding 200 mg/dL as measured by the oral
glucose tolerance test; (4) participants who answered YES to the
question, “Ever told you had diabetes?” in the self-reported
questionnaire.

2.3 Covariates information in the
NHANES database

The covariates included age, sex (man/woman), race (Mexican and
Hispanic American, non-Hispanic white, non-Hispanic black and
other), educational level, hypertension, high cholesterol, obesity
(body mass index ≥30 kg/m2), alcohol status (≥12 times in the past
12 months), and smoking status. The categories for educational level
included less than 12th grade/12th gradewithout a diploma, high school
graduate/GED or equivalent, some college or AA degree, and college
graduate or above. Participants were classified as having hypertension
and high cholesterol if they answered “YES” to the question, “Did your
doctor tell you that you have high blood pressure or high cholesterol
levels?” Three groups of smoking status were identified: never (less than
100 cigarettes smoked in their lifetime), former (more than
100 cigarettes smoked in their lifetime and not at all presently), and
current (more than 100 cigarettes smoked in their lifetime and smoking
sometimes or daily).

2.4 FAERS database

To mine the FAERS data from 2004 Quarter-1 to 2024 Quarter-
2, an updated online web-based analysis tool termed AERSMine
(https://research.cchmc.org/aers) was developed (Sarangdhar et al.,
2016). We used AERSMine to extract the AEs for PPIs, omeprazole,
pantoprazole, lansoprazole, rabeprazole, esomeprazole, and
dexlansoprazole. AEs in the FAERS database were scored in
accordance with the Medical Dictionary for Regulatory Activities
from system organ class, high-level group terms, high-level terms
(HLT), preferred terms (PT), and lowest-level terms (Revers et al.,
2022). We obtained data for PPIs, omeprazole, pantoprazole,
lansoprazole, rabeprazole, esomeprazole, and dexlansoprazole-
associated T2DM AEs by searching the FAERS database via the
AERSMine tool and employing the search terms of HLT (diabetes
mellitus) and PT (T2DM).

2.5 Statistical analysis

In the present report, the study population characteristics were
expressed as the mean and standard deviation for continuous variables,
and categorical variables were presented as percentages. We used three
models to assess the association between T2DM and PPI usage in the
binomial regression model. Additionally, to exclude the interference of

confounding factors, the PSMmethod was employed with a 1:1 ratio to
balance controls and cases, and the data obtained following PSM were
also reanalyzed (Kurz et al., 2024).

Next, the extracted data with PPI usage were divided into training
and testing groups in a 7: 3 ratio. Based on the data from the training
group (n = 2431), we constructed a nomogram to quantify the risk of
PPI usage-induced T2DM. To identify the optimal predictive
characteristics and reduce the dimensionality of these data, the least
absolute shrinkage and selection operator (LASSO) regression estimator
was employed. The non-zero coefficients of the LASSO regression
model were selectively embraced as potential indicators of PPI-induced
T2DM. Following their identification, these possible factors were
methodically added to a binomial logistic regression model.
Adopting factors with p values <0.05, a nomogram regarding the
probability of PPI usage-induced T2DM was created (Zou et al.,
2022). Subsequently, data from the testing group (n = 1036) were
applied to externally validate the predictive effect of our nomogram.

The accuracy of the risk prediction model was assessed by
several metrics, including receiver operating characteristic (ROC)
curves, C-index, calibration plots, and decision curve analysis
(DCA). The ROC curve area under the curve (AUC) value is
close to 1, indicating the robust performance of the prediction
model (Harrell et al., 1982). The C-index >0.7 is considered to
have good discriminatory power (Longato et al., 2020). In the
calibration plot, if the curve lies on the diagonal of the
coordinates, it indicates that the predictive power of the model is
more accurate (Barda et al., 2020). DCA is applied to assess the
clinical utility of nomograms based on the threshold probabilities.
The threshold probability can be utilized to yield a net benefit. By
graphically analyzing the net benefit and the threshold probability, a
decision analysis curve can be derived, which can then be employed
to evaluate the net benefit of nomogram-assisted decision making at
different threshold probabilities (Van Calster et al., 2018).

Disproportionality analysis is a commonly used method to
detect the signal of adverse reactions, which is based on a 2 ×
2 table. We applied the proportional reporting ratio (PRR) and the
reporting odds ratio (ROR) of disproportionality analysis to
determine the signal strength of PPI usage-associated T2DM to
guarantee the accuracy of the results (Arai et al., 2023). The 2 ×
2 table and formulas for the 2 algorithms are listed in Supplementary
Tables S1, S2. When the ROR and PRR lower limit of the 95%
confidence interval (CI) was greater than 1 and the number of AE
reports was greater than or equal to three, the signal was deemed
significant (Yang et al., 2022). The ROR and PRR were calculated in
two models: 1) database without restrictions; 2) by excluding
patients who already had T2DM, hypertension, hyperlipidemia,
and obesity before therapy. IBM SPSS Statistics version 27 (IBM
Corp., Armonk, NY), Microsoft Excel version 2013 (Microsoft
Corp., Redmond, W), and the “forestplot,” “MASS,” “ggplot2,”
“glmnet,” “ISwR,” “caret,” “foreign,” “rms,” “rmda,”, and
“reshape2” packages of the R open-source software version
4.2.2 were performed to conduct the statistical analysis.

2.6 Identification of crucial targets of T2DM

The raw data of the GSE7014 gene expression dataset used in our
analysis were downloaded from the Gene Expression Omnibus
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(GEO) online database. The following criteria were used to identify
differentially expressed genes (DEGs) between T2DM samples and
normal controls after raw data normalization: p < 0.05 and |fold
change| > 1 (Zhang et al., 2023). To display DEGs, heatmap and
volcano plots were generated, and the significant genes were labeled.
Defined gene sets were identified by using gene set enrichment
analysis (GSEA) (Subramanian et al., 2007). GSEA analysis revealed
DEG differences between the two biological processes.

By analyzing the GSE7014 gene expression dataset, a gene co-
expression network was built using WGCNA (Chen et al., 2022). In
order to deal with outlier samples, a hierarchical clustering tree was
first generated. Gene correlation matrices and topological overlap
were then calculated. To make sure that the scale-free network
calculated the pairwise Pearson correlation coefficients between each
gene independently, a filtering threshold was applied to the pairwise
correlation matrix, converting it to a neighborhood correlation
matrix. Additionally, we calculated the eigenvector values of each
module. After that, we performed hierarchical cluster analysis,
computed the corresponding dissimilarities, and transformed the
adjacency matrix into a topological overlap matrix. Finally, using
gene significance values and module membership values, we
assessed the relationships between gene modules and normal
individuals as well as those with T2DM to identify key modules.
The genes related to T2DM were identified at the intersection of
DEGs and key modules revealed by WGCNA. The “limma,”
“pheatmap,” “ggsci,” “ggplot2,” “dplyr,” “org.Hs.eg.db,”
“patchwork,” “WGCNA,” “GSEABase,” “pheatmap,”
“randomcoloR,” and “AnnoProbe” packages of the R software
were used to identify the critical targets of T2DM.

2.7 Identification of key genes involved in
PPI-induced T2DM

The Swiss TargetPrediction database (https://www.
swisstargetprediction.ch/), Comparative Toxicogenomics database
(CTD; https://ctdbase.org/) and Targetnet database (http://
targetnet.scbdd.com/home/index/) were also employed to predict
possible targets of PPIs (omeprazole, pantoprazole, lansoprazole,
rabeprazole, esomeprazole, dexlansoprazole). The protein-protein
interactions of PPI- and T2DM-related genes were investigated via
the STRING website (https://string-db.org/). We used Cytoscape
software to further optimize the protein-protein interaction
networks, and the molecular complex detection (MCODE)
algorithm was applied to screen the key clusters (Xie et al.,
2022). The key genes involved in PPI-induced T2DM were
identified at the intersection of T2DM-related genes, drug-related
genes, and the key clusters. ROC curves of these key genes were
plotted, and these targets were evaluated by computing the AUC of
the ROC curve.

PPI-related genes and key clusters were analyzed by Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) for functional enrichment, respectively (Yu et al., 2012).
Through GO analysis of these genes, three categories of cellular
components, biological processes, and molecular functions were
identified and used to examine the biological characteristics of PPI-
related genes and key clusters. KEGG enrichment was utilized to
identify the potential signaling pathways for PPI-related genes and

key clusters. The “org.Hs.eg.db,” “clusterProfiler,” “enrichplot,”
“ggplot2,” “ggnewscale,” “enrichplot,” “DOSE,” “ggpubr,”
“stringr,” “ggsci,” “randomcoloR,” and “pathview” packages of
the R software were used to perform GO analysis and KEGG
enrichment.

3 Results

3.1 Correlation analysis

In the NHANES database, we included 3,466 patients with PPI
usage who received at least one episode of PPIs and
32,915 participants who did not receive any PPIs. Binomial
logistic regression models indicated that the PPIs use group had
a significantly higher risk of T2DM than the PPIs non-use group in
model 1 (Coefficient: Odds Ratio [OR] = 2.159, 95% CI: 1.996–2.334,
p < 0.001), model 2 (Coefficient: OR = 1.402, 95% CI: 1.288–1.524,
p < 0.001) and model 3 (Coefficient: OR = 1.222, 95%CI:
1.120–1.332, p < 0.001) (Figure 2). Following PSM,
3,466 individuals were matched in the case and control groups.
As shown in Supplementary Table S3, no significant differences were
found between the two groups at baseline (p > 0.05). According to
these three models, there was still a positive association between PPI
usage and T2DM (Coefficient: model 1: OR = 1.230, 95%CI:
1.108–1.367, p < 0.001; model 2: OR = 1.231, 95%CI:
1.103–1.373, p < 0.001; model 3: OR = 1.287, 95%CI:
1.150–1.440, p < 0.001). Subgroup analyses showed omeprazole/
esomeprazole/pantoprazole were significantly associated with the
risk of developing T2DM in three models after PSM
(Supplementary Table S4).

In the FAERS database, 7,060 PPI-related T2DM,
1,997 omeprazole-related T2DM, 3,431 pantoprazole-related
T2DM, 1,930 lansoprazole-related T2DM, 238 rabeprazole-related
T2DM, 1,332 esomeprazole-related T2DM, and 78 dexlansoprazole-
related T2DM cases were contained. At the HLT level, the signal of
diabetes mellitus in PPIs/omeprazole/pantoprazole/lansoprazole/
rabeprazole was significant (lower limit of ROR was greater than
1). The T2DM signal at the PT level was associated with PPIs/
omeprazole/pantoprazole/lansoprazole/rabeprazole at a
significantly increased ROR (lower limit of ROR was greater than
1). Dexlansoprazole did not produce a signal of diabetes mellitus and
T2DM (lower limit of ROR was lower than 1). The response signals
obtained were completely consistent with the ROR results, and the
PRR results are shown in Supplementary Table S5. After excluding
patients who already had T2DM, hypertension, hyperlipidemia, and
obesity, the signals of diabetes mellitus at the HLT level and T2DM
at the PT level in PPIs/omeprazole/pantoprazole/lansoprazole/
rabeprazole were also generated (Supplementary Table S6).

3.2 Prediction model construction

We included 3,467 patients to construct a PPI-induced T2DM
prediction model. Because LASSO cannot handle unordered multi-
categorical variables, we categorized the race of study participants
into multiple dichotomous variables before performing LASSO
regression. We selected the tuning parameter lambda in the
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LASSO model by 10-fold cross-validation based on the minimum
criteria. According to the optimal lambda value (0.001018) for the
LASSO regression, the results showed that eight variables with non-
zero coefficients were selected as latent variables (Figure 3a). After
performing a binomial logistic regression, the inclusion of seven
optimal variables minimized the criterion value of Akaike
information for the final model, which implies a better fit for
the model.

Based on the final model, a nomogram was constructed to
quantify the risk of PPI-induced T2DM (Figure 3b). The risk
factors included sex, race, age, educational level, obesity,
hypertension, and high cholesterol. Our nomogram expressed the
predicted probability of PPI-induced T2DM risk on a scale of 0–350.
For each predictor, a vertical line was drawn on the point axis and
the corresponding points were noted. The points for each predictor
were summed to find the total score corresponding to the predicted
probability of PPI-induced T2DM risk at the bottom of
the nomogram.

The C-index of the training group dataset was 0.712. For the
testing group, the C-index was 0.740. The ROC curves for predicting
the probability of T2DM risk in PPI users are shown in Figure 3c;
Supplementary Figure S1A, with the AUC values of 0.790 (95% CI:
0.691, 0.734) in the training group and 0.740 (95% CI: 0.708, 0.771)
in the testing group. The calibration curves of the training group and
testing group demonstrated a high degree of concordance between
the expected and actual results (Figure 3d; Supplementary Figure
S1B). Our nomogrammodel performed well in predicting the risk of
T2DM in the population using PPIs. According to the decision curve
(Supplementary Figure S2), when the threshold probability was >5%
for the patient and <53% for the clinicians, the nomogram(redline)
would provide greater benefits than the treat-all-parents
scheme(greyline) and treat-none scheme (black horizontal axis).

3.3 Identification of key genes involved

We retrieved the gene expression data of 20 T2DM samples and
6 normal samples from the GEO database GSE7014 dataset. Before
identifying genes that were differentially expressed between the
control and T2DM groups, we first normalized the raw
sequencing data (Supplementary Figure S3). Among these DEGs,
597 were upregulated and 239 were downregulated (Figure 4a). Sixty
significant DEGs are displayed in the heatmap plot (Figure 4b). The
DEGs pathway enrichment for the T2DM and normal groups was
carried out by using GSEA analysis. The results of this analysis
showed that 2-oxocarboxylic acid metabolism, the citrate cycle
(tricarboxylic acid cycle), lipoic acid metabolism, propanoate
metabolism, and starch and sucrose metabolism were enriched in
the T2DM group (Figure 4c). The p53 signaling pathway, mineral
absorption, pertussis, staphylococcus aureus infection, and systemic
lupus erythematosus were inhibited (Figure 4d). These results imply
that the development of T2DM may be significantly influenced by
the metabolism of 2-oxocarboxylic acid.

For the WGCNA approach, we used microarray data from the
GSE7014 dataset. There were no notable outliers in the data, based
on the outlier detection function (Figure 5a). A reasonable
connection was shown by the scale-free index of 0.9 and the soft
threshold power of 7 (Figure 5b). We created correlation matrices
and topological overlaps between the genes in the data. By cutting
dynamic trees and combining dynamic graphs, the co-expression
network and clustering dendrograms were built (Figure 5c). Finally,
13 modules were categorized using the data clustering results
(Figure 5d). We computed the association coefficient of each
module with traits associated with T2DM. According to these
results, the MEbrown module had the strongest correlation with
T2DM (p = 2e-09, cor = 0.89). The heatmap of the correlation

FIGURE 2
Correlation analysis in NHANES (a) and FAERS (b) database. PPIs, proton pump inhibitors; T2DM, type 2 diabetes mellitus; NHANES, National Health
and Nutrition Examination Survey; FAERS, FDA Adverse Events Reporting System; CI, confidence interval; OR, odds ratio; PSM, propensity score
matching; HLT, high-level terms; PT, preferred terms; ROR, report odds ratio.
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FIGURE 3
Construction of a PPI-induced T2DM risk prediction model. (a) Results of the LASSO regression. (b) Nomogram predicting T2DM risk among the
people of PPI use. (c) Analysis of ROC curve for nomogram in the training group. (d) Calibration curves of the nomogram in the training group. PPIs,
proton pump inhibitors; T2DM, type 2 diabetes mellitus; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic;
AUC, the area under the curve.
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between these modules is displayed in Figure 5e. Based on the
module membership and genetic significance scatter plots within the
MEbrown module, the association was excellent (R = 0.91, p < 1e-
200) (Figure 5f). As a result, the MEbrown module can be utilized as
a T2DM phenotypic interpretation tool.

We identified 477 T2DM-related genes by intersecting DEGs
with MEbrown module genes (Figure 6a). Swiss TargetPrediction,
CTD, and Targetnet databases yielded 205, 555, and 432 PPI-related
targets, respectively (Supplementary Table S7). Nine genes were
identified in the intersection between the T2DM- and PPI-related
genes (Figure 6b). The STRING online database was used to build a
protein-protein interaction network for all T2DM- and PPI-related
genes. Sixty-seven essential subpopulation genes, called key clusters,

were identified by using the MCODE algorithm (Figure 6c). We
found two key genes, AGT and JAK2, by a comparison of key
clusters and intersecting genes from the T2DM- and PPI-related
genes (Figure 6d; Supplementary Figure S4). Based on the ROC
curves, these two genes were robustly associated with T2DM (AUC
of ROC curve >0.8) (Figure 6e).

The results of GO and KEGG analyses of PPI-related genes and
key clusters are shown in Supplementary Figures S5–S8. The
biological process category in GO was co-enriched in response to
oxidative stress and the cellular response to chemical stress. The GO
cellular component category was co-enriched in membrane raft,
membrane microdomain, vesicle lumen, cytoplasmic vesicle lumen,
focal adhesion, and caveolae. The molecular function section was co-

FIGURE 4
Expression of DEGs in the GSE7014 dataset. (a) Volcano plot of DEGs in the GSE7014 dataset. (b)Heatmap plot of DEGs in the GSE7014 dataset. (c,d)
GSEA analysis of DEGs between the T2DM and normal groups DEGs, differentially expressed genes; T2DM, type 2 diabetes mellitus; GSEA, gene set
enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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enriched in protein tyrosine kinase activity (Supplementary Figures
S5, S7). The KEGG pathway primarily showed an enrichment of
PPI-related genes while key clusters were co-enriched in lipids and

atherosclerosis, the AGE-RAGE signaling pathway in diabetic
complications, endocrine resistance, and other related pathways
(Supplementary Figures S6, S8).

FIGURE 5
Enrichment levels in genomic WGCNA. (a) Sample dendrogram and trait heatmap. (b) Selection of soft thresholds. (c) Cluster dendrogram of
WGCNA. (d)Correlations between genemodules and T2DM. (e)Correlation betweenmodules. (f)Correlation between brownmodulememberships and
gene significance. WGCNA, weighted correlation network analysis; T2DM, type 2 diabetes mellitus.
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4 Discussion

Previously, the association between PPI use and T2DM risk has
been controversial. Our study is the first comprehensive study to
explore the relationship between PPI use and T2DM risk, based on
large-scale datasets from the NHANES and FAERS databases. These
databases undergo rigorous quality control and standardization
processes to ensure the accuracy and consistency of their data. In
the NHANES database, regardless of whether PPIs were merely
included or used to adjust for disease or all covariates, the binomial
regression models found a positive correlation between PPI use and
T2DM risk, and these results were not reversed after PSM.
Additionally, the signal of T2DM in PPI use was also

significantly detected by ROR and PRR methods in the dataset
derived from the FAERS database. Even after excluding patients who
already had T2DM, hypertension, hyperlipidemia, and obesity, the
results were not reversed. We developed and validated a nomogram
based on the 1999–2017 dataset from the NHANES database to
predict the probability of PPI-induced T2DM risk. Our nomogram
included seven variables (sex, race, age, educational level, obesity,
hypertension, and high cholesterol), each of which can be easily
acquired from PPI treatment. Finally, we combined network
pharmacology, difference analysis, WGCNA, GSEA, GO, and
KEGG analysis to identify the genes potentially associated with
PPI-induced T2DM risk. By intersecting the key cluster and the
intersection of PPI- and T2DM-related genes, we were able to

FIGURE 6
Identification of key genes. (a) Intersection of DEGs and WGCNA brown module genes, named T2DM-related genes. (b) Intersection of T2DM-
related genes and PPI-related genes. (c) Cytoscape’s plugin code for all T2DM-related genes and PPI-related genes, named key cluster. Green: PPI-
related genes; Red: T2DM-related genes; Green and red: both PPI-related genes and T2DM-related genes. (d) Intersection of key clusters, T2DM-related
genes and PPI-related genes, named key genes. (e) ROC curve of two key genes. WGCNA, weighted correlation network analysis; DEGs,
differentially expressed genes; T2DM, type 2 diabetes mellitus; PPIs, proton pump inhibitors; ROC, receiver operating characteristic.
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identify two genes, AGT and JAK2, which may play critical roles in
PPI-induced T2DM development.

In line with the findings of most studies, our study also
demonstrated that PPI usage may be capable of increasing the
risk of developing T2DM. In a prospective population-based
cohort of 14,926 individuals (Rotterdam Study), researchers
found that PPI usage was linked to a higher risk of incident
T2DM (Hazard Ratio [HR] = 1.69, 95% CI: 1.36–2.10). The
effect was dose-dependently associated with the highest risk
(HR = 1.88, 95% CI: 1.29–2.75) (Czarniak et al., 2022). Another
high-impact prospective study of 20,4689 participants also showed
that regular PPI users had a 24% greater risk of diabetes than non-
users (HR = 1.24, 95% CI: 1.17–1.31), and the risk of diabetes
likewise rose with the length of PPI use (Yuan et al., 2021). Loosen
et al. used the Disease Analyser database of 26,744 patients
diagnosed with T2DM to re-confirm Yuan et al.’s findings,
offering strong proof of a link between frequent PPI usage and
the likelihood of developing T2DM (Loosen et al., 2022). Chenchula
et al. pooled 12 studies with a total patient cohort of
1,264,816 persons to reveal that PPI use has a significant
association with the risk of T2DM incidence (p < 0.001)
(Chenchula et al., 2024). In our present study, the analysis of two
large-sample databases also indicated a correlation between PPI use
and the risk of developing T2DM. Conversely, some studies have
revealed no relationship between PPI therapy and a reduction in
non-glycosylated HbA1c levels and have even observed a
reduction in the risk of diabetes (Lin et al., 2016; Han et al.,
2015; Trang et al., 2021). While, the conclusions reached by these
studies were either obtained from retrospective reviews, or
included a small number of participants, and the evidence-
based support for these studies is relatively low. We mutually
validated our findings through two large-sample real-world
databases and took into account potential confounders to
enhance the credibility of our study. Therefore, our findings
showed that PPI therapy could increase the risk of T2DM.

By referring to published literature, there was no study on the
construction of a prediction model for PPI-induced T2DM risk.
Over the past 3 decades, we have witnessed an almost continuous
growth in the use of PPIs on a global scale. For example, in 2010,
omeprazole was the number one drug sold in Spain, accounting
for 5.5% of total drug package invoices (Lanas, 2016). Similarly,
in the period from 2022–2023, 73 million PPI prescriptions were
dispensed by the National Health Service in the United Kingdom,
at a cost of approximately £190 million, which is equivalent to
1.8% of the total cost of primary care prescriptions and 6% of all
prescriptions written (Jenkins and Modolell, 2023). The global
impact of diabetes, including T2DM, is severe, costing more than
$760 billion and representing 10% of the annual health expenditures
for adults, making it an urgent global concern (Cavan et al., 2017).
Therefore, establishing a simple and practical prediction model appears
particularly essential to help clinicians quickly and accurately identify
patients potentially at T2DM risk from the use of PPIs. Applying
LASSO regression analysis and developing a nomogram model helped
us in extracting the optimal variables most closely associated with the
incidence of T2DM in PPI users, thus paving the way for identifying a
high-risk population among PPI users based on the selection of patient
characteristics derived from clinical practice. Moreover, each of these
characteristics of our nomogram is readily available fromPPI users, and

our nomogram is plausible that has shown good performance in
the cohort.

By identifying key genes, we were able to explore the possible
mechanisms by which PPIs may cause T2DM. The protein encoded
by the AGT gene, pre-angiotensinogen or angiotensinogen
precursor, is cleaved to generate the physiologically active
enzyme angiotensin II. Angiotensin II is the primary active
product of the Renin-Angiotensin system. By binding to
angiotensin II receptor type 1 receptors, angiotensin II activates
downstream MAPK and JNK signaling pathways, leading to the
inhibition of the insulin signaling pathway and subsequently causing
insulin resistance (Gutierrez-Rodelo et al., 2022). Joyce-Tan et al.
found that the genetics of the AGT gene were associated with an
increased risk of T2DM (OR = 1.92, 95% CI:1.15–3.20, permuted p =
0.012) through genetic testing of 557 Malay participants (Joyce-Tan
et al., 2016). Hirode et al. analyzed a large-scale transcriptome
database of rat liver and showed that omeprazole affected the
expression of AGT mRNA (Hirode et al., 2009). The expression
of angiotensin II occurs in the gastric mucosa, and PPIs can reduce
gastric acid secretion, which may indirectly affect the local renin-
angiotensin system in the gastric mucosa (Duarte et al., 2024). From
this observation, we hypothesized that PPIs may contribute to the
increased risk of T2DM by modulating angiotensin expression via
the AGT gene. Another key gene encodes non-receptor tyrosine
kinases that are involved in a variety of cell signaling pathways, with
described to be associated with aging, inflammation, hematopoiesis,
and malignant transformation (Perner et al., 2019). Zhang et al.
recruited 599 T2DM patients for genetic testing and found that the
JAK2 gene may be correlated with T2DM in the Chinese population
(Zhang et al., 2022). The JAK2/STAT3 signaling pathway is involved
in the development of insulin resistance in patients with T2DM, and
its abnormal activation may damage pancreatic beta cells to reduce
insulin synthesis (Mashili et al., 2013; Bharadwaj et al., 2020).
Enhanced JAK2 expression promotes the progression of diabetic
nephropathy (Cao et al., 2023). Nikzamir et al. used network analysis
to evaluate the genes deregulated after long-term consumption of
omeprazole. The critically deregulated genes we finally identified
were JAK2, PTK2, and NRG1 (Nikzamir et al., 2020). PPIs can
modulate the activity of macrophages and dendritic cells in the
gastric mucosa, thus influencing the activation of the JAK2/
STAT3 signaling pathway (Nie and Yuan, 2020). In the GO
analysis undertaken by our study, molecular functional selection
was co-enriched in protein tyrosine kinase activity. The KEGG
pathway analysis results showed a co-enrichment for endocrine
resistance and the AGE-RAGE signaling pathway in diabetic
complications. Therefore, the JAK2 signaling pathway may be
involved in the development of T2DM caused by PPI use.

It should be noted that our study had some limitations. First, in
the NHANES database, in order to expand the sample size, we
accessed the Prescription Medication Section to include patients
taking PPIs without considering the effects of other medications. So
there was no estimate of the effects of combination medications.
T2DM is a multifactorial disease involving multiple genetic and
environmental factors, but these factors could not be included in our
present analysis because they were not explicitly documented in the
NHANES database. A larger cohort study is warranted to further
explore the seven results incorporated into our predictive model.
Second, the FAERS database is a spontaneous reporting system that
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is prone to risks of reporting biases, including under-reporting,
misreporting, and selective reporting. Although our study employed
both the ROR and PRR methods for signal detection to ensure the
reliability of the results, the influence of reporting biases cannot be
denied, which is an inherent limitation of the FAERS system
(Honma et al., 2024). Meanwhile, the NHANES and FAERS data
remain cross-sectional, represent only statistical associations and do
not imply causation, and longitudinal or prospective studies are
warranted to better clarify the direction of the association (Raschi
et al., 2021). Third, our study only used bioinformatics technology to
conduct a preliminary exploration of the possible gene targets and
mechanisms involved in the development of T2DM induced by
PPIs. Further experiments are required to validate the ability of PPIs
to bind and inhibit key gene targets (e.g., affinity assays, gene
expression, in vitro inhibition assays, and direct mutation
studies). Additionally, cellular or animal studies should be used
to further validate the true impact of the JAK2 signaling pathway
and angiotensin II in the development of T2DM driven by
use of PPIs.

5 Conclusion

This study combined the NHANES and FAERS databases to
explore the relationship between PPI use and T2DM risk. Our
analysis of datasets obtained from these two large-scale databases
indicated a positive relationship between PPI use and the risk of
developing T2DM. PPIs are in widespread use worldwide, and
T2DM is also a major public health problem globally. Clinical
workers should be wary of T2DM induced by PPIs. Then, we
applied LASSO regression analysis and developed a nomogram
model based on data from the NHANES database to predict the
probability of PPI-induced T2DM risk. Our model can facilitate
clinicians in identifying high-risk groups based on patient
characteristics and take timely preventive and avoidance
measures in clinical practice. Finally, we combined a variety of
bioinformatics techniques to identify the potential genes (AGT and
JAK2) that may be involved in PPI-induced T2DM risk. We also
carried out a preliminary exploration of the possible mechanisms of
PPI-induced T2DM development. However, more cohort studies
and experiments are needed to verify our model and conclusions.
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