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Chemical overexposure is a significant concern in both environmental and
occupational settings, often leading to oxidative stress and subsequent cellular
damage. The review covers the oxidative stress induced by chemical
overexposure to substances such as pesticides (including pyrethroid,
deltamethrin, β-cyfluthrin, malathion, triflumuron, methomyl, diquat,
cypermethrin, thiamethoxam, and profenofos), medications (acetaminophen),
nanoparticles (including zinc oxide, iron, silver, and titanium dioxide), heavy
metals (including cadmium, vanadium), and some organic chemicals
(including diethylnitrosamine and benzo(a)pyrene). Focusing on preclinical
evidence from animal models and cell-based studies, essential oils have been
shown to significantly enhance antioxidative enzyme activities, including
superoxide dismutase, catalase, and glutathione peroxidase, while also
increasing levels of non-enzymatic antioxidants such as glutathione and uric
acid. Additionally, essential oils contribute to the restoration of biochemical
parameters, including creatinine, uric acid, and urea levels, while mitigating
oxidative damage by reducing cell membrane injury, apoptosis, and
histopathological alterations. Additionally, this review evaluates the protective
benefits of essential oils against chemical overexposure in animal models. The
underlying mechanism is involved in alleviating hepatorenal damage. This review
underscores the considerable promise of essential oils as candidates for
medicinal applications in functional foods or medicines, particularly in
preventing oxidative stress induced by various chemical overexposure.
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GRAPHICAL ABSTRACT

1 Introduction

Overexposure to pesticides, medicines, environmental
pollutants, UV radiation, cigarette smoke, and other various
chemicals are significant external sources of reactive oxygen
species (ROS) (Sule et al., 2022). When ROS production
overwhelms the body’s antioxidant defenses, it leads to cellular
and molecular damage, affecting lipids, proteins, and DNA, and
potentially disrupting normal cellular functions (Tian et al., 2025),
contributing to chronic diseases such as cancer, cardiovascular
disease, neurodegenerative disorders, and metabolic syndromes
(Tiwana et al., 2024). For instance, occupational exposure to
benzene and polycyclic aromatic hydrocarbons has been
associated with elevated risks of leukemia and respiratory
diseases (Chiavarini et al., 2024). Additionally, high levels of
heavy metals like cadmium and lead have been correlated with
kidney dysfunction and cognitive decline (Howard et al., 2024; Yang
et al., 2025). These findings underscore the urgent need for effective
antioxidant strategies to mitigate oxidative damage induced by
chemical exposure.

Essential oils (EOs), as secondary metabolites, belong to the
group of biologically active volatile organic compounds (Ivanova
et al., 2025). They have been widely used in various fields including
medicine, agriculture, cosmetics, perfumes, and as food condiment
(He et al., 2023; Agnihotry et al., 2024). EOs offer health benefits to
prevent infectious and chronic diseases, thus improving digestion,
appetite, as well as regulating gut microbiota (Aziz et al., 2024).
There is an increasing interest in utilizing EOs due to their
bioherbicide potential (Poveda et al., 2025), antibacterial efficacy
(Khwaza and Aderibigbe, 2025), and insecticidal properties (Li et al.,
2025). In the food industry, studies have found that adding EOs
from medicinal and aromatic plants can introduce various bioactive
compounds exhibiting a range of medicinal potentials such as
antiviral (Misra et al., 2024), antifungal (Zhou et al., 2025),
antibiofilm (Devi et al., 2024), antibacterial activities (Khwaza
and Aderibigbe, 2025), and anti-inflammatory effect (Huang
et al., 2025), which help reduce fat oxidation and improve both
food shelf-life and aromatic flavor (Liñán-Atero et al., 2024).
Furthermore, many commodities using the essential oils as raw

material are widely employed in aromatherapy, where they could
relieve some psychological and/or physical disorders (Murugesh
et al., 2024), such as anxiety and depression (Chavda et al., 2025).

EOs derived from plants have shown considerable medicinal
potential as antioxidants in various conditions that involve oxidative
stress. Their diverse bioactive compounds exhibit strong antioxidant
properties through multiple mechanisms, including free radical
scavenging (Messaoudi et al., 2024), metal ion chelation
(Mohammed et al., 2024), and modulation of endogenous
antioxidant systems (Kashyap, 2024). Compared to synthetic
antioxidants or single-compound natural antioxidants, EOs offer
a complex mixture of phytochemicals that may exert synergistic
effects. EOs have been widely used in traditional medicine and
functional foods, making them promising candidates for mitigating
oxidative stress-related damage induced by chemical overexposure.
Additionally, EOs derived from plants are natural, environmentally
friendly, and sustainable candidates, offering a renewable resource
with potential applications in health and wellness.

The aim of this review is to summarize the antioxidant potential
of essential oils and their potential therapeutic effects on cellular
oxidative damage induced by chemical overexposure. Additionally,
this review analyzes the antioxidant mechanisms reported in
different studies, highlighting the multifaceted actions of essential
oils, which involve various bioactive compounds that scavenge free
radicals, chelate metal ions, activate endogenous antioxidant
systems, and regulate inflammation and autophagy. This review
highlights their potential applications in functional foods and
medicinal formulations for preventing oxidative stress.

2 Hepatorenal protection against
pesticides overexposure

Overexposure to pesticides presents an ongoing health risk. It
will lead to severe impairments to spleen, liver, kidney, and brain
(Hussain et al., 2025). Overexposure could cause cognitive and
neurological damage by modulating the permeability of voltage-
gated sodium channels in nerve cells, causing repetitive neural
impulses (Saravi and Dehpour, 2016; Erdman, 2016). In addition,
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pesticides exhibit more neurobiological affects, impacting
cholinergic neurotransmission, dopaminergic, noradrenergic, and
central γ-aminobutyric acid (GABA) (Huang et al., 2024; Menzikov
et al., 2024). EOs extracted from plants have shown their
antioxidative effects on tissues damage caused by pesticides
overexposure (Table 1).

2.1 Liver protection against pyrethroid
insecticide

Origanum majorana essential oil demonstrated significant
protection by normalizing marker enzymes, as well as replenishing
of antioxidant levels, indicating the benefits in hepatic oxidative damage
rats caused by pyrethroid (Mossa et al., 2013). Deltamethrin, an artificial
pyrethroid possessing strong insecticidal properties has been shown to
induce noteworthy elevated biochemical parameters including hepatic
lipid peroxidation (LP), alanine aminotransferase (ALT), alkaline
phosphatase (ALP), aspartate aminotransferase (AST), carbonyl
protein, and advanced oxidized protein products (AOPP), along
with a decreased glutathione (GSH), glutathione peroxidase (GPX),
catalase (CAT) and SOD levels, which were validated by histological
studies (Ncir et al., 2020). However, Allium sativum EO notably
alleviated the hepatotoxicity in deltamethrin-treated rats (Ncir et al.,
2020). Artemisia. campestris EO also showed its capability to normalize
the modified acetylcholinesterase (AChE), acid, uric, urea and
creatinine concentrations, and to reduce LP in deltamethrin-
intoxicated rats (Saoudi et al., 2017).

Similarly, β-cyfluthrin, another pyrethroid insecticide, caused
severe increase in LP parameters (H2O2 and thiobarbituric acid
reactive substances (TBARS)), protein oxidation (hydroxyproline

(HYP), AOPP, and protein carbonyl (PC)), proinflammatory gene
expressions (interleukin (IL)-6, tumor necrosis factor-α (TNF-α)),
cell cycle arrest in the G0/G1 phase of hepatocyte, a reduced cell
number in G2/M and S phase, and DNA damage (Jebur et al., 2022).
Ocimum basilicum essential oil could effectively abolish these
adverse effects, restoring enzymatic (glutathione S-transferase
(GST), glutathione reductase (GR), CAT, GPx, and superoxide
dismutase (SOD)) and non-enzymatic antioxidants (such as
GSH), as well as enzyme activities (lactate dehydrogenase (LDH),
ALP, ALT, and AST), weights of liver and body, hematological
markers, total bilirubin levels, globulin, and albumin (Jebur et al.,
2022). This indicates that O. basilicum essential oil has a beneficial
effect on liver protection.

Cypermethrin (CP) is extensively utilized in agriculture to protect
crops against insects especially in cotton fields (Farhan et al., 2024).
Essential oil from Origanum vulgare (OVEO) rich in phytochemicals
like p-cymene, γ -terpinene, carvacrol, and thymol, possesses significant
antioxidative capacity (Alagawany et al., 2020; Oniga et al., 2018).
Dietary supplemented with OVEO resulted in a notable reduction in
creatinine, urea, ALP, AST, and ALT levels (Khafaga et al., 2020).
Apoptosis and histopathologic changes were notably diminished,
accompanied by a simultaneous reduction of DNA damage in
Cyprinus carpio overexposed to CP (Khafaga et al., 2020).

2.2 Hepatorenal protection against
organophosphate insecticides

Besides, many research has found that EOs possess benefits in
protecting against diverse insecticide overexposure. Lavandula
stoechas essential oils (LSEO) has been shown to mitigate hepatic

TABLE 1 The source of essential oils and their antioxidative effects on tissues damage caused by pesticides overexposure.

Plants Experiment model The dose/concentration of
administration

Main action References

Origanum majorana Pyrethroid-induced liver
injury in rats

160 mL/kg b.w. orally daily for 28 days Hepato- protective effect Mossa et al. (2013)

Allium sativum Deltamethrin intoxicated rats 200 mg/kg b.w. orally daily for 4 weeks Mending the hepatic toxicity Ncir et al. (2020)

Artemisia. campestris Deltamethrin intoxicated 200 mg/kg b.w daily for 2 weeks Normalizing the altered serum levels of
creatinin, urea, uric acid, and AChE

Saoudi et al. (2017)

Ocimum basilicum β-cyfluthrin intoxicated rats 3 mL/kg, orally for 1 month daily Hepato- protective effect Jebur et al. (2022)

Origanum vulgare Cypermethrin-Overexposed
African catfish

0.5% and 1.0% dietary supplemented for
30 days

Modulating hepatorenal damage Khafaga et al.
(2020)

Lavandula stoechas Malathion intoxicated mice 10, 30, and 50 mg/kg b.w. orally daily for
30 days

Mitigating hepatic and renal oxidative stress Selmi et al. (2015)

Pelargonium graveolens
(Geranium)

PFF-exposed carp, Cyprinus
carpio (L.)

400 mg/kg dietary supplemented for
60days

Hepato- and nephron-protective effects Rahman et al.
(2020)

Pelargonium graveolens Methomyl intoxicated rats 75 mg/kg b.w. orally for 28 days Protecting the hippocampus Amine et al. (2020)

Thymus vulgaris TMX-exposed African catfish 500 ppm dietary supplemented for
1 month

Inhibiting hepatorenal damage,
immunotoxicity and oxidative stress

El Euony et al.
(2020)

Faeniculum vulgare
Mill., (fennel)

TFM treated HCT116 Pretreated by FEO with 1, 1.5, and 2% (v/
v) for 2 h

Decreasing DNA damages and mitochondrial
membrane potential loss

Timoumi et al.
(2020)

Origanum vulgare L.
(Oregano)

Diquat treated rats 5 and 20 mg/kg b.w. orally for 14 days Maintaining jejunal architecture Wei et al. (2015)

Notes: b. w., body weight; AChE, acetylcholinesterase; HCT116, human carcinoma cells; TFM, triflumuron; TMX, thiamethoxam; PFF, profenofos.
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and renal oxidative stress induced by malathion including an
increase in the levels of malondialdehyde (MDA) and H2O2, a
reduction in antioxidants including total SOD, Cu/Zn-SOD, Mn-
SOD, Fe-SOD, GPx, CAT, and sulfhydril (-SH) group level in the
kidney and liver, suggesting potential nephro- and hepatoprotective
effects in mice (Selmi et al., 2015).

Profenofos (PFF), one of organophosphate insecticides widely
utilized to control various crop insects such as cotton, paddy, and
tobacco (Majumder et al., 2024). Supplementation with Geranium
essential oil (GEO) improved PFF-induced increases in ALT, AST,
ALP, MDA, triglycerides (TG), cholesterol, urea, creatinine, and
LDH levels (Rahman et al., 2020). It also mitigated the decline in
antioxidative enzyme activities and GSH, NO, complement3 (C3),
lysozyme activity, glucose (Glu), globulins, and total protein (TP)
(Rahman et al., 2020). Consequently, GEO improved the histological
structure in kidney and liver in PFF-exposed fish.

2.3 Hepatorenal protection against
carbamate insecticides

Pelargonium graveolens Essential Oil (EO) have been found the
protective effect on the hippocampus of methomyl-intoxicated rats,
including histopathological alterations, as well as mended memory
impairments due to its potential antioxidant actions (Amine et al., 2020).

2.4 Hepatorenal protection against
neonicotinoid insecticides

In aquaculture, EOs have also shown protective effects against
various insecticide overexposure. Similarly, the concurrent addition
of Thymus vulgaris essential oil to the diet of African catfish (Clarias
garipenus) alleviated histomorphometric and histopathological
damage due to thiamethoxam (TMX) toxication, one of
neonicotinoid insecticides widely used for controlling cotton
pests and various crop pests (El Euony et al., 2020). It modulated
immunotoxicity, oxidative stress, and hepatorenal damage, and
increased caspase-3 immunopositive splenocytes and proliferating
cell nuclear antigen (PCNA) levels (El Euony et al., 2020).

2.5 Hepatorenal protection against insect
growth regulators

Similarly, fennel essential oil (FEO) pretreatment for 2 h resulted
in modulation in CAT and SOD activities, reduction in the
mitochondrial membrane potential loss DNA damage, MDA
levels, and ROS production, thus elevating cell viability in human
carcinoma cells (HCT116) subjected to oxidative stress induced by
triflumuron (TFM) (Timoumi et al., 2020).

2.6 Hepatorenal protection against
herbicides

In an experiment, Oregano (O. vulgare L.) EO could counteract
oxidative damage in jejunum of diquat-intoxicated rats, thus

preserving its structure (Wei et al., 2015). The underlying
mechanism may be associated with modulating specific enteric
microorganism, inhibiting inflammatory cytokines level,
consequent elevating occludin content (Wei et al., 2015).

Thus, EOs are promising candidates due to their benefits
performed in pesticide overexposure. They have shown excellent
ameliorative effects on toxic impacts related to oxidative stress,
immunological markers, and hepato-renal functions.

3 Liver protection against overdoses
medications

Although effective medications with therapeutic doses are
commonly hold in households, administering them in an
overdose can lead to grievous acute hepatic failure, cell death,
hepatic injury, and even high mortality within both animal and
human (Greydanus et al., 2023). Paracetamol (PCM), also known as
acetaminophen (N-acetyl-p-aminophenol, APAP), is one of the
most widely used analgesics. APAP overdose will lead to hepatic
damage, leading to acute liver failure (Cardia et al., 2021; Dadkhah
et al., 2015). Its toxic effect occurs when taken in a single or repeated
high dose or after chronic ingestion (Dear, 2024). Herbal EOs have
shown their antioxidative effects on tissues damage caused by
overdoses medications (Table 2).

Studies on paracetamol-intoxicated rats have revealed
significant decreases in total protein and albumin, along with
marked hyperglycemia and elevation in serum transaminases,
urea and creatinine (Khattab et al., 2020). These toxic effects
were significantly ameliorated in groups receiving cardamom oil
or silymarin (Khattab et al., 2020). Administration of cardamom
essential oil significantly improved hepato-renal profiles, elevated
total antioxidative activity, and protected livers and kidneys from
histopathological alterations within PCM-intoxicated rats due to its
potent antioxidant effect (Khattab et al., 2020). Additionally,
essential oil from Salvia officinalis L. (sage) alleviated liver
damages in Co-amoxiclav-intoxicated rat models by enhancing
antioxidant enzymes levels, limiting LP and hence reducing cell
membrane injuries (El-Hosseiny et al., 2016).

The protective role of Lavandula officinalis essential oil on
APAP-intoxicated hepatic injury in mice demonstrated a
decrease within gamma-glutamyl transferase (γ-GT), ALP, AST,
and ALT contents, as well as reductions within pro-inflammatory
cytokines, NO, and myeloperoxidase (MPO) contents (Cardia et al.,
2021). Furthermore, pre-treatment with L. officinalis essential oil
demonstrated notable antioxidative activity through reducing ROS,
carbonylated proteins, and MDA contents, while enhancing
oxidized GSH, CAT, and SOD contents in the liver (Cardia et al.,
2021). This suggests that this essential oil improves hepatic function
via suppressing inflammatory responses and oxidative stress (Cardia
et al., 2021). In rats with APAP-induced liver damages, Hypericum
scabrum essential oils reversed enhanced LP contents in the liver,
along with the ferric reducing ability of plasma (FRAP), and restored
depleted GSH levels, as confirmed by the histological examination of
liver biopsies (Dadkhah et al., 2014). Similar to H. scabrum essential
oils, Achillea wilhelmsii C. Koch (Asteraceae) EOs significantly
mitigated increased contents of FRAP and LP, compensated SOD
and GSH levels, as indicated by histological examination showing
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reversal of hepatic necrosis (Dadkhah et al., 2015). In another
APAP-overdosed mice, pretreatment with Schisandra chinensis
(Turcz.) Baill. (Magnoliaceae) (SC) EO reduced IL-6, TNF-a,
ALT, and AST contents in serum, mended GSH depletion and
MDA accumulation, and inhibited cytochrome P450 2E1 (CYP2E1)
in the liver (Zhao et al., 2022). This mitigation of liver injury is linked
to increased expression of nuclear factor erythroid 2 (NFE2)-related
factor 2 (Nrf2), glutamate-cysteine ligase (GCL), and heme
oxygenase-1 (HO-1), along with the activation of autophagy
through upregulation of hepatic light chain 3 (LC3)-Ⅱ and
decreased p62 (Zhao et al., 2022).

These findings propose that EOs mediate their hepatoprotective
effect through activation of antioxidant defense and/or autophagy,
suggesting their potential use in the treatment of
medications overdoses.

4 Hepatorenal protection against
nanoparticles

In recent years, nanoparticles (NPs) have been utilized for
delivering nucleic acids, polypeptides, vaccines, genes, proteins,
and drugs because of the unique physicochemical characteristics
(Souto et al., 2024; Tenchov et al., 2025; Yuan et al., 2025). In another
hand, concerns regarding the toxicity and/or safety in nanoparticles

are raising such as zinc oxide nanoparticles (ZnO-NPs), iron
nanoparticles (Fe-NPs), silver nanoparticles (AgNPs) and
titanium dioxide nanoparticles (TiO2NPs).

4.1 Hepatorenal protection against zinc
oxide nanoparticles

Studies have shown that ZnO-NPs may induce histological
changes, ctyogenetic abnormalities, biochemical alterations, DNA
damage, and oxidative stress (Hassan et al., 2021). Thyme essential
oil (TEO) has been found to alleviate these disturbances, showing
protective effects against the hazards of ZnO-NPs (Hassan
et al., 2021).

4.2 Hepatorenal protection against iron
nanoparticles

Similarly, rats exhibited notable elevation in DNA damage, lipid
profiles, oxidative stress indicators, biochemical markers, cytokines,
and regulation in antioxidative enzymes expression in liver and
kidney tissues induced by Fe-NPs (El-Nekeety et al., 2021). The
applications of Fe-NPs combined with basil essential oil (BEO) was
shown to alleviate these disturbances, with high doses normalizing

TABLE 2 Essential oils plant name and their antioxidative effects on tissues damage caused by overdoses medications and nanoparticles.

Plants Experiment
model

The dose/concentration of
administration

Main action References

Overdoses medications

Lavandula officinalis APAP-intoxicated
mice

200 and 400 mg/kg, once daily for 7 days Inhibiting hepatorenal damage, immunotoxicity
and oxidative stress

Cardia et al. (2021)

Achillea wilhelmsii C. Koch
(Asteraceae)

APAP-intoxicated
rats

100 and 200 mg/kg, i.p. i one time after
APAP administration

Reversal of hepatic necrosis Dadkhah et al.
(2015)

Elettaria cardamomum
(cardamom)

PCM-intoxicated rats 100 mg/kg b.w. for 2 weeks Protecting liver and kidney Khattab et al. (2020)

Salvia officinalis L. (sage) Co-amoxiclav
overdose rats

30 mg/kg orally for 7 days Inducing liver damage El-Hosseiny et al.
(2016)

Hypericum scabrum APAP-intoxicated
rats

100 and 200 mg/kg b.w, i.p one time
after APAP administration

Inhibiting hepatorenal damage Dadkhah et al.
(2014)

Schisandra chinensis (Turcz.)
Baill. (Magnoliaceae)

APAP overdose mice 0.25, 0.5, 1, 2 g/kg, gavaged once daily
for 7 days

Mitigating liver injury Zhao et al. (2022)

Nanoparticles

Thymus vulgaris L. (thyme) ZnO-NPs toxicity in
rats

50, 100 mg/kg b.w. orally for 3 weeks Alleviating histological changes, ctyogentical,
biochemicaland, DNA damage, oxidative stress

Hassan et al. (2021)

Ocimum basilicum L (basil) Fe-NPs toxicity in rats 100, 200 mg/kg b.w. orally for 28 days Protecting liver and kidney El-Nekeety et al.
(2021)

Chenopodium murale AgNPs toxicity in rats 0.5 or 1 mg/kg b.w orally for 21 days Protecting kidney Abdel-Wahhab et al.
(2020)

Thymus vulgaris L. (thyme) TiO2NPs toxicity in
rats

50, 100 mg/kg b.w orally for 30 days Protecting liver and kidney, Eliminating
genotoxicity

Abdel-Wahhab et al.
(2021)

Thymus vulgaris L. (thyme) TiO2NPs toxicity in
rats

5 mg/kg b.w orally for 21 days Inhibiting disturbances in gene expression and
DNA damage

Sallam et al. (2022)

Notes: APAP, acetaminophen (N-acetyl-p-aminophenol); b. w., body weight; i. p., intraperitoneal; PCM, paracetamol; ZnO-NPs, zinc oxide nanoparticles; Fe-NPs, iron nanoparticles; AgNPs,

silver nanoparticles; TiO2NPs, titanium dioxide nanoparticles.
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most indicators and improving the histological architecture in
kidney and liver tissues (El-Nekeety et al., 2021).

4.3 Kidney protection against silver
nanoparticles

Administration with AgNPs might enhance a harmful effect on
the environment and human health. AgNPs have been found to
disrupt renal functions and histological architecture, increase NO,
MDA, TNF-α and serum electrolytes levels, decrease the
antioxidative enzymes, downregulate P53 and Bax, upregulate
Bcl-2, thus inducing histomorphometric damage (Abdel-Wahhab
et al., 2020). Chenopodium murale essential oil (CMEO) has also
been shown to protect renal functions encountering silver
nanoparticles in a dose-dependent manner (Abdel-Wahhab
et al., 2020).

4.4 Hepatorenal protection against titanium
dioxide nanoparticles

Recently, titanium dioxide nanoparticles (TiO2NPs) have
been widely used in various industries. These nanoparticles
can lead to cell apoptosis, DNA damage, inflammatory
response, and oxidative stress (Li and Tang, 2024; Manzoor
et al., 2024). Numerous studies have reported that the
administration of TiO2NP causes significant disturbances in
liver and kidney function, lipid profile, inflammatory
cytokines, gene expressions, and antioxidant properties in the
liver and kidney (Abdel-Wahhab et al., 2021; Sallam et al., 2022;
Salman et al., 2021). Additionally, there is an increase in sperm
abnormalities, DNA damage in hepatic cells, chromosomal
aberrations in bone marrow and germ cells, and
histomorphometric alteration in the testis, kidney, and liver
(Abdel-Wahhab et al., 2021; Sallam et al., 2022; Salman et al.,
2021). In contrast, thyme EO has been found to improve all these
parameters (Abdel-Wahhab et al., 2021; Sallam et al., 2022).
Moreover, the co-administration of TiO2NPs and cinnamon
essential oil (CEO) has been shown to alleviate these
disturbances, enhance antioxidant capacity, and protect
against TiO2NPs-induced oxidative damage and genotoxicity
in male mice (Salman et al., 2021).

Thus, caution is advised when utilizing synthesized metal
nanoparticles in various applications, as they may induce hepatic
and renal toxicity and oxidative damage. In this context, EOs appear
to be promising and safe candidates for mitigating hepatotoxicity
and nephrotoxicity, providing protection against the oxidative stress
and health hazards associated with metal nanoparticles. This
suggests that EOs can be effectively applied in both food and
pharmaceutical industries.

5 Hepatorenal protection against
environmental pollutants

Essential oils from plant exert their antioxidative effects on
tissues damage caused by environmental contaminants (Table 3).

5.1 Kidney protection against heavy mentals

Overexposure to chemicals in environment continues to be
significant global public health issues. Cadmium (Cd)
overexposure, an ecologically dangerous toxic metal, has
increased in the biosphere from both anthropogenic and natural
sources (Eka Putri et al., 2025; Mohammed et al., 2025). Previous
studies have reported that Cd toxicity leads to irreversible renal
tubule dysfunction, impairing the removal of toxic chemicals and
drugs, which can result in acute or chronic kidney failure, and if
untreated, may lead to death (Lang and Schiffl, 2024; Satarug, 2024).
Thymus serrulatus essential oil (TSAEO) could significantly improve
elevated LP, non-enzymatic antioxidants, as well as kidney function
biomarkers (Ansari et al., 2021). It also downregulated the increased
expression of inducible nitric oxide synthase (iNOS), nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) p65, and
Smad2 while ameliorating alteration in renal tissue of Cd-
overexposure rat models (Ansari et al., 2021). Similarly,
chromium hexavalent (CrVI)-intoxicated rats exhibited increased
oxidative damage profiles (H2O2, TBARS), kidney function
parameters (uric acid (UA), creatinine, urea), along with
significant declined enzymatic antioxidants (GST, GPx, CAT, and
SOD), total protein level, and GSH, as well as altered histology of
kidneys (El-Demerdash et al., 2021). Treatment with Rosmarinus
officinalis essential oil (REO) before or after CrVI exposure
observably mended most of the biomarkers and improved kidney
tissue architecture (El-Demerdash et al., 2021). In another
experiment, administration of vanadium (NH4VO3) in rats
enhanced LDH, ALP, AST, and ALT activities, as well as NO,
triglyceride, bilirubin, and cholesterol contents, while reducing
antioxidant enzyme activities in the liver (Koubaa et al., 2021).
However, this disturbance was markedly restored by application of
Salvia officinalis (SO) EO, which also mitigated histopathological
alteration and heat shock protein (HSP)72/73 overexpression,
suggesting a protective effect of EO from S. officinalis on
oxidative stress in liver of vanadium-intoxicated rats (Koubaa
et al., 2021).

5.2 Kidney and brain protection against
organic chemicals

Diethylnitrosamine (DENA) is a toxic organic compound and
potent carcinogen present in air, water, and soil (Limbu and
Dakshanamurthy, 2023). The EO of Elettaria cardamomum
(cardamom) has been found to enhance antioxidative capacities
(CAT, SOD, GPx, GR, GST) in DENA-intoxicated rats’ brains and
kidneys (Elguindy et al., 2018). Additionally, administration of
cardamom and geraniol, a primary component of cardamom
essential oil, resulted in a reduction of oxidative stress markers
such as LP and the activity of ornithine decarboxylase (ODC) in the
brain and kidney (Elguindy et al., 2018). It also increased GSH level
of brain and kidney, and decreased AChE capacity of brain
(Elguindy et al., 2018). Benzo(a)pyrene (BaP), a well-known
environmental pollutant, is typically produced from organic
materials’ incomplete combustion such as notably cigarette
smoke, fossil fuel, and automobile exhaust (Ezugwu et al., 2024).
BaP could be metabolized within cells, and its metabolites may
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contribute to carcinogenic processes (Hu et al., 2025). The
administration of lemongrass (Cymbopogon citratus, Stapf)
essential oil (LEO) to human embryonic lung fibroblast (HELF)
cells exposed to BaP has been shown to enhance SOD and CAT
activities and reduce MDA levels (Jiang et al., 2017). Furthermore,
this EO can mitigate DNA damages and reductions in cell viability,
as indicated by decreased 8-hydroxy-deoxyguanosine (8-OHdG)
content (Jiang et al., 2017).

5.3 Brain and lung protection against air
contaminants

Particulate matter micrometers or less in diameter increases
MDA, NF-κB, nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase 2 (Nox2) and ROS levels, whereas reducing
levels of SOD and HO-1, resulting in brain’s oxidative damage
(Amin et al., 2025; Kim et al., 2020). Mentha piperita essential oil
could inhibit asthma subjected to PM10 by regulating the IL-6/
JAK2/STAT3 signaling pathway (Kim et al., 2020). Compound
essential oils (CEOs) showed protective benefits of alleviating
PM2.5-induced autophagy and oxidative damage through
inhibiting the 5′-adenosine monophosphate-activated protein
kinase (AMPK)/mammalian target of rapamycin (mTOR)

signaling pathway, offering a promising therapy in PM2.5-induced
brain and lung damage (Ren et al., 2021).

The above results reveal that EOs have beneficial effects in
ameliorating injuries in the brain, liver, kidney, lung, and bone
marrow induced by toxic metals, organic compounds, and other
environmental pollutants. This is attributed to their ability to
modulate detoxification enzymes, enhance anti-oxidant stress
capacities, and free radical scavenging. These results offer a novel
opportunity for the prevention or treatment in environmental
contaminant-induced damage.

6 Hepatoprotective mechanism

Various animal models are employed to observe protective
benefits of essential oils for treating hepatic injury, aiming to
identify potential hepatoprotective agents. Carbon tetrachloride
(CCl4), commonly utilized for inducing experimental hepatic
damage in laboratory, is a known environmental pollutant
(Fareed et al., 2024). Essential oils from Heracleum persicum have
been shown to modulate oxidative stress/antioxidant disturbance,
reduce hepatic lipid peroxides, and regulate levels of GSH and GST
concomitant, alongside adapting plasma FRAP, AST and ALT levels
in CCl4-treated rat models (Roshanaei et al., 2017). Cymbopogon

TABLE 3 Essential oils plant name and their antioxidative effects on tissues damage caused by environmental contaminants, and hepatoprotective.

Plants Experiment model The dose/concentration
of administration

Main action References

Heavy metals

Thymus serrulatus Cd-intoxicated rats 100 and 200 mg/kg for 7 days Ameliorating nephrotoxicity Ansari et al. (2021)

Rosmarinus officinalis CrVI-intoxicated rats 0.5 mL/kg b.w. orally for 14 days Improvement in kidney tissue architecture El-Demerdash et al.
(2021)

Organic chemicals

Salvia officinalis Vanadium-intoxicated rats 15 mg/kg b.w. for 4 or 10 days Protect against oxidative damage in livers Koubaa et al. (2021)

Elettaria cardamomum
(cardamom)

DENA-intoxicated rats 100 and 200 mg/kg orally for 7 days Improving antioxidative activity in the brain
and kidneys

Elguindy et al.
(2018)

Air contaminants and irradiation

Zingiber officinale R
(Ginger)

Mice exposed to 6Gy 100 and 500 mg/kg b.w. orally for
5 days

Protecting against cellular DNA damage in
bone

Jeena et al. (2016)

Cymbopogon citratus,
Stapf (Lemongrass)

HELF cells treated with BaP concentrations: 0.5%, 1%, and 2.5%
for 24 h

Improving antioxidative activity and
reducing the loss in cell viability, DNA
damage

Jiang et al. (2017)

Chemical-induced hepatic injury animal models

Heracleum persicum CCl4 treatment rat model 100 & 200 mg/kg b.w. i.p. one time Hepato-protective effect Roshanaei et al.
(2017)

Cymbopogon citratus
(Lemongrass)

CCl4 treatment rat model 0.1, 0.2, 0.3 mL/kg for 5 days Against hepatic/renal damage and
genotoxicity

Fahmy et al. (2020)

Pimpinella
diversifolia DC.

LPS/D-GalN-induced acute liver
injury mouse model

50, 150 mg/kg i.p. once a day for 3 days Alleviating liver injury, anti-inflammatory
activity

Hua et al. (2023)

Allium sativum L. (Garlic) Obese mice with long-term
HFD-induced NAFLD

25, 50, and 100 mg/kg for 12 weeks Hepato-protective effect Lai et al. (2014)

Notes: Cd, cadmium; CrVI, chromium hexavalent; DENA, diethylnitrosamine; BaP, Benzo(a)pyrene; HELF, human embryonic lung fibroblast; PM2.5, particulate matter 2.5 μm or less in

diameter; 6Gy, gamma-irradiation; CCl4, carbon tetrachloride; LPS, lipopolysaccharide; D-GalN, D-galactosamine; HFD, high-fat diet; NAFLD, nonalcoholic fatty liver disease; b. w., body

weight; i. p., intraperitoneal.
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citratus essential oil (CCEO) has also demonstrated protective
effects against hepatic and renal damage and genotoxicity,
reversing the increase in oxidative damage parameters (MDA),
creatinine, blood urea, and hepatic enzyme biomarkers (γ-GT,
ALP, AST, ALT) in rats induced by CCl4 (Fahmy et al., 2020).

In other models, EO from Pimpinella diversifolia has been
shown its hepatoprotective effect in acute hepatic damage mouse
models using lipopolysaccharide (LPS) and D-galactosamine
(D-GalN) (Hua et al., 2023). The findings revealed that
administration of PDREO dramatically decreased serum ALT and
AST levels, and effectively alleviated hemorrhage, edema, necrosis,
and apoptosis in hepatic cells (Hua et al., 2023). This effect might
result from the notable anti-inflammatory actions (limiting
monocyte-derived neutrophils and macrophages infiltration, and
reducing inflammatory chemokines and cytokines contents) and its
regulation in mending oxidative damage (boosting antioxidative
enzyme expressions including CAT, SOD1, GPX4) (Hua et al.,
2023). Additionally, the EO at 150 mg/kg could entirely prevent
LPS/D-GalN-induced mortality in mice (Hua et al., 2023).
Administration of EO from garlic and diallyl disulfide (DADS)
notably limited pro-inflammatory cytokine secretions in the liver,
along with enhanced antioxidative ability that is inhibiting
cytochrome P450 2E1 formation in obesity mice with
nonalcoholic fatty liver disease (NAFLD) induced by long-term
high-fat diet (HFD) (Lai et al., 2014). The actions might be mediated
through downregulating 3-hydroxy-3-methylglutaryl-coenzyme A
reductase, acetyl-CoA carboxylase, fatty acid synthase, and sterol
regulatory element-binding protein-1c, accompanied by stimulating
carnitine palmitoyltransferase-1and peroxisome proliferator-
activated receptor α (Lai et al., 2014).

Ongoing external chemical substances exposed eventually
results in numerous diseases. Xenobiotic toxicity primarily affects
the liver (Rovira et al., 2024). Due to its capacity for concentrating
xenobiotics and the predominant function inmetabolism, the liver is
more susceptible to damage from these chemical substances than
any other organs (Rovira et al., 2024). EO components are rapidly
absorbed through oral, pulmonary, or dermal routes (Al-Harrasi
et al., 2022). After absorption, they are either metabolized or
distributed into adipose tissues and organs (Sadgrove et al.,
2021). At low doses, plasma levels return to baseline within
1–3 h (Sadgrove et al., 2021). However, at higher doses, plasma
concentrations can be sustained for several days due to buffering
from body tissues (Sadgrove et al., 2021). The distribution hierarchy
is typically adipose tissue > liver > kidneys > cerebrospinal fluids and
brain (Sadgrove et al., 2021). The solubility of EO constituents
significantly influences their absorption in the gastrointestinal tract,
where they may interact with digested food, potentially reducing
solubilization and absorption (Horky et al., 2019). Once absorbed,
most EOs undergo extensive metabolism, primarily in the liver
(Dhifi et al., 2016). Some EOs, such as terpenes and phenolic
compounds, can interact with hepatic cytochrome P450 enzymes,
potentially affecting drug metabolism by either inhibiting or
inducing enzymatic activity (Zehetner et al., 2019). This
modulation can influence the metabolism and detoxification of
xenobiotics, thereby affecting their bioactivation or clearance. A
substantial portion of EO compounds is excreted via the kidneys, as
indicated by increased urinary metabolites (Horky et al., 2019). EO
compounds are generally characterized by rapid metabolism and

short half-lives, minimizing the risk of accumulation in body tissues
(Al-Harrasi et al., 2022).

While current research demonstrates the antioxidant potential
and the underlying mechanism of EOs (Figure 1), many
mechanisms remain unknown. Generally, EOs, once absorbed,
undergo extensive metabolism in the liver, where they can
modulate oxidative stress, influencing cellular survival and tissue
integrity (Dhifi et al., 2016). One key mechanism involves the
regulation of autophagy. Certain EOs activate autophagy via
p53 signaling, leading to the upregulation of hepatic light chain 3
(LC3)-Ⅱ, which facilitates the clearance of necrotic cells (Zhao et al.,
2022). Conversely, other EOs inhibit autophagy through the AMPK/
mTOR pathway and p62, promoting liver cell survival under stress
conditions (Zhao et al., 2022). EOs also exert antioxidant effects by
enhancing the expression of anti-oxidative genes such as heme
oxygenase-1 (HO-1). This occurs through the activation of the
Keap1/Nrf2 or Smad2/NF-κB p65 pathways, which subsequently
reduce oxidative stress and inhibit inflammatory responses (Hua
et al., 2023; Zhao et al., 2022). Additionally, mitochondrial
protection is achieved by the suppression of P53 and Bax, the
upregulation of Bcl-2, preventing mitochondrial dysfunction and
associated cellular damage (Huang et al., 2025). Moreover, some
EOs have been shown to reduce chemical overexposure-induced
fibrosis, thereby mitigating morphological damage in the liver
(Fareed et al., 2024). Through the combined effects of the above
factors, DNA damage, lipid peroxidation, and protein damage are
reduced, ultimately alleviating cellular damage. This reduction in
cellular damage helps minimize tissue injury and preserve both the
function and structure of the tissue.

An analysis of the structure-function relationship of these EOs
may help to reveal how their distinct structural features contribute to
their diverse biological activities. For example, the main
compositions of EOs from plants (Table 4) that have shown
potential in alleviating pesticide-induced hepatorenal damage
include a variety of bioactive compounds. Notable constituents
are γ-terpinene, α-terpinene, and terpinen-4-ol, which have
potent antioxidant and anti-inflammatory properties (Kakouri
et al., 2022). Sulfur compounds like diallyl trisulfide and diallyl
disulfides provide protective effects, particularly against oxidative
stress (Herrera-Calderon et al., 2021). Monoterpenes such as
linalool, 1,8-cineole, and thymol offer anti-inflammatory and
antimicrobial benefits, while α-thujone and β-sesquiphellandrene
have notable hepatoprotective activity (Abou El-Soud et al., 2015;
Fayoumi et al., 2022; Lombrea et al., 2020; Pokajewicz et al., 2021;
Rehman et al., 2022). Other compounds like citronellol, geraniol,
and trans-anethole are known for their detoxifying and antioxidant
effects, collectively contributing to the mitigation of pesticide-
induced hepatorenal damage (Galovičová et al., 2021; Kačániová
et al., 2023; Sharopov et al., 2017). The structures of these main
compositions are showed in Figure 2.

7 Future perspectives

At optimal doses, EOs can exert maximal therapeutic benefits
(Table 1–3). While most EOs exhibit dose-dependent effects, where
their antioxidant and protective properties vary with concentration.
Some research reports conflicting findings regarding their efficacy
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and safety. There is still a need for well-designed in vivo studies and
human clinical trials to validate the efficacy and safety of EOs in
preventing chemical-induced oxidative stress. Some essential oils,
such as eucalyptus and camphor, have been reported to exhibit
toxicity at high doses, causing adverse effects like neurotoxicity and
hepatotoxicity (Lemmens-Gruber, 2020; Soni et al., 2023). One
study focusing on acute, developmental, and reproductive toxicity
using alternative in vitro and in vivo models suggested that certain
EOs, including rosemary, citrus, and eucalyptus oils could exhibit
dose-dependent toxicity, oxidative stress induction, and mucous
membrane irritation (Lanzerstorfer et al., 2021). Nonetheless,
studies have suggested that the toxicity concerns associated with
EOs could be leveraged for their development as plant-based
pesticides (Nonci et al., 2025). Therefore, while EOs show
promise as natural detoxification agents by protecting the liver
against oxidative stress, inflammation, and lipid metabolic

disorders, careful consideration of their dosage is essential to
maximize benefits while minimizing adverse effects.

There is limited research specifically on combining EOs with
pharmaceutical antioxidants. However, the observed synergistic
interactions among various natural compounds suggest potential
benefits in such combinations. For example, mixtures containing
oregano and thyme oils, as well as cranberry and rosemary extracts,
have shown synergistic antioxidant effects, effectively extending the
shelf life of meat products and improving sensory acceptance
(Khodaei et al., 2023; Latoch et al., 2023). Given the promising
results of natural compound combinations, further research is
warranted to explore the synergistic potential of EOs with
pharmaceutical antioxidants.

Clinical trials should assess the bioavailability, dosage, and long-
term effects of EOs in humans, particularly in populations at high
risk of chemical exposure. As chemical exposures continue to

FIGURE 1
The underlying protective mechanism of EOs against oxidative damage induced by chemical overexposure. (1) Mitochondrial Protection: EOs
suppress the expression of P53 and Bax, and upregulate Bcl-2 expression, thereby preventing mitochondrial dysfunction and reducing cellular damage.
(2) Autophagy Modulation: Certain EOs activate autophagy via the p53 signaling pathway, leading to the upregulation of hepatic LC3-Ⅱ, which facilitates
the clearance of necrotic cells. Conversely, other EOs inhibit autophagy through the AMPK/mTOR pathway and p62, promoting liver cell survival
under stress conditions. (3) Antioxidant gene transcription: EOs enhance the expression of anti-oxidative genes such as HO-1 through activation of the
Keap1/Nrf2 or Smad2/NF-κB p65 pathways, thereby leading to increase in SOD, CAT, GPX, GR, GST, GSH, GCL and decrease in MDA, LP, FRAP, ALT, ALP,
AST, AOPP, HYP, PC, γ-GT, and MPO. (4) Anti-inflammatory Effects: EOs modulate signaling pathways to suppress the expression of IL-6 and TNF-α,
thereby inhibiting inflammation. (5) Alleviating cellular damage: through the combined effects of the above factors, DNA damage, lipid peroxidation, and
protein damage are reduced, ultimately alleviating cellular damage. (6) Alleviating tissue damage: All the mechanisms work together to mitigate tissue
injury and maintain both its structural integrity and functional capacity. ALP, alkaline phosphatase; ALT, alanine aminotransferase; AOPP, advanced
oxidized protein products; AST, aspartate aminotransferase; CAT, catalase; CYP2E1, cytochrome P450 2E1; FRAP, ferric reducing ability of plasma; GCL,
glutamate-cysteine ligase; GPX, glutathione peroxidase; GR, glutathione reductase; GST, glutathione S-transferases; GSH, glutathione; HO-1, heme
oxygenase-1; HYP, hydroxyproline; IL, interleukin; LC3, light chain 3; LP, lipid peroxidation; MAPK, mitogen-Activated Protein Kinase; MDA,
malondialdehyde; MPO, myeloperoxidase; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor kappa-light-chain-enhancer of activated
B cells; Nox2, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2; NOS, nitric oxide synthase; Nrf2, nuclear factor erythroid 2 (NFE2)-
related factor 2; PC, protein carbonyl; ROS, reactive oxygen species; SOD, superoxide dismutase; TNF, tumor necrosis factor; γ-GT, gamma-glutamyl
transferase.
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diversify with emerging industrial processes and pollutants, future
research should expand the range of chemicals studied in relation to
EO protective benefits. Investigating the efficacy of EOs against
newer pollutants, such as microplastics, endocrine disruptors, and

novel nanomaterials, will be essential for staying ahead of evolving
environmental and occupational risks. Additionally, considering the
inherent instability of EOs under environmental stresses such as
temperature and light, the exploration of novel technologies to

TABLE 4 Themain compositions and contents of essential oils from plants that have shown potential in alleviating pesticide-induced hepatorenal damage.

Source Main compositions References

Origanum majorana γ-terpinene (25.73%), α-terpinene (17.35%), terpinen-4-ol (17.24%) Kakouri et al. (2022)

Artemisia. campestris α-thujone (33.8%) and β-sesquiphellandrene (28.6%) Rehman et al. (2022)

Ocimum basilicum Linalool (48.4%), 1,8-cineol (12.2%), eugenol (6.6%), methyl cinnamate (6.2%), α-
cubebene (5.7%), caryophyllene (2.5%), β-ocimene (2.1%) and α-farnesene (2.0%)

Abou El-Soud et al. (2015)

Origanum vulgare Thymol (37.13%), gama-terpinene (9.67%), carvacrol (9.57%), carvacrol methyl
ether (6.88), cis-alpha-bisabolene (6.80%), eucalyptol (3.82%), p-cymene (3.58%)
and elemol (2.04%)

Lombrea et al. (2020)

Lavandula stoechas Linalyl acetate (28.9%), linalool (24.3%), caryophyllene (7.9%), trans-3,7-
dimethylocta-1,3,6-triene (4.6%), 4-terpineol (4.0%), lavandulyl acetate (3.5%),
borneol (2.60%), and eucalyptol (2.05%)

Pokajewicz et al. (2021)

Pelargonium hybrid Citronellol (30.2%), citronellyl formate (9.3%), geraniol (7.6%), isomenthone
(4.1%), and linalool (3.2%)

Fayoumi et al. (2022)

Garlic (Allium sativum L.) Diallyl trisulfide (44.21%), diallyl disulfides (22.08%), allyl methyl trisulfide
(9.72%), 2-vinyl-4H-1,3-dithiine (4.78%), and α-bisabolol (3.32%)

Herrera-Calderon et al. (2021)

Pelargonium graveolens β-citronello (29.7%), geraniol (14.6%), menthol (6.7%), and linalool (3.8%) Kačániová et al. (2023)

Thymus vulgari Thymol 48.1%, p-cymene 11.7%, 1,8-cineole 6.7%, γ-terpinene 6.1%, and
carvacrol 5.5%

Galovičová et al. (2021)

Foeniculum vulgare Trans-anethole (36.8%), α-ethyl-p-methoxy-benzyl alcohol (9.1%),
p-anisaldehyde (7.7%), carvone (4.9%), 1-phenyl-penta-2,4-diyne (4.8%) and
fenchyl butanoate (4.2%)

Sharopov et al. (2017)

FIGURE 2
The structures of the main compositions which demonstrate the antioxidant potential in response to chemical overexposure.
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safeguard and enhance their characteristics and biological activities
becomes imperative. To improve the bioavailability and stability of
EO components, strategies such as microencapsulation have been
explored (Ambrosio et al., 2020). This approach enhances oxidative
stability, thermostability, photostability, shelf life, biological activity,
and ensures targeted delivery of EOs. Finally, the sustainable
production and harvesting of plants for essential oil extraction
must be addressed. Establishing standardized protocols for EO
composition and quality control is vital to ensure consistent
therapeutic outcomes and minimize environmental impacts.

8 Conclusion

This review highlights the promising role of EOs as protective agents
against oxidative stress induced by chemical overexposure. The evidence
from studies on various chemicals-including pesticides, medications,
nanoparticles, heavy metals, and organic compounds-demonstrates
that EOs can mitigate oxidative damage through their antioxidant
properties. Among them, EOs from Origanum species have shown
notable efficacy in mitigating oxidative damage of pesticide
overexposure. Lavandula stoechas EOs have exhibited protective
properties against both pesticide-induced oxidative damage and
overdoses of medications. Similarly, Salvia officinalis L. EOs have been
identified for their potential to counteract the harmful effects of
medication overdoses and organic chemical exposure. Furthermore,
Thymus vulgaris L. EOs have demonstrated beneficial effects in
mitigating oxidative damage resulting from medication overdoses and
heavy metal exposure. The application of EOs in functional foods and
pharmaceuticals presents significant potential for preventive and
therapeutic use. However, further research is necessary to deepen our
understanding of their mechanisms, optimize delivery systems, and
confirm their efficacy in clinical settings. As chemical exposures
continue to diversify in both environmental and occupational
contexts, EOs represent a valuable avenue for future development in
safeguarding human health. In conclusion, essential oils stand out as
viable candidates for combating oxidative stress from chemical
overexposure, paving the way for their integration into health-
promoting interventions in both food and medicine.
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