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Background: Hepatocellular carcinoma (HCC) remains a leading cause of
cancer-related death, with limited response rates to immunotherapy.
Identifying novel biomarkers to predict prognosis and guide treatment is
urgently needed.

Methods: Using TCGA-LIHC data, we identified migrasome-related long non-
coding RNAs (MRlncRNAs) associated with HCC prognosis and constructed a
two-lncRNA signature (LINC00839 and MIR4435-2HG) through LASSO-Cox
regression. The model was validated in an independent cohort (n = 100).
Multi-omics analyses were conducted to explore correlations with immune
infiltration, immune checkpoints, TMB, MSI, and therapeutic sensitivity. Clinical
sample validation and functional assays were performed to verify biological
relevance. We knocked down MIR4435-2HG in HCC cells to assess its impact
on proliferation, migration, EMT phenotype, and PD-L1 expression.

Results: The MRlncRNA signature effectively stratified HCC patients by prognosis
and immunotherapy responsiveness. High-risk patients exhibited elevated
immunosuppressive cell infiltration and immune checkpoint expression.
Functional validation revealed that MIR4435-2HG promotes malignant
behaviors and immune evasion by regulating EMT and PD-L1. Single-cell
analysis showed its enrichment in cancer-associated fibroblasts, suggesting a
role in tumor-stroma crosstalk and immune suppression.
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Conclusion: MRlncRNAs, particularly MIR4435-2HG, contribute to HCC
progression and an immunosuppressive tumor microenvironment. This study
establishes a robust prognostic model and identifies potential targets for
precision immunotherapy in HCC.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common
and lethal malignancies worldwide, ranking as the sixth most
prevalent cancer and the third leading cause of cancer-related
deaths globally (Bray et al., 2018). The development of HCC is
closely associated with chronic liver diseases, including hepatitis B
and C virus infections, alcoholic liver disease, and non-alcoholic
fatty liver disease, which induce persistent liver inflammation and
fibrosis, ultimately leading to carcinogenesis (Gilles et al., 2022; Sung
et al., 2021). Despite advances in diagnostic techniques, HCC is often
asymptomatic in its early stages, and by the time clinical symptoms
manifest, the disease is typically at an advanced stage with a high risk
of local recurrence and distant metastasis. This poses significant
challenges for early diagnosis and effective treatment (Yang et al.,
2023). Current therapeutic options for HCC, including surgical
resection, local therapies, and systemic chemotherapy, offer
limited benefits for advanced-stage patients, highlighting the
urgent need for novel targeted therapies and immunotherapeutic
strategies to improve patient outcomes (Liu et al., 2023; Sadagopan
and He, 2024).

In recent years, the discovery of migrasomes, a novel cellular
structure formed during cell migration, has shed new light on tumor
biology. Migrasomes are extracellular vesicles released by migrating
cells, enriched with proteins and signaling molecules that play
critical roles in regulating the tumor microenvironment (TME).
These structures facilitate intercellular communication and
influence tumor progression by promoting cancer cell invasion,
metastasis, and drug resistance (Jiang et al., 2023; Deng et al., 2024).
In HCC, migrasome-related genes (MRGs) have been implicated in
tumor progression, where they enhance cell migration, invasion, and
metastasis by modulating cell signaling and the dynamic
interactions within the TME (Zhang K. et al., 2024).
Furthermore, MRGs may also regulate immune cell infiltration,
thereby influencing immune evasion mechanisms and contributing
to tumor growth and metastasis (Zhang R. et al., 2024).

Long non-coding RNAs (lncRNAs), once considered “junk
DNA,” have emerged as crucial regulators of gene expression,
chromatin remodeling, and post-transcriptional modifications.
They play pivotal roles in various cellular processes, including
proliferation, migration, and invasion, and are increasingly
recognized for their involvement in cancer progression (Gupta
et al., 2010; Han et al., 2022; Li et al., 2023). In HCC, specific
lncRNAs, such as HOTAIR andMALAT1, have been shown to drive
tumor progression and metastasis (Kadian et al., 2024; Jia et al.,
2024). Moreover, lncRNAs modulate the tumor immune
microenvironment by influencing the function and distribution
of immune cells, such as tumor-associated macrophages, thereby

playing a role in immune evasion and response to immunotherapy
(Tomczak et al., 2015; Yu et al., 2012). Given their regulatory roles,
lncRNAs hold great promise as diagnostic, prognostic, and
therapeutic biomarkers in HCC.

In this study, we systematically analyzed migrasome-related
long non-coding RNAs (MRlncRNAs) in hepatocellular
carcinoma (HCC) and developed a robust 2-lncRNA prognostic
signature (LINC00839 and MIR4435-2HG) using TCGA data and
LASSO–Cox regression. This signature was validated in clinical
tissues and HCC cell lines, and was significantly associated with
overall survival and immune-related features. Functional assays
confirmed that MIR4435-2HG promotes proliferation, EMT, and
PD-L1–mediated immune evasion. Moreover, MRlncRNA
expression correlated with immune cell infiltration, immune
checkpoint activation, and response to immune checkpoint
inhibitors (ICIs), as evaluated by the TIDE algorithm.

Collectively, our findings reveal that MRlncRNAs contribute
to HCC progression and immunosuppressive remodeling of the
tumor microenvironment. This work identifies novel biomarkers
for prognosis and immunotherapy prediction and offers
mechanistic insights into the migrasome–lncRNA–immunity
axis, paving the way for personalized therapeutic
strategies in HCC.

Materials and methods

Data sources and preprocessing

Twelve migrasome-related genes (MRGs) were initially retrieved
from the GeneCards database (https://www.genecards.org/) using
the keyword “migrasome”. These genes were further filtered and
confirmed based on prior published studies that experimentally
validated their roles in migrasome biogenesis and function,
including TSPAN4, NDST1, CPQ, and ITGAV (Supplementary
Table S1). Gene expression profiles and corresponding clinical
information for liver hepatocellular carcinoma (LIHC) patients
were downloaded from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/) (Tomczak et al., 2015),
including data from 372 LIHC tumors and 50 normal liver
tissues. Clinical variables included age, sex, stage, grade, TNM
classification, and overall survival (OS) time and status
(Supplementary Table S2). Expression data were normalized to
transcripts per million (TPM). All data preprocessing and
visualization were conducted in R software (v4.4.1) using the
“ggplot2” package. The Wilcoxon test was applied for
comparisons of gene expression between tumor and
normal samples.
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Identification of migrasome-related
lncRNAs (MRlncRNAs)

To identify MRlncRNAs, we extracted lncRNA and mRNA
expression profiles from the TCGA-LIHC dataset. Pearson
correlation analysis was conducted between the expression of
the 12 MRGs and all lncRNAs using the “limma” package.
LncRNAs were considered migrasome-related if they met the
threshold of |correlation coefficient| > 0.55 and P < 0.001. In
total, 191 MRlncRNAs were identified based on this criterion.
Co-expression relationships were visualized using the “ggplot2”
and “ggalluvial” packages in R.

Construction of prognostic model based
on MRlncRNAs

Univariate Cox regression analysis was performed on the
191 MRlncRNAs to identify candidates significantly associated
with overall survival (P < 0.05), yielding 16 prognosis-related
MRlncRNAs. To further optimize the model and avoid
overfitting, LASSO (Least Absolute Shrinkage and Selection
Operator) Cox regression with 10-fold cross-validation was
conducted and repeated 1000 times. This process ultimately
selected two MRlncRNAs—LINC00839 and MIR4435-2HG—as
the most stable predictors with the highest prognostic
contribution and minimal AIC value. These two lncRNAs were
used to construct the final risk model. All model-building
procedures were performed using R packages including survival,
caret, glmnet, and timeROC, and visualized with ggplot2.

Construction and Validation of
prognostic model

Risk scores for each patient were calculated using a multivariate
Cox regression model based on the expression levels and coefficients
of the prognostic MRlncRNAs, following the formula:

Riskscore � ∑ i Coefficient MRlncRNAsi( ) × Expression MRlncRNAsi( )

The TCGA-LIHC cohort was randomly divided into a training
set and a testing set in a 1:1 ratio. Patients were then stratified into
high-risk and low-risk groups using the median risk score as the
cutoff. Kaplan–Meier survival analysis and time-dependent ROC
curve analysis were performed to evaluate the model’s predictive
ability, using the survival, survminer, and timeROC packages in R.
To further validate the robustness and generalizability of the model,
we applied the same risk score formula to an independent clinical
tissue cohort (n = 100) collected from our institution. This external
cohort was randomly split into validation set 1 (n = 50) and
validation set 2 (n = 50). Patients in each validation set were
classified into high- and low-risk groups based on the median
risk score, and survival analyses were conducted accordingly.
Univariate and multivariate Cox regression analyses were also
performed to determine the independent prognostic value of the
risk score, with results presented using forest plots (generated by the
forestplot package). The predictive performance of the MRlncRNA-

based model was further assessed by comparing 1-, 3-, and 5-year
ROC AUCs across the TCGA and clinical validation cohorts.
Additional subgroup analyses were performed based on clinical
parameters such as age, gender, grade, and stage. The R packages
rms, pec, and dplyr were utilized for these evaluations.

Establishment and calibration of
prognostic nomogram

Based on the results of multivariate Cox proportional hazards
analysis, a nomogram was developed to predict the 1-, 3-, and 5-year
overall survival. Calibration curves for 1-year, 3-year, and 5-year
survival were plotted to assess the consistency between the predicted
and observed outcomes. Furthermore, a C-index curve was
generated to confirm the predictive accuracy of the nomogram.
The R packages used for these analyses include survival, regplot,
rms, and survcomp.

Functional enrichment analysis

Differentially expressed genes (DEGs) between high- and low-
risk groups were obtained using the Limma package in R. The
adjusted P-values were used to control for false positives in the
TCGA database analysis, with “Adjusted P < 0.05 and |log2FC| ≥ 1”
set as the cutoff for selecting differentially expressed genes. The
clusterProfiler package was used to analyze the Gene Ontology (GO)
functional enrichment of DEGs and their pathways in the Kyoto
Encyclopedia of Genes and Genomes (KEGG). The GO analysis
focused on three aspects: Biological Process (BP), Cellular
Component (CC), and Molecular Function (MF). Additionally,
Gene Set Enrichment Analysis (GSEA) was used to identify
potential biological pathways (http://software.broadinstitute.org/
gsea/index.jsp) (Powers et al., 2018).

Genetic variations

The cBioPortal database (http://www.cbioportal.org/) (Gao et al.,
2013) provides visualization tools for cancer genomic data analysis.
Using TCGA data, the genomic landscape of MRlncRNAs was
explored, and their mutation frequency in LIHC was assessed. The
impact of MRlncRNAs mutations on LIHC patient survival was also
studied. Additionally, we analyzed the effect of MRlncRNAs
mutations on clinical variables, including the Buffa Hypoxia Score,
Winter Hypoxia Score, Aneuploidy Score, Ragnum Hypoxia Score,
Fraction Genome Altered, Last Communication Contact from Initial
Pathologic Diagnosis Date, and Neoplasm Histologic Grade.

Immune cell infiltration analysis

The correlation between MRlncRNAs and immune cell infiltration
was calculated using ssGSEA andCIBERSORT algorithms. Results were
visualized using R software’s ggplot2 package. For immune scoring, the
immunedeconv package in R and CIBERSORT algorithms (Newman
et al., 2015) were used to compare the degree of immune cell infiltration
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between high- and low-risk groups via the Wilcoxon test. Additionally,
single-sample gene set enrichment analysis (ssGSEA) (Hänzelmann
et al., 2013) in the GSVA package [1.46.0] helped quantify the
infiltration levels of immune cell types and the accumulation of
24 common immune cells. The Wilcoxon rank sum test was used to
compare immune cell infiltration levels between high- and low-risk
groups. The estimate package [1.0.13] in R was used to calculate
immune cell abundance (immune score), stromal cell infiltration
level (stromal score), and the combined score (ESTIMATE score).

Immunotherapy response analysis

Risk scores and the correlation with immune checkpoint-related
genes were visualized using the R packages “ggplot2” and “pheatmap”.
Expression differences of immune checkpoint-related genes between
high and low-risk score groups were analyzed, alongside the correlation
between the expression of two prognostic MRlncRNAs and three
clinically important immune checkpoint genes (CD274, CTLA4,
PDCD1). Additionally, the prognostic significance of combining risk
scores with these three immune checkpoints (CD274, CTLA4, PDCD1)
in LIHC patients was assessed. Key immune checkpoint-related genes
in this study included CD274, CTLA4, HAVCR2, LAG3, PDCD1,
PDCD1LG2, TIGIT, and SIGLEC15. The Tumor ImmuneDysfunction
and Exclusion (TIDE) algorithm was used to predict potential immune
checkpoint-blocking responses, with the results visualized using
“ggplot2”. Distributions of TIDE data were compared between high
and low-risk score groups. Finally, clinical tissue samples were used to
predict the response of risk scores to immunotherapy.

Single-cell sequencing data analysis

The Tumor Immune Single Cell Center (TISCH) (http://tisch.
comp-genomics.org/) is a database for single-cell RNA sequencing
(scRNA-seq) focused on the tumor microenvironment (TME) (Sun
et al., 2021). The t-distributed stochastic neighborhood embedding
(t-SNE) and heatmap of GSE125449 were generated using the
TISCH database to explore the impact of MRlncRNA expression
on the TME in LIHC. Furthermore, Spearman’s correlation method
was applied to examine the relationship between MRlncRNAs and
markers of cancer-associated fibroblasts (CAFs) and epithelial-
mesenchymal transition (EMT).

TMB, MSI, and potential drug
screening analysis

To evaluate the clinical applicability of our riskmodel, we visualized
the distribution of TMB and MSI scores across high and low-risk
groups using stacked bar charts. Wilcoxon rank-sum tests were
employed to compare TMB and MSI scores between these groups
in the TCGA cohort, with results visualized using “ggplot2”. The
“survminer” R package was used to calculate the optimal TMB
cutoff, and patients with SARC in the TCGA cohort were classified
into high and lowTMB/MSI groups. Kaplan-Meier survival curves were
used to assess prognostic differences. Additionally, drug sensitivity
differences between high- and low-risk groups were analyzed using

the limma, ggpubr, and pRRophetic R packages for prospective drug
screening (Geeleher et al., 2014).

Human sample collection

Tissue samples were provided by Peking University Shenzhen
Hospital, including 100 pairs of liver cancer and adjacent non-tumor
tissues, along with corresponding clinical and follow-up data. All
patients underwent pathological diagnosis, and tissue samples were
embedded in 10% formalin and stored under standard conditions.
Archived samples collected between 2017 and 2019 and stored in the
institutional biobank were used in this study. Comprehensive clinical
information, including 5-year overall survival data, was retrieved from
the hospital’s longitudinal medical records. The use of these archived
samples for additional molecular validation experiments was approved
by the Ethics Committee of Peking University Shenzhen Hospital
(Approval No. 2024–116). Written informed consent was obtained
from all patients prior to initial sample collection. All procedures
complied with relevant ethical guidelines and institutional regulations.

Cell culture conditions

The human normal hepatocyte cell line THLE-2 (CL-0833) was
purchased from Procell Life Science & Technology Co., Ltd (Wuhan,
China) and cultured in Procell’s specialized medium (CM-0833), a
complete formulation designed for THLE-2 growth, containing basal
medium supplemented with growth factors and hormones including
epidermal growth factor (EGF) and insulin. Liver cancer cell lines
HepG2, Huh7, and Hep3B were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA) and maintained in
RPMI-1640 medium (Gibco) supplemented with 10% fetal bovine
serum (FBS; Gibco) and 1% penicillin-streptomycin. All cells were
incubated at 37 °C with 5% CO2 in a humidified atmosphere.

RNA extraction and RT-qPCR

Total RNA was extracted using the Quick-RNA MiniPrep Kit
(Zymo Research, Catalog No. R1054) according to the
manufacturer’s instructions. RNA concentration and purity were
assessed spectrophotometrically using a NanoDrop 2000 (Thermo
Fisher Scientific). Reverse transcription was performed with 1 μg of

TABLE 1 The primers sequences utilized in RT-qPCR.

Real-time quantitative PCR primer sequence

Gene Sequence (5′- 3′ on minus strand)

GAPDH Fwd: GAGTCCACTGGCGTCTTCAC

Rev: ATGACGAACATGGGGGCA

LINC00839 Fwd: GAACCTGTGGCATCCATCTC

Rev: CTCCAGCAACCCCTCAACC

MIR4435-2HG Fwd: CGGAGCATGGAACTCGACAG

Rev: CAAGTCTCACACATCCGGGC
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total RNA using the miScript SYBR Green PCR Kit (Qiagen,
Germany) on a LightCycler 96 real-time PCR system (Roche
Diagnostics GmbH, Mannheim, Germany). PCR conditions were
as follows: 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and
60°C for 1 min. Gene expression levels were normalized to GAPDH
and calculated using the 2-△△CT method. Primer sequences are
listed in Table 1.

Cell transfection and knockdown of
MIR4435-2HG

Short hairpin RNAs targeting MIR4435-2HG (sh-MIR4435-2HG)
and corresponding negative control (sh-NC) were designed and
synthesized by GeneRulor Biotechnology Co., Ltd. (Zhuhai, China).
HepG2 and Huh7 cells were transfected using Lipofectamine™ 3000
(Invitrogen, USA) according to the manufacturer’s protocol. After 48 h,
knockdown efficiency was evaluated by quantitative real-time PCR
(qRT-PCR), and themost efficient sequence (sh-MIR4435-2HG#2) was
selected for subsequent functional experiments.

Cell proliferation assay

Cell proliferation was assessed using the Cell Counting Kit-8
(CCK-8) (Dojindo, Japan). Transfected cells were seeded in 96-well
plates (3 × 103 cells/well) and incubated for 0, 24, 48, and 72 h. At
each time point, 10 μL of CCK-8 solution was added per well,
followed by 2 h incubation at 37 °C. Absorbance at 450 nm was
measured using a microplate reader (Bio-Rad, USA).

Wound healing assay

After transfection, cells were grown to near confluence in 6-well
plates, and a scratch was made using a 200 μL pipette tip. Detached
cells were removed with PBS, and serum-free medium was added.
Wound closure was imaged at 0 h and 24 h using a phase-contrast
microscope. Migration rate was analyzed using ImageJ.

Transwell migration and invasion assays

Cellmigration and invasion abilities were evaluated using Transwell
chambers (8 μmpore size, Corning, USA). Formigration assays, 2 × 104

cells in serum-free medium were seeded in the upper chamber. For
invasion assays, chambers were precoated with Matrigel (BD
Biosciences), and 5 × 104 cells were seeded. The lower chamber
contained 10% FBS as a chemoattractant. After 24 h incubation,
cells on the upper membrane were removed, and migrated or
invaded cells were fixed with 4% paraformaldehyde, stained with
0.1% crystal violet, and counted under a microscope.

Western blot analysis

Total protein was extracted using RIPA buffer supplemented
with protease inhibitors, and concentrations were determined using

the BCA assay. Equal amounts of protein (30 μg) were separated by
SDS-PAGE and transferred to PVDF membranes (Millipore, USA).
After blocking with 5% BSA, membranes were incubated overnight
at 4 °C with primary antibodies: Anti-E-Cadherin (ab40772, Abcam,
United Kingdom, 1:1000), Anti-Vimentin (ab92547, Abcam,
United Kingdom, 1:1000), Anti-PD-L1 recombinant antibody
(ab205921, Abcam, United Kingdom, 1:1000), and Anti-GAPDH
(ab8245, Abcam, 1:5000) as an internal control. After washing,
membranes were incubated with HRP-conjugated secondary
antibodies (1:5000, Abcam) for 1 h at room temperature. Protein
bands were visualized using an ECL chemiluminescence substrate
(Thermo Fisher Scientific) and imaged with a Tanon 5200 Multi
chemiluminescence imaging system. Band intensities were
quantified using ImageJ software and normalized to GAPDH.

Statistical analysis

All statistical analyses were conducted using R (v4.2.1) (https://
www.r-project.org/). The Student’s t-test was applied for normally
distributed data, while the Wilcoxon test was used for non-normally
distributed variables. Spearman’s correlation analysis was conducted
to explore the relationships between variables. Chi-square or Fisher’s
exact test was used for clinical feature analysis. Kaplan-Meier
survival analysis, along with univariate and multivariate Cox
regression analyses, were employed for prognostic assessment.
P-values <0.05 were considered statistically significant (*p < 0.05,
**p < 0.01, ***p < 0.001). All sections of the study were analyzed
using specific datasets, R packages, and databases.

Results

Identification of Prognostic MRlncRNAs and
Construction of Prognostic Features

The study flowchart is depicted in Figure 1. Expression levels of
12MRGs were analyzed in 372 LIHC patients and 50 normal liver tissue
samples from the TCGA-LIHC dataset. Co-expression analysis identified
191 lncRNAs significantly associated with migrasomes (Supplementary
Table S3). Univariate Cox regression analysis revealed 16MRG-lncRNAs
significantly correlated with the survival prognosis of LIHC patients (P <
0.05) (Figure 2B). A prognostic model was developed using LASSO Cox
regression based on these MRlncRNAs (Figures 2C,D). Multivariate Cox
regression analysis further assessed the correlation of two MRlncRNAs,
resulting in a risk score formula: RiskScore = LINC00839 ×
0.299+MIR4435-2HG×0.818.

Expression and prognostic value
of MRlncRNAs

The expression and prognostic performance of candidate
MRlncRNAs were further evaluated within the TCGA discovery
cohort. Compared to normal tissues, LINC00839 and MIR4435-2HG
were significantly upregulated in liver cancer tissues (Figure 3A). ROC
curve analysis showed that both lncRNAs had high diagnostic accuracy,
withAUCvalues exceeding 0.7 (Figure 3B). Kaplan-Meier survival curves
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demonstrated that high LINC00839 expression was associated with
poorer overall survival (OS; P = 0.033, HR = 1.45 [1.03–2.05]) and
disease-specific survival (DSS; P = 0.073, HR = 1.50 [0.96–2.33])
(Figure 3C). Conversely, high MIR4435-2HG expression correlated
with significantly worse OS (P < 0.001, HR = 2.15 [1.50–3.08]) and

progression-free interval (PFI; P = 0.005, HR = 1.53 [1.14–2.05])
(Figure 3D). These findings suggest that MRlncRNAs are promising
biomarkers for LIHC diagnosis and prognosis. Univariate and
multivariate Cox regression analyses further identified MIR4435-2HG
as an independent prognostic factor for LIHC (Table 2).

FIGURE 1
Flowchart of the present study.
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Establishment and validation of the
prognostic MRlncRNA model

The 370 TCGA-LIHC samples were randomly divided into training
and validation sets. Patients were categorized into high-risk and low-
risk groups based on median risk scores. As risk scores increased,
mortality risk also increased, and survival time decreased (Figures
4A–F). Heatmaps illustrated the differential expression patterns of
lncRNAs between risk groups (Figures 4G–I). Kaplan-Meier curves
showed that high-risk patients exhibited significantly lower OS across
all sample groups (P < 0.05, Figures 4J–L). The AUCs for 1-, 3-, and 5-
year OS predictions in the entire cohort were 0.727, 0.654, and 0.701,
respectively (Figure 4M). Similar results were observed in the training
set (Figure 4N) and test set (Figure 4O), validating the predictive
accuracy of our risk model.

Correlation with
clinicopathological features

The association between risk scores and clinicopathological
features was analyzed in the TCGA-LIHC cohort. Significant
correlations were observed between risk scores and tumor grade,
stage, and T status (Figure 5A; Supplementary Table S4). Subgroup
survival analysis revealed that the high-risk group had significantly

poorer survival across various clinical subgroups, suggesting that
these factors play a critical role in LIHC prognosis (Figure 5B).

Development and validation of a
prognostic nomogram

Univariate and multivariate Cox regression analyses identified T
status (HR = 2.625, P < 0.001), N status (HR = 1.473, P = 0.043), M
status (HR = 1.676, P = 0.007), and risk score (HR = 1.219, P < 0.001) as
prognostic factors for OS in LIHC. The nomogram integrating risk
score and T status was constructed to predict 1-, 3-, and 5-year OS in
LIHC patients. ROC analysis of the nomogram demonstrated good
predictive accuracy, with AUC values of 0.636 for the risk score model
and 0.654 for the T status model (Figure 6C). The nomogram’s
calibration curve confirmed a strong concordance between predicted
and observed OS (Figure 6G), with AUCs of 0.721, 0.727, and 0.781 for
1-, 3-, and 5-year OS predictions, respectively (Figure 6H).

Functional enrichment analysis of high- and
low-risk MRlncRNAs

A total of 755 DEGs were identified between high- and low-risk
MRlncRNA groups. GO analysis indicated that these DEGs were

FIGURE 2
Identification of Prognostic MRlncRNAs and Construction of Prognostic Features. (A) Co-expression analysis of MRGs and lncRNAs; (B) Prognostic
value of MRlncRNAs based on univariate Cox regression analysis (P < 0.05); (C) LASSO coefficient plot of prognostic MRlncRNAs; (D) Plot of the 10-fold
cross-validation error rate; (E) Heatmap displaying the correlation between MRlncRNAs and MRGs.
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enriched in biological processes such as nuclear division,
chromosome segregation, and mitotic division (Figure 7A).
Cellular components included chromosomal regions and
kinetochores, while molecular functions were enriched in
microtubule binding and ATP-dependent DNA helicase activity.
KEGG pathways were mainly associated with the cell cycle,
microRNAs in cancer, and p53 signaling (Figure 7B). GSEA
showed that genes in the high-risk group were primarily involved
in the cell cycle, DNA replication, and neuroactive ligand-receptor
interactions, while genes in the low-risk group were enriched in
complement and coagulation cascades, fatty acid metabolism, and
bile acid biosynthesis (Figure 7C).

Genetic alteration analysis of MRlncRNAs

Genetic alterations of MRlncRNAs were analyzed using the
cBioPortal database. Mutations in LINC00839 and MIR4435-
2HG were detected in 175 of 348 sequenced LIHC samples

(Figure 8A). Clinical analysis revealed significant differences
between the mutation and non-mutation groups in Buffa
Hypoxia Score, Winter Hypoxia Score, Aneuploidy Score,
Ragnum Hypoxia Score, Fraction Genome Altered, Last
Communication Contact, and Neoplasm Histologic Grade
(Figure 8B). Survival analysis showed that genetic alterations of
prognostic MRlncRNAs were significantly associated with shorter
overall survival (OS, P = 0.0390), but not with progression-free
survival (PFS, P = 0.250) or disease-free survival (DFS, P = 0.174)
(Figure 8C). Compared to low-expression patients, high-expression
patients had higher proportions of Tumor Mutational Burden
(TMB) and Microsatellite Instability (MSI) (Figure 8D). TMB,
MSI, and mRNAsi scores were significantly higher in the high-
risk group (Figure 8E). Survival analysis indicated that high TMB
and MSI scores were associated with poorer OS (Figure 8F).
Additionally, survival analysis combining risk score with TMB
and MSI revealed that patients in the low TMB + low-risk score
group had better OS than those in the high TMB + high-risk score
group (P < 0.001), and the lowMSI + low-risk score group had better

FIGURE 3
Expression and Prognostic Value Analysis of Prognostic MRlncRNAs in LIHC Patients. (A) Comparison of prognostic MRlncRNAs expression in liver
tumors and normal tissues in TCGA databases; (B) ROC curves assessing the diagnostic potential of MRlncRNAs expression in LIHC; (C) Survival curves of
OS, PFI, and DSS comparing high and low expression of LINC00839 in LIHC; (D) Survival curves of OS, PFI, and DSS comparing high and low expression of
MIR4435-2HG in LIHC. *P < 0.05; **P < 0.01; ***P < 0.001.

Frontiers in Pharmacology frontiersin.org08

Qin et al. 10.3389/fphar.2025.1581122

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1581122


OS than the high MSI + high-risk score group (P <
0.001) (Figure 8G).

Immune cell infiltration analysis

Using CIBERSORT, ssGSEA, and ESTIMATE algorithms, the
correlation between risk score and immune cell infiltration was
analyzed. Immune infiltration scores showed marked differences
between high- and low-risk MRlncRNA groups (Figure 9A). The
stacked bar chart depicted the immune cell infiltration
proportions between high and low expression groups
(Figure 9B). The CIBERSORT algorithm revealed that naive
B cells, memory B cells, and resting mast cells were more

abundant in the low-risk group, while follicular helper T cells
and M0 macrophages were more abundant in the high-risk
group. Risk score was positively correlated with eosinophils,
activated CD4 T cells, follicular helper T cells, memory
B cells, and M0 macrophages, and negatively correlated with
naive B cells, monocytes, M2 macrophages, resting CD4 T cells,
resting mast cells, activated NK cells, CD8 T cells, resting NK
cells, and M1 macrophages. Additionally, ssGSEA analysis
showed higher expression of B cells, CD8 T cells, cytotoxic
cells, dendritic cells (DC), eosinophils, immature DC, mast
cells, neutrophils, NK CD56dim cells, NK cells, plasmacytoid
DC (pDC), Tγδ cells, and regulatory T cells (TReg) in the low-
risk group, while T helper cells and Th2 cells were more expressed
in the high-risk group (Figures 9C,D). Correlation analysis also

TABLE 2 Cox regression analysis of MRlncRNAs in prognosis prediction.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P Value Hazard ratio (95% CI) P Value

Age 373

≤ 60 177 Reference

>60 196 1.205 (0.850–1.708) 0.295

Gender 373

Female 121 Reference

Male 252 0.793 (0.557–1.130) 0.200

Histologic grade 368

G1&G2 233 Reference

G3&G4 135 1.091 (0.761–1.564) 0.636

Pathologic stage 349

Stage I&Stage II 259 Reference Reference

Stage III&Stage IV 90 2.504 (1.727–3.631) < 0.001 1.299 (0.177–9.518) 0.797

Pathologic T stage 370

T1&T2 277 Reference Reference

T3&T4 93 2.598 (1.826–3.697) < 0.001 2.241 (0.304–16.546) 0.429

Pathologic N stage 258

N0 254 Reference

N1 4 2.029 (0.497–8.281) 0.324

Pathologic M stage 272

M0 268 Reference Reference

M1 4 4.077 (1.281–12.973) 0.017 1.965 (0.602–6.412) 0.263

LINC00839 373

Low 187 Reference

High 186 1.306 (0.923–1.848) 0.132

MIR4435-2HG 373

Low 187 Reference Reference

High 186 2.147 (1.497–3.079) < 0.001 2.189 (1.395–3.433) < 0.001
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indicated that risk score was negatively correlated with immune
scores (Figure 9E). Prognostic analysis revealed that patients in
the low ESTIMATE + high-risk score group had worse OS than
those in the high ESTIMATE + low-risk score group (P <
0.001) (Figure 9F).

Single-cell RNA sequencing (ScRNA-seq)
data analysis

Analysis of ScRNA-seq data from the LIHC_GSE125449 dataset
in the TISCH database identified 14 cell clusters and eight cell types,

FIGURE 4
Establishment and Validation of PrognosticMRlncRNAs Features. (A–C)Distribution of risk scores for each patient in the TCGA-LIHC cohort, training
cohort, and test cohort; (D–F) Distribution of overall survival status for each patient in the TCGA-LIHC cohort, training cohort, and test cohort; (G–I)
Heatmap showing the expression of two prognostic MRlncRNAs in the TCGA-LIHC cohort, training cohort, and test cohort; (J–L) Kaplan-Meier survival
curves for high-risk and low-risk groups comparing overall survival in the TCGA-LIHC cohort, training cohort, and test cohort; (M–O) Time-
dependent ROC curves for 1-, 3-, and 5-year OS in the TCGA-LIHC cohort, training cohort, and test cohort.
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highlighting the distribution and abundance of various TME-related
cells (Figures 10A,B). A bubble plot visualized the expression of key
marker genes across different cell types (Figure 10C). The pie chart
showed higher expression in malignant cells, fibroblasts, and
endothelial cells (Figure 10D). The distribution of
LINC00839 and MIR4435-2HG expression in different cell types
revealed that MIR4435-2HG had higher infiltration in TME-related
cells than LINC00839 (Figures 10F,G). Further analysis showed that
LINC00839 and MIR4435-2HG were significantly associated with
cancer-associated fibroblasts (CAFs) and epithelial-mesenchymal
transition (EMT)markers (Figures 10H,I). These results suggest that
MRlncRNAs may promote fibrosis activation and contribute to
LIHC metastasis via EMT.

Immunotherapy response analysis

Heatmap analysis showed significant differences in the
distribution of immune checkpoint genes and TIDE scores
between high- and low-risk groups (Figure 11A). Expression
analysis of eight immune checkpoint-related genes revealed
higher expression of CTLA4, HAVCR2, PDCD1, TIGIT, and
ITPRIPL1 in the high-risk group (Figure 11B). The relationship
between risk score and three key immune checkpoints (CD274,
PDCD1, CTLA4) showed positive correlations (P < 0.05)
(Figure 11C). Survival analysis indicated that patients with high
immune checkpoint expression in the high-risk group had poorer
OS compared to those with low checkpoint expression in the low-

FIGURE 5
Association Between Risk Score andClinicopathological Characteristics. (A)Circos plot showing the clinical factors between high and low-risk score
groups; (B) Survival curve comparing high and low-risk score groups in different LIHC subgroups.
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risk group (Figure 11D). To predict immune treatment response,
TIDE scores and clinical sample data were used. Compared to the
low-risk group, the high-risk group showed higher TIDE and
Exclusion scores, and lower Dysfunction scores (Figure 11E).
Kaplan-Meier analysis showed that the high-risk and high-TIDE
group had the worst prognosis (Figure 11F). In an external clinical
cohort of 80 liver cancer samples, patients in the low-risk group had
higher rates of complete or partial remission (CR/PR) with immune
checkpoint inhibitors (AUC >0.7) (Figures 11G,H). These findings
suggest that low-risk patients are more likely to benefit from

immune checkpoint inhibitor (ICI) therapy, showing better post-
treatment survival rates.

Chemotherapy drug sensitivity

Chemotherapy drug sensitivity analysis for low-risk and high-
risk groups revealed that the high-risk group had significantly lower
IC50 values for multiple drugs, including 5-Fluorouracil,
Doxorubicin, and Paclitaxel (Supplementary Figure S1). These

FIGURE 6
Construction and Validation of a Predictive Nomogram. (A,B) Univariate and multivariate Cox regression analysis of clinical variables in LIHC; (C)
ROC curves for risk scores and various clinical pathological parameters (age, gender, Grade, T, N, M); (D) Time-dependent AUC curve showing the risk
score’s performance in predicting OS; (E)Consistency index of the risk score and other clinical pathological variables; (F)Nomogram for predicting 1-, 3-,
and 5-year OS of LIHC patients; (G)Calibration curve of the OS nomogrammodel in the discovery group, with the diagonal dotted line representing
the ideal nomogram; (H) ROC curves for predicting 1-, 3-, and 5-year OS.
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results suggest that these drugs may be effective for treating high-
risk LIHC patients.

Cell and clinical sample validation

To validate the expression and prognostic value of MRlncRNAs, we
first performedRT-qPCRanalysis in 100 paired hepatocellular carcinoma
(HCC) and adjacent normal tissue samples. Both LINC00839 and
MIR4435-2HG were significantly upregulated in tumor tissues
(Figure 12A). Using the same cohort, patients were stratified into
high- and low-risk groups based on the MRlncRNA-based risk score.
Kaplan-Meier analysis revealed that high-risk patients had significantly
poorer overall survival (OS) compared to low-risk patients (HR = 2.66,
95%CI: 1.47–4.79, P= 0.001; Figure 12B). Time-dependent ROCanalysis
showed strong predictive performance, with AUCs of 0.824, 0.851, and
0.878 for 1-, 3-, and 5-year OS, respectively (Figure 12C), and consistent
accuracy over time (Figure 12D). Decision curve analysis (DCA) further
demonstrated the clinical utility of the risk model for survival prediction
(Figure 12E). To assess the robustness of themodel, we randomly divided
the 100-sample cohort into two equal subsets (Validation Set one and
Validation Set two; each n = 50). In both subsets, the risk score effectively
distinguished high-risk patients with significantly shorter OS
(Supplementary Figure S2A, D). ROC curves yielded high AUCs in
both sets: 0.833, 0.860, and 0.872 for Validation Set 1 (Supplementary
Figure S2B); and 0.844, 0.855, and 0.856 for Validation Set 2
(Supplementary Figure S2E). DCA confirmed the model’s predictive

benefit across both subsets (Supplementary Figure S2C, F, H). Moreover,
RT-qPCR analysis inHCC cell lines (Hep3B, Huh7, andHepG2) and the
normal hepatocyte line (THLE-2) confirmed significant overexpression
of both MRlncRNAs in tumor cells, consistent with the clinical findings
(Figure 12F). Together, these results validate the MRlncRNA-based risk
model across bulk tissue samples and cell lines, underscoring its
translational potential for clinical prognostication in HCC.

MIR4435-2HG knockdown suppresses
proliferation, migration, invasion, EMT, and
PD-L1 expression in HCC cells

To validate the oncogenic function of MIR4435-2HG in
hepatocellular carcinoma, we conducted a series of in vitro
experiments in HepG2 and Huh7 cells. qRT-PCR confirmed
efficient knockdown of MIR4435-2HG using three independent
shRNAs, among which sh-MIR4435-2HG one exhibited the
highest silencing efficiency and was selected for subsequent
functional assays (Figure 13A). Cell proliferation was significantly
inhibited upon MIR4435-2HG knockdown, as demonstrated by
CCK-8 assays at 24, 48, and 72 h (Figures 13B,C). Wound
healing assays revealed that MIR4435-2HG silencing impaired
cell migration capacity at 24 h (Figures 13D,F). In addition,
Transwell assays showed a marked reduction in both migratory
and invasive abilities of HepG2 and Huh7 cells (Figures 13E,G,H).
At the molecular level, Western blot analysis showed that MIR4435-

FIGURE 7
Functional Enrichment Analysis Between High and Low-Risk Groups. (A) GO enrichment results; (B) KEGG pathways; (C) GSEA analysis.
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2HG knockdown induced a mesenchymal–epithelial transition
(MET)-like phenotype, as evidenced by upregulation of
E-cadherin and downregulation of Vimentin (Figures 13I,J).
Notably, the immune checkpoint molecule PD-L1 was also
significantly downregulated in MIR4435-2HG–silenced cells,

suggesting a potential role of this lncRNA in immune evasion.
Together, these findings demonstrate that MIR4435-2HG
promotes malignant phenotypes and immune escape in HCC,
supporting its functional relevance in the migrasome-related
lncRNA signature.

FIGURE 8
Genetic Alterations Associated with MRlncRNAs. (A) Oncoprint displaying somatic mutations in the LIHC tumor cohort; (B) Correlation between
MRlncRNA alterations and various clinicopathological factors in LIHC, including Buffa Hypoxia Score, Winter Hypoxia Score, Aneuploidy Score, Ragnum
Hypoxia Score, Fraction Genome Altered, Neoplasm Histologic Grade, and Last Communication Contact from Initial Pathologic Diagnosis Date; (C)
Genetic alterations of MRlncRNAs in LIHC tissues correlated with shorter OS, PFS, and DFS in patients; (D) Distribution of TMB and MSI scores in
high-expression and low-expression groups; (E) Differences in TMB and MSI between high and low-risk score groups in LIHC; (F) Kaplan-Meier survival
curves for high and low TMB, MSI groups in LIHC; (G) Kaplan-Meier survival curves of four groups classified by risk score and TMB, MSI in LIHC.
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FIGURE 9
Relationship Between Risk Score and Immune Infiltration in the Tumor Microenvironment. (A) Heatmap of immune cell scores between high and
low-risk score groups using CIBERSORT, ssGSEA, and ESTIMATE algorithms; (B) Percent abundance of tumor-infiltrating immune cells between high and
low expression groups of two prognostic MRlncRNAs, with different colors representing various immune cell types; (C) Comparison of immune scores
between high and low-risk score groups using CIBERSORT and ssGSEA; (D) Correlation analysis between risk score and immune infiltration using
CIBERSORT and ssGSEA; (E) Differences in ESTIMATE between high and low-risk score groups; (F) Kaplan-Meier curves of four groups classified by risk
score and three ESTIMATE scores in LIHC.
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FIGURE 10
Expression of MRlncRNAs in Different Immune Cell Types in LIHC. (A) Clustering of cell types from scRNA-seq data; (B) Annotation of different
immune cell types in LIHC tissues (LIHC_GSE125449); (C) Expression levels of marker genes in each cell cluster; (D) Pie chart showing the percentage of
each cell type; (E) Percentage of each cell subtype in different patients; (F) Expression distribution of LINC00839, MIR4435-2HG in various cell types using
single-cell resolution from the LIHC_GSE125449 dataset; (G) Violin plots showing the expression of LINC00839 and MIR4435-2HG in LIHC cells;
(H,I) Correlation between LINC00839, MIR4435-2HG and CAFs or EMT-related markers.
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Discussion

HCC remains a highly aggressive malignancy with poor
prognosis, largely due to its molecular heterogeneity and
immunosuppressive TME, which limit the efficacy of
conventional and immune-based therapies. Migrasomes—recently

identified as migration-dependent extracellular vesicles—have been
implicated in tumor progression and immune modulation by
transporting factors such as PD-L1 and TGF-β (Jiang et al., 2023;
Deng et al., 2024). However, their interaction with lncRNAs,
especially in the context of HCC, remains poorly understood. To
address this gap, we conducted a systematic analysis of MRlncRNAs,

FIGURE 11
Immune Response Analysis. (A) Heatmap of immune checkpoint gene expression and TIDE scores between high and low-risk score groups, with
different colors representing expression trends across different samples; (B) Expression distributions of eight immune checkpoint-associated genes
between high and low-risk score groups in LIHC; (C) Correlation between risk score and clinical immune checkpoint-related genes in LIHC; (D) Kaplan-
Meier survival curves for four groups classified by risk score and CD274, PDCD1, CTLA expression; (E) TIDE score evaluation of risk scores in
response to immunotherapy in LIHC; (F) Kaplan-Meier survival plots of overall survival for high and low TIDE scores; (G,H) Differences in MRlncRNAs
expression and risk score between patients with SD/PD and CR/PR in clinical tissue samples; ROC analysis of MRlncRNAs expression and risk score for
predicting ICI responsiveness in clinical tissue samples (NR: non-responders; R: responders to immunotherapy).
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aiming to uncover novel prognostic biomarkers and immune
modulators.

By integrating transcriptomic and clinical data from TCGA-
LIHC, we identified 191 candidate MRlncRNAs via Pearson
correlation with 12 curated migrasome-related genes (|R| > 0.55,
P < 0.001), of which 16 were associated with survival. LASSO Cox
regression revealed a robust 2-lncRNA prognostic
signature—LINC00839 and MIR4435-2HG—that minimized
cross-validation error. This signature showed strong predictive
accuracy (5-year AUC = 0.701 in TCGA, 0.872 in external
cohort), indicating its broad applicability. RT-qPCR confirmed
upregulation of both lncRNAs in HCC tissues and cell lines,

using THLE-2 as the control, supporting the clinical relevance of
our model. To elucidate functional relevance, we performed
knockdown experiments targeting MIR4435-2HG in HepG2 and
Huh7 cells. Silencing significantly suppressed proliferation,
migration, and invasion, while increasing E-cadherin and
decreasing Vimentin and PD-L1 expression, suggesting EMT
reversal and reduced immune escape. These findings establish
MIR4435-2HG as a key driver of both tumor aggressiveness and
immunosuppressive remodeling. Additionally, LINC00839 is
known to promote migration via hypoxia-induced
FMNL2 activation (Xie et al., 2022), further linking MRlncRNAs
to migrasome biogenesis and adaptive TME regulation. Collectively,

FIGURE 12
Clinical Sample and Cell Experiment Validation. (A) Relative expression of MRlncRNAs in normal and glioma tissues; (B) Overall survival curve for
high- and low-risk HCC patients; (C) Time-dependent ROC curves for MRlncRNAs at 1, 3, and 5 years; (D) Time-dependent AUC curves; (E) Decision
curve analysis for 3-year OS in clinical samples; (F) Differential expression of MRlncRNAs in HCC cell lines and normal cell lines.
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our data support a model in which MRlncRNAs orchestrate EMT,
immune checkpoint expression, and migrasome-related
communication to drive HCC progression and immune evasion.

Our study revealed a strong association between high
MRlncRNA expression and an immunosuppressive TME in
HCC. Specifically, patients in the high-risk group exhibited
elevated infiltration of M2 macrophages and regulatory T cells

(Tregs), whereas low-risk patients showed enrichment of
cytotoxic T lymphocytes and dendritic cells, indicating more
active anti-tumor immunity (Guo et al., 2021; Song et al., 2025).
These shifts suggest that MRlncRNAs contribute to immune evasion
by shaping the immune landscape. Mechanistically, knockdown of
MIR4435-2HG significantly reduced PD-L1 expression and
suppressed EMT markers, directly linking MRlncRNAs to both

FIGURE 13
MIR4435-2HG knockdown suppresses proliferation, migration, invasion, EMT, and PD-L1 expression in HCC cells. (A) qRT-PCR showing
knockdown efficiency of MIR4435-2HG in HepG2 and Huh7 cells using three shRNAs. (B,C) CCK-8 assays showing that MIR4435-2HG knockdown
significantly inhibited cell proliferation in HepG2 (B) and Huh7 (C) cells at 24, 48, and 72 h. (D)Wound healing assay revealed impairedmigration at 24 h in
sh-MIR4435-2HG cells. (E) Transwell assays showed decreased migration and invasion. (F–H)Quantification of migration rates and cell numbers in
HepG2 and Huh7. (I)Western blot showed increased E-cadherin and decreased Vimentin and PD-L1 upon MIR4435-2HG knockdown. GAPDH served as
internal control. (J) Densitometric analysis of protein expression. Data are presented as mean ± SD; ***P < 0.001.
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immune checkpoint activation and tumor cell plasticity.
M2 macrophages and Tregs—abundant in high-risk patients—are
known to secrete IL-10 and TGF-β, which promote immune
suppression and EMT (Kalluri, 2016). This supports a
CAF–EMT–MRlncRNA regulatory axis that orchestrates immune
exclusion, stromal remodeling, and PD-L1–mediated T cell
inhibition (Wu et al., 2021). Further analysis revealed
significantly higher expression of immune checkpoints (PDCD1,
CTLA4, TIGIT, CD274) in high-risk patients. Integration of the
MRlncRNA risk score with the TIDE algorithm markedly improved
prediction of immunotherapy responsiveness, surpassing existing
lncRNA-based models (Qin et al., 2023a). As immune checkpoint
inhibitors (ICIs) become the frontline treatment for advanced HCC,
accurate biomarkers such as MRlncRNA signatures are urgently
needed to stratify patients and predict immunotherapy response,
particularly given the complex clinical contexts such as liver
transplantation, where ICIs pose potential risks of graft rejection
(Sensi et al., 2024). While elevated TMB and MSI typically predict
ICI benefit, high-risk patients in our cohort—despite high TMB/
MSI—had poor outcomes, suggesting that MRlncRNA-driven
immune suppression may offset these immunogenic features
(Holder et al., 2024; Qi et al., 2024). This paradox highlights the
complexity of the HCC microenvironment: heightened tumor
immunogenicity may be neutralized by MRlncRNA-enhanced
immune evasion. Collectively, our findings underscore the utility
of MRlncRNAs as biomarkers of immune escape and resistance to
immunotherapy in HCC.

Beyond their prognostic relevance, MRlncRNAs are
functionally linked to the migrasome–CAF axis, a novel
pathway contributing to tumor–stromal crosstalk and immune
evasion in HCC. Migrasomes are recently identified migration-
dependent extracellular vesicles involved in intercellular
communication and immune regulation (Qiao et al., 2023).
Several MRGs used in our co-expression analysis—TSPAN4,
NDST1, and ITGAV—have been experimentally validated as
essential for migrasome biogenesis and matrix interactions.
Emerging studies show that HCC-derived migrasomes can
carry immunosuppressive factors such as PD-L1 and TGF-β,
fostering Treg differentiation and immune escape (Qin et al.,
2023b). Although we did not directly localize MRlncRNAs within
migrasomes, bioinformatic co-expression and functional
associations strongly suggest a mechanistic interplay.
MIR4435-2HG, for instance, is highly enriched in CAFs, as
revealed by our scRNA-seq analysis (Cui et al., 2023). CAFs
are key stromal components known to secrete TGF-β and IL-6,
remodel the ECM, and promote immune suppression and tumor
invasion (Qin et al., 2025). Moreover, MIR4435-2HG has been
shown to regulate B3GNT5, a glycosyltransferase implicated in
vesicle-mediated invasiveness (Qin et al., 2024). These findings
support the hypothesis that MRlncRNAs—especially MIR4435-
2HG—may influence migrasome biogenesis or cargo selection
and potentiate CAF-driven immunosuppressive remodeling of
the tumor microenvironment. This highlights a unique stromal
regulatory circuit in HCC and suggests that MRlncRNAs may
serve not only as prognostic biomarkers but also as therapeutic
targets for disrupting the CAF–migrasome–immunity axis.

In addition to immune modulation, MRlncRNAs appear to
orchestrate several tumor-promoting processes including EMT,

metabolic reprogramming, and hypoxia adaptation. Our study
revealed that MRlncRNAs are closely associated with EMT
markers, supporting their role in promoting tumor
invasiveness and metastasis in HCC. LINC00839 has been
reported to upregulate SNAI2 and ZEB1, while MIR4435-2HG
enhances expression of mesenchymal markers like Vimentin and
N-cadherin, contributing to EMT activation (Xie et al., 2022; Guo
et al., 2021). Notably, EMT also facilitates immune escape
through PD-L1 upregulation, further implicating MRlncRNAs
in immunosuppressive remodeling (Zhang et al., 2023).
Moreover, MRlncRNAs may participate in cancer metabolic
rewiring (Sun et al., 2022; Ghosh et al., 2021). Our enrichment
analysis revealed associations with lipid metabolism and bile acid
biosynthesis pathways, which are known to support tumor
growth and immune evasion (Watterson and Coelho, 2023).
Notably, many of the pathways associated with
MRlncRNAs—including Wnt/β-catenin, mTOR, and
MAPK—are well-established drivers of HCC progression and
therapeutic resistance, as highlighted in recent reviews (Altaf
et al., 2022). In particular, MIR4435-2HG may promote lipid
metabolism, enabling HCC cells to thrive in nutrient- or oxygen-
deprived conditions (Guo et al., 2021). This metabolic advantage
may synergize with immune escape mechanisms to foster a more
aggressive tumor phenotype. Hypoxia, a hallmark of advanced
HCC, further amplifies these effects. We found that LINC00839 is
upregulated under hypoxic conditions, promoting migration and
invasion (Xie et al., 2022). This is consistent with earlier studies
indicating that hypoxia-induced lncRNAs facilitate tumor
adaptation and therapy resistance (Giraud et al., 2021; Pu
et al., 2024). Therefore, MRlncRNAs may integrate hypoxia
signaling, EMT progression, and metabolic alterations into a
unified network that sustains tumor aggressiveness and
immune evasion.

Our findings have several important clinical implications. First,
the MRlncRNA-based risk score model provides a robust tool for
prognostic stratification in HCC patients, enabling more
personalized treatment strategies. Second, the association between
MRlncRNAs and immune cell infiltration suggests that these
lncRNAs may serve as therapeutic targets for enhancing anti-
tumor immunity. For example, targeting MRlncRNAs with RNA
interference (RNAi) or antisense oligonucleotides (ASOs) could
potentially reverse the immunosuppressive TME and improve
responses to ICIs. Future studies should focus on validating these
findings in larger, multi-center cohorts and exploring the
therapeutic potential of targeting MRlncRNAs in preclinical
models. Additionally, the role of MRlncRNAs in other cancer
types should be investigated to determine whether their functions
are conserved across different malignancies. Finally, the
development of MRlncRNA-targeted therapies will require careful
consideration of delivery methods to ensure specificity and
minimize off-target effects.

Despite the promising findings, this study has several
limitations. First, both the TCGA-LIHC dataset and our external
validation cohort (n = 100) were retrospectively collected, which
may introduce selection bias. To address this, we expanded the
clinical cohort and performed internal validation by dividing it into
two independent subsets, each demonstrating robust and consistent
prognostic performance. Nonetheless, future studies using
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prospectively collected, multi-center cohorts are essential to validate
the generalizability of our MRlncRNA-based model. Second, while
previous studies on lncRNAs in HCC have focused on canonical
oncogenic molecules like HOTAIR orMALAT1, our work is the first
to systematically characterize MRlncRNAs in this context. Through
integrated multi-omics approaches—encompassing transcriptomic
screening, prognostic modeling, clinical validation, and scRNA-
seq—we uncovered a novel CAF–EMT–immune checkpoint
regulatory axis potentially modulated by migrasome signaling.
Importantly, we provided direct experimental support: silencing
MIR4435-2HG impaired tumor proliferation, migration, invasion,
and reversed EMT and immune evasion phenotypes (upregulation
of E-cadherin; downregulation of Vimentin and PD-L1). Finally, our
2-lncRNA signature (LINC00839 and MIR4435-2HG)
demonstrated strong prognostic power and mechanistic
relevance. Its integration with the TIDE algorithm significantly
enhanced the prediction of immunotherapy response,
outperforming existing lncRNA-based models. In contrast to
models focused solely on tumor-intrinsic features, our signature
reflects both metabolic reprogramming and immune exclusion.
These findings highlight the translational potential of
MRlncRNAs—and by extension, the migrasome–CAF–immune
checkpoint axis—as promising therapeutic targets in HCC.

Conclusion

In summary, we developed and validated a novel 2-lncRNA
signature (LINC00839 and MIR4435-2HG) associated with tumor
progression and immune suppression in HCC. Using 100 clinical
samples and functional assays, we confirmed that MIR4435-2HG
promotes EMT and PD-L1–mediated immune evasion. Our
integrative model, combining MRlncRNA expression with the
TIDE algorithm, enhances immunotherapy response prediction
beyond existing signatures. Moreover, scRNA-seq and in vitro
data support a potential CAF–EMT–immune checkpoint axis
driven by MRlncRNAs. These findings highlight the
translational potential of targeting migrasome-related lncRNAs
for improving prognostic assessment and immunotherapy
outcomes in HCC.
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