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Background: Concurrent genetic alterations (e.g., TP53 comutations)
significantly impair EGFR-TKI responsiveness and survival outcomes in EGFR-
mutant lung adenocarcinoma (LUAD). AT-rich interactive domain 1A (ARID1A),
which is a key subunit of SWI/SNF complexes, demonstrates critical regulatory
functions as a tumour suppressor gene in cancer. The aim of this study is to
determine the role of ARID1A deficiency in the therapeutic efficacy of EGFR-
TKIs in LUAD.

Methods: We identified the ARID1A mutation as a potential prognostic marker in
EGFR-mutant LUAD by analysing data from cBioPortal. The expression of ARID1A
was detected via immunohistochemical staining. A lentivirus was employed to
construct the ARID1A knockdown model in PC9 cell. We further analyzed the
biological roles of ARID1A knockdown through CCK8, flow cytometry analysis
and transwell assay.

Results: The ARID1A mutation was associated with poor OS in EGFR-mutant
LUAD patients, and the prognostic influence was greater than that of concurrent
EGFR mutations with TP53, KRAS, CDKN2A, PIK3CA, RB1 or PTEN. By analysing
the clinical data of our centre, we revealed that patients with loss of ARID1A
expression demonstrated poorer median progression-free survival (mPFS,
10.3 versus 30 months, P = 0.005) when they received EGFR-TKIs as the first-
line treatment after postoperative progression (cohort A). A shorter median
disease-free survival (mDFS, 29 versus NA months, P = 0.003) was also
observed in the ARID1A low-expression cohort than in the ARID1A high-
expression group in patients receiving postoperative adjuvant EGFR-TKI
treatments (cohort B). We also found that ARID1A deficiency attenuated the
efficacy of osimertinib by activating the EGFR/AKT/mTOR signalling axis
in PC9 cell.

Conclusion: ARID1A deficiency may be an independent prognostic factor and
attenuates the response to EGFR-TKIs in patients with EGFR-mutant LUAD. In
addition, loss of ARID1A expression confers resistance to EGFR-TKI by activating
the EGFR/AKT/mTOR signalling axis.
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1 Introduction

Lung cancer is the most prevalent malignant tumor and a
leading cause of cancer-related deaths worldwide, with
approximately 2.5 million new cases (12.4%) and 1.8 million
deaths (18.7%) per year (Bray et al., 2024). Lung adenocarcinoma
(LUAD) is the most common pathological type of non-small cell
lung cancer (NSCLC) and accounts for more than 50% of cases
(Succony et al., 2021). The identification of epidermal growth
factor receptor (EGFR) mutations represents a breakthrough in
the treatment paradigm for NSCLC. EGFR mutations have been
shown to occur in more than 50% of LUAD patients in the Asian
population (Kim et al., 2021; Grosse et al., 2019). The most
common sensitizing EGFR mutations include in-frame exon
19 deletions and an exon 21 point mutation (L858R)
(Levantini et al., 2022). Multiple phase III trials have validated
that first-generation EGFR-TKIs (gefitinib, erlotinib, icotinib)
and second-generation EGFR-TKIs (afatinib, dacomitinib)
significantly improves objective response rate (ORR) and
progression-free survival (PFS) compared to platinum-based
chemotherapy in treatment-naïve NSCLC patients with EGFR
mutations (Fukuoka et al., 2011; Rosell et al., 2012; Sequist et al.,
2013). Osimertinib, a third-generation EGFR-TKI, achieves
significant survival benefits compared to first-generation
EGFR-TKIs, with increase PFS (18.9 versus10.2 months) and
overall survival (OS) (38.6 versus 31.8 months) (Ramalingam
et al., 2020; Soria et al., 2018). The clinical application of EGFR-
TKIs significantly prolongs the survival of patients. However,
acquired resistance limits the long-term clinical efficacy of
EGFR-TKIs.

Several studies have shown that concurrent genetic alterations, such
as TP53mutations (which is themost frequently comutated gene), exert
a negative effect on the response to EGFR-TKIs and the prognosis of
EGFR-mutant LUAD (Kim et al., 2019). Nevertheless, specific
concurrent genetic alterations affecting the efficacy of EGFR-TKIs
are not clear. Thus, it is necessary to further investigate the
mechanisms of EGFR-TKI resistance in order to optimize the
treatment schedule. The switch/sucrose nonfermenting (SWI/SNF)
complex, which represents a subfamily of ATP-dependent
chromatin remodelling complexes, plays important roles in
chromatin recombination, gene regulation and DNA damage repair
as tumour suppressors (Malone and Roberts, 2024). The genes
encoding SWI/SNF subunits are mutated in more than 20% of
cancers (Centore et al., 2020), which results in loss of function and
poor prognosis. AT-interacting domain-rich protein 1A (ARID1A), a
key noncatalytic subunit of SWI/SNF complexes, demonstrates one of
the highestmutational prevalence across humanmalignancies, resulting
in loss of protein expression (Halaburkova et al., 2020). Alterations in
ARID1A play an important role in enhancing cell stemness, expediting

cell-cycle progression, promoting EMTprocess, and inducingmetabolic
reprogramming (Wang et al., 2022; Mullen et al., 2021). Emerging
evidence substantiates significant correlations between ARID1A
deficiency and poor prognosis, with high risk of recurrence,
progression and mortality (Zhang et al., 2023). Furthermore, several
studies have revealed that alterations in SWI/SNF complex enhance
immune checkpoint inhibitors (ICIs) (Wang et al., 2023) while inducing
chemotherapeutic resistance (Xue et al., 2021; Huang et al., 2024).
However, the effects of SWI/SNF subunitmutations on the sensitivity to
EGFR-TKIs remain underexplored in current oncologic research.

In this study, we evaluated the roles of SWI/SNF complex
subunit dysregulation in regulating EGFR-TKI responses. We
found that the comutation or low expression of ARID1A
attenuates the response to EGFR-TKIs in EGFR-mutant
LUAD. These findings may provide new insights for
improving EGFR-TKI efficacy and overcoming EGFR-TKI
resistance in LUAD.

2 Materials and methods

2.1 Bioinformatics analysis

The genomic data of 12862 LUADpatients from four large studies
(MSK-CHORD, MSK-IMPACT Clinical Sequencing Cohort, China
Pancancer, and MSK MetTropism) were extracted from cBioPortal
(https://www.cbioportal.org/) (de Bruijn et al., 2023), which were used
to analyse the frequencies of EGFR and SWI/SNF family member
mutations in LUAD. Due to the lack of survival data from the China
Pancancer study, we selected 3245 LUAD patients with EGFR
mutations from three studies (MSK-CHORD, MSK-IMPACT
Clinical Sequencing Cohort, and MSK MetTropism) for further
survival analysis.

2.2 Clinical study design and patients

This single-center cohort analysis evaluated LUAD cases
harboring classical EGFR alterations (exon19del/L858R) who
underwent curative resection at Qingdao University Affiliated
Hospital (01/2018-01/2020), with the follow-up ending on 11/2024.
Eligibility required: (i) histologically confirmed EGFR-driven LUAD;
(ii) ECOG-PS 0-2; (iii) complete TKI treatment records. Exclusion
involved: (i) major organ dysfunction (cardiac/hepatic/renal); (ii)
concurrent non-NSCLC malignancies; (iii) incomplete molecular
profiling or off-protocol therapies.

The study was divided into 2 cohorts based on the treatment
protocols. Cohort A consisted of 30 patients who received EGFR-TKIs
as a first-line treatment after postoperative progression.
Clinicopathological profiles and molecular characteristics were
systematically documented in Table 1. Cohort B included
77 patients who received postoperative adjuvant EGFR-TKIs. The
clinical characteristics of these patients are shown in Table 2. ARID1A
protein quantification utilized standardized immunohistochemistry,
with cohort stratification according to validated IHC scoring
thresholds. The study was approved by the Ethics Committee of
the Affiliated Hospital of Qingdao University (NO. QYFY
WZLL 29417).

Abbreviations: LUAD, lung adenocarcinoma; ARID1A, AT-interacting
domain-rich protein 1A; ORR, objective response rate; PFS,
progression-free survival; SWI/SNF, switch/sucrose nonfermenting; ICIs,
immune checkpoint inhibitors; ECOG, Eastern Cooperative Oncology
Group; GSEA, Gene Set Enrichment Analysis; MMR, mismatch repair; TIME,
tumor immune microenvironment; LOF, loss-of-function; OXPHOS,
oxidative phosphorylation; RTK, receptor tyrosine kinase.
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2.3 Immunohistochemical staining

Histological specimens were processed through sequential
dewaxing in xylene, graded alcohol rehydration, and Tris-
EDTA-mediated epitope unmasking via microwave irradiation,
followed by BSA blocking. Immunodetection involved overnight
4°C incubation with anti-ARID1A primary antibody (Proteintech,
1:500) and subsequent HRP-conjugated secondary antibody for
60 min. Chromogenic development utilized DAB substrate under
standardized conditions. Blinded histopathological assessment by
two board-certified pathologists employed. Nuclear staining
intensity: 0 = negative, 1 = weak, 2 = moderate, 3 = strong.
Positive cellular prevalence: 0 (≤5%), 1 (6%–25%), 2 (26%–

50%), 3 (51%–75%), and 4 (>75%). The score of each section
(range 0–12) was calculated by multiplying nuclear staining
intensity with positive cellular prevalence. Specimens were
stratified into ARID1A low-expression (score <6) and high-
expression (score≥6) cohorts based on median composite
scores. Representative IHC patterns shown in Figures 1A, B.

2.4 Construction of a nomogram

A multivariate Cox regression-derived prognostic model
incorporating ARID1A quantification and key clinicopathological
variables was developed using the R “rms” module. A time-
dependent calibration curve was employed to verify survival
estimation precision.

2.5 Cell culture and transfection

LUAD cell line PC-9 (Procell Life Science, Wuhan, China)
was maintained in RPMI-1640 medium supplemented with 10%
FBS under standard humidified conditions (37°C, 5% CO2). For
stable genetic modification, lentiviral vectors encoding ARID1A-
specific shRNA (GeneChem, Shanghai, China) were transduced
according to the manufacturer’s instructions. Sequences of
shRNA was shown as follows: shARID1A, TTCTCCGAACGT
GTCACGT.

2.6 CCK8 assay

After 24 h incubation in 96-well microplates (5 × 103 cells/
well), cellular viability was assessed through osimertinib
dose-response profiling (0–10μM; Selleck Chemicals). 24 h
later, cell proliferation was quantified using CCK-8 assay
(TargetMol) with 450 nm optical density measurements via
spectrophotometry.

2.7 Flow cytometry analysis

Following experimental-specific interventions in 6-well culture
systems, cellular apoptosis was analysed using Annexin V-647/PI
apoptosis detection assay following manufacturer protocols (Life-
iLab, China).

TABLE 1 Baseline characteristics for patients receiving EGFR-TKIs as a first-line treatment after postoperative progression.

Characteristics Total (N = 30) ARID1A low expression (N = 11) ARID1A high expression (N = 19) P-value

Age, median (range) 61(43–76) 60(49–71) 63(43–76) 0.919

≤60 14(46.7) 5(45.5) 9(47.4)

>60 16(53.3) 6(54.5) 10(52.6)

Gender, n (%) 0.643

Male 12(40.0) 5(45.5) 7(36.8)

Female 18(60.0) 6(54.5) 12(63.2)

ECOG performance, n (%) 0.236

0–1 25(83.3) 8(72.7) 17(89.5)

2 5(16.7) 3(27.3) 2(10.5)

EGFR mutation, n (%) 0.858

19del 14(46.7) 6(54.5) 8(42.1)

21 L858R 16(53.3) 5(45.5) 11(57.8)

EGFR-TKIs, n (%) 0.491

Gefitinib 4(13.3) 1(9.1) 3(15.8)

Icotinib 15(50.0) 4(36.3) 11(57.9)

Afatinib 2(6.7) 1(9.1) 1(5.3)

Osimertinib 9(30.0) 5(45.5) 4(21.0)
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2.8 Transwell migration assay

Serum-deprived cell suspensions (2 × 104 cells) were seeded into
upper compartments with RPMI-1640 medium, while the lower
chamber contained 10% FBS as chemoattractant. After 24 h culture,
membranes with migratory cells were processed through sequential
immobilization (4% paraformaldehyde, 30min) and nuclear
counterstaining (0.1% crystal violet, 20min).

2.9 Western blotting (WB)

Cellular protein lysates were prepared with RIPA lysis buffer
(Beyotime) containing protease/phosphatase inhibitors
(MedChemExpress). Electrophoretic separation (8%–10% SDS-
PAGE) preceded nitrocellulose membrane transfer. Post-
blocking with 5% skim milk/TBST, blots were probed with
primary antibodies (4°C, overnight) followed by HRP-secondary

TABLE 2 Baseline characteristics for patients receiving postoperative adjuvant EGFR-TKIs treatments.

Characteristics Total ARID1A low expression ARID1A high expression P-value

(N = 77) (N = 21) (N = 56)

Age, median (range) 61(33–77) 58(38–72) 62(33–77) 0.301

≤60 33(42.9) 11(52.4) 22(39.3)

>60 44(57.1) 10(47.6) 34(60.7)

Gender, n (%) 0.961

Male 26(33.8) 7(33.3) 19(33.9)

Female 51(66.2) 14(66.7) 37(66.1)

ECOG performance, n (%) 0.936

0–1 70(90.9) 19(90.5) 51(91.1)

2 7(9.1) 2(9.5) 5(8.9)

Stage, n (%) 0.460

I 12(15.6) 3(14.3) 9(16.1)

II 22(28.6) 4(19.1) 18(32.1)

III 43(55.8) 14(66.7) 29(51.8)

T- Stage, n (%) 0.217

T1 25(32.5) 5(23.8) 20(35.8)

T2 38(49.3) 10(47.6) 28(50.0)

T3 5(6.5) 1(4.8) 4(7.1)

T4 9(11.7) 5(23.8) 4(7.1)

N- Stage, n (%) 0.998

N0 22(28.6) 6(28.6) 16(28.6)

N1 18(23.4) 5(23.8) 13(23.2)

N2 37(48.0) 10(47.6) 27(48.2)

EGFR mutation, n (%) 0.226

19del 39(50.6) 13(61.9) 26(46.4)

21 L858R 38(49.4) 8(38.1) 30(53.6)

EGFR-TKIs, n (%) 0.332

Gefitinib 20(26.0) 6(28.6) 14(25.0)

Icotinib 30(39.0) 5(23.8) 25(44.7)

Afatinib 7(9.1) 2(9.5) 5(8.9)

Osimertinib 20(25.9) 8(38.1) 12(21.4)
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antibodies incubation (room temperature, 2 h). Chemiluminescent
visualization utilized ECL detection. Primary antibodies
specifications are provided in Supplementary material.

2.10 Gene set enrichment analysis (GSEA)
of ARID1A

To delineate the functions of ARID1A, we performed functional
analysis of ARID1A via the LinkedOmics database (https://www.
linkedomics.org/login.php) (Vasaikar et al., 2018). ARID1A-related
coexpressed genes were screened via the Pearson correlation test.
The GSEA method was subsequently selected and used for GO and
KEGG analyses of coexpressed genes.

2.11 Statistical analysis

Statistical processing utilized GraphPad Prism 8.0 and SPSS
25.0 analytical software. Intergroup comparisons employed T tests
and chi-square tests. Survival data was evaluated through Kaplan-
Meier curve modeling with log-rank validation. P < 0.05 was
considered to indicate statistical significance.

3 Results

3.1 The roles of concurrent SWI/SNF subunit
mutations in EGFR-mutant LUAD

Based on genomic data from the cBioportal database, analyses of the
mutation frequencies of EGFR and SWI/SNF subunits revealed that
EGFR (32%), ARID1A (4%), ARID1B (0.7%), ARID2 (2.6%), ARID3A
(0.2%), ARID4B (0.1%), ARID5B (0.3%), SMARCA2 (0.6%),
SMARCA4 (5%) and SMARCB1 (0.4%) mutations were detected,
whereas ARID3B, ARID3C, ARID4A and ARID5A gene mutations
were not detected in LUAD (Figure 2A). We also explored the mutation
frequencies of concurrent SWI/SNF subunit mutations in EGFR-mutant
LUAD. As shown in Figure 2B, themutation frequencies of the ARD1A,
ARID1B, ARID2, ARID5B, SMARCA4 and SMARCB1 genes were
2.81%, 1.56%, 2.33%, 0.69%, 3.68% and 0.53%, respectively, and these
mutations mainly involved missense mutations and truncating
mutations in EGFR-mutant LUAD (Figure 2C).

We further analysed whether concurrent SWI/SNF subunit
alterations affected the prognosis of patients with EGFR-mutant
LUAD. Patients with alterations in ARID1A (18.23 versus
48.13 months, P < 0.0001, Figure 3A), ARID5B (9.76 versus
47.93 months, P < 0.0001, Figure 3D), SMARCA4 (30.67 versus

FIGURE 1
Immunohistochemical staining for ARID1A expression in EGFR-mutant LUAD tissues (50×and 200×). (A) ARID1A low expression. (B) ARID1A high
expression.
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47.97 months, P = 0.0001, Figure 3E) and SMARCB1
(10.32 versus 47.93 months, P = 0.0008, Figure 3F) had worse
OS than patients with wild-type genes in EGFR-mutant LUAD,
and gene alterations in ARID1B (32.45 versus 47.9 months, P =
0.838) and ARID2 (42.71 versus 47.54 months, P = 0.258) exerted
no effect on the OS of patients with EGFR-mutant LUAD.
ARID1A, which is a key subunit of SWI/SNF complexes, plays
an essential role in preventing oncogene-driven tumorigenesis as
a tumour suppressor gene (Mullen et al., 2021). We subsequently
focused on the prognostic effect of ARID1A/EGFR
comutation in LUAD.

3.2 ARID1A/EGFR comutation is associated
with a poor prognosis in patients with EGFR-
mutant LUAD

To further evaluate the prognostic value of ARID1Amutations in
EGFR-mutant LUAD, we assessed the clinical characteristics of
patients and revealed that patients with ARID1A/EGFR
comutations were more likely to develop distant metastases.
Patients with ARID1A mutations tended to exhibit increased rates
of bone and pleural metastases, whereas patients with wild-type
ARID1A predominantly exhibited lymph node and pleural
metastases (Figure 4A). The tumour purity of the ARID1A mutant
group was greater than that of the wild-type group (Figure 4B). The
prevalence of comutations in the ARID1A-mutant group was also
greater than that in the ARID1A-wild-type group, and
TP53 alterations were the most common co-occurring mutations
(65%), followed by CDKN2A alterations (31.67%) (Figure 4C). We

also observed the same trends inmutation count (7 versus 4, P < 10-10,
Figure 4D), fraction of genome alterations (21% versus 14%, P = 0.01,
Figure 4E), TMB (6.71 versus 3.46, P < 10-10, Figure 4F), MSI score
(0.29 versus 0.16, P = 0.01, Figure 4G) and the rate of PDL1 positivity
(56.52% versus 36.91%, Figure 4H). Current oncogenomic evidence
demonstrates that elevated PD-L1 expression and TMB correlate with
diminished EGFR-TKI efficacy in EGFR-driven LUAD (Ding et al.,
2024; Offin et al., 2019). These findings further indicate co-occurring
ARID1A/EGFR genomic alterations as novel biomarkers for adverse
survival outcomes in LUAD.

Rapid advances in genomics have revealed that concurrent genetic
alterations are correlated with poor prognosis in patients with EGFR-
mutant LUAD. Currently, known concurrent genetic alterations that
weaken the efficacy of EGFR-TKIs include TP53, PIK3CA, PTEN,
KRAS, RB1, and CDKN2A (Sun et al., 2022; Hellyer et al., 2022).
TP53 alterations predominated in the genomic landscape, detected in
47% of analyzed specimens, followed by mutations in KRAS (31%),
CDKN2A (14%), PIK3CA (5%), RB1 (4%), and PTEN (2.2%) in
LUAD (Figure 5A). We compared the effects of ARID1A and the
abovementioned six genes coexisting with EGFR mutations on the
prognosis of patients with EGFR-mutant LUAD. As illustrated in
Figure 5B, ARID1A/EGFR and TP53/EGFR comutations were both
associated with poor prognoses in patients with LUAD, and the
comutation of ARID1A was associated with worse OS than TP53
(EGFR: 75.39 months; ARID1A/EGFR comutation: 20.12 months;
TP53/EGFR comutation: 33.67 months; P < 0.01). These trends were
also observed in KRAS (EGFR: 48.36 months; ARID1A/EGFR
comutation: 18.18 months; KRAS/EGFR comutation: 26.2 months;
P < 0.0001, Figure 5C), CDKN2A (EGFR: 50.2 months; ARID1A/
EGFR comutation: 20.12 months; CDKN2A/EGFR comutation:

FIGURE 2
SWI/SNF subunit mutations in lung adenocarcinoma (LUAD). (A) The frequencies of EGFR and SWI/SNF subunit mutations in LUAD. (B) The
frequency of SWI/SNF subunit mutations in EGFR-mutant LUAD. (C) The types of SWI/SNF subunit mutations in EGFR-mutant LUAD.
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34.65 months; P < 0.0001, Figure 5D), PIK3CA (EGFR: 49.87 months;
ARID1A/EGFR comutation: 18.18 months; PIK3CA/EGFR
comutation: 28.81 months; P < 0.0001, Figure 5E), RB1 (EGFR:
50.2 months; ARID1A/EGFR comutation: 18.23 months; RB1/
EGFR comutation: 28.88 months; P < 0.0001, Figure 5F) and
PTEN mutations (EGFR: 48.82 months; ARID1A/EGFR
comutation: 20.12 months; PTEN/EGFR comutation: 31.17 months;
P < 0.0001, Figure 5G). Thus, the ARID1A mutation was associated
with poor OS in EGFR-mutant LUAD patients, and the prognostic
influence was greater than that of concurrent EGFR mutations in
TP53, KRAS, CDKN2A, PIK3CA, RB1 or PTEN.

3.3 Low ARID1A expression is associated
with poor prognosis in patients receiving
EGFR-TKIs as the first-line treatment after
postoperative progression in EGFR-
mutant LUAD

A total of 30 patients who received treatment with EGFR-TKIs as
the first-line treatment after postoperative progression were enrolled in
cohort A (Figure 6). As shown in Table 1, stratification by ARID1A
expression levels revealed 11 cases with low expression and 19 cases
with high expression. Significantly, shorter median PFS was observed in

FIGURE 3
The role of SWI/SNF subunit mutations in the prognosis of EGFR-mutant LUAD. (A-F) ARID1A, ARID1B, ARID2, ARID5B, SMARCA4, and SMARCB1.
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the ARID1A-low subgroup (10.3 vs. 30 months; HR = 2.879, 95%CI
0.996-8.320, P = 0.005; Figure 7A). Univariate Cox modeling identified
low ARID1A expression (HR = 3.377, 95%CI 1.387-8.224, P = 0.007)
and an ECOG performance status (PS) of 2 (HR = 3.775, 95%CI 1.271-
11.210, P = 0.017) as significant predictors of shorter PFS (Figure 7B).
Multivariable analysis confirmed both ARID1A deficiency (HR = 3.089,
95%CI 1.237-7.711, P = 0.016) and an ECOG-PS of 2 (HR = 3.225, 95%
CI 1.044-9.963, P = 0.042) as independent prognostic markers. These
findings indicate that loss of ARID1A expression attenuates the
response to EGFR-TKIs in EGFR-mutant LUAD patients receiving a
first-line treatment after postoperative progression.

3.4 Loss of ARID1A expression predicts a
poor prognosis in patients receiving
postoperative adjuvant EGFR-TKI treatment
in EGFR-mutant LUAD

Cohort B comprised 77 EGFR-mutant LUAD cases undergoing
postoperative adjuvant EGFR-TKIs therapy (Figure 6). ARID1A

expression stratification identified 21 cases with low expression
and 56 cases with high expression (Table 2). Survival analysis
demonstrated significantly reduced median DFS in ARID1A-low
subgroup (29 months, 95%CI 27.33-NA) compared to ARID1A-
high subgroup (NA, 95%CI 47-NA; P = 0.003)
(Figure 8A).Univariate Cox modeling revealed four adverse
prognostic factors: ARID1A deficiency (HR = 2.615, 95%CI
1.341-5.097, P = 0.005), an ECOG-PS of 2 (HR = 2.856, 95%CI
1.079-7.562, P = 0.035), Stage III (HR = 3.764, 95%CI 1.135-12.484,
P = 0.030), and N2 lymph node metastasis (HR = 2.859, 95%CI
1.611-7.038, P = 0.022). Subsequent multivariate analysis
confirmed ARID1A deficiency (HR = 2.565, 95%CI 1.258-5.228,
P = 0.010) and ECOG-PS of 2 (HR = 5.350, 95%CI 1.707-16.775,
P = 0.004) as independent DFS predictors (Figure 8B). A
prognostic nomogram integrating ARID1A score and ECOG-PS
was constructed to predict the DFS of patients (Figure 8C),
validated through the calibration curves (Figure 8D). These
findings define ARID1A deficiency as a key mediator of EGFR-
TKI resistance in EGFR-mutant LUAD patients receiving
postoperative adjuvant EGFR-TKI treatments.

FIGURE 4
Comparison of clinical features between patients with ARID1Amutations and patients with wild-type ARID1A. (A) The number of patients with distant
metastases. (B) Tumour purity. (C) The frequency of gene alterations. (D)Mutation count. (E) Fractions of genome alterations. (F) TMB. (G)MSI score. (H)
The rate of PDL1 positivity. *P < 0.05, ****P < 0.0001.
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FIGURE 5
ARID1A mutation confers a poor prognosis for patients with EGFR-mutant LUAD. (A) The frequencies of genes exhibiting coexisting mutations with
EGFR. Survival analysis for patients with the EGFR mutation, ARID1A/EGFR comutation and (B) TP53/EGFR, (C) KRAS/EGFR, (D) CDKN2A/EGFR, (E)
PIK3CA/EGFR, (F) RB1/EGFR, and (G) PTEN/EGFR comutations.
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3.5 Loss of ARID1A expression confers
resistance to osimertinib in vitro

In order to elucidate the effects of ARID1A deficiency on the
efficacy of EGFR-TKI, we employed a lentivirus to construct the
ARID1A knockdown model in EGFR-sensitive mutated PC9 cell.
ARID1A knockdown efficiency was verified by WB (Figure 9A). We
calculated the IC50 for osimertinib in PC9 cell, the results revealed
that ARID1A knockdown led to a threefold increase in the
IC50 value of osimertinib when compared to the control group
(Figure 9B). Flow cytometry showed that ARID1A knockdown
caused inhibition of cell apoptosis and pro-apoptotic effects of
osimertinib (Figure 9C). Transwell migration assay demonstrated
that ARID1A knockdown promoted cell migration and inhibited the
anti-tumor migration ability of osimertinib (Figure 9D). These
results indicate that loss of ARID1A expression attenuates the
efficacy of osimertinib in PC9 cell.

To explore the potential mechanism of ARID1A, we performed
functional analysis of ARID1A via the LinkedOmics database. We
firstly analysed the genes coexpressed with ARID1A (Figure 10A)
and used heatmaps to visualize the top 50 genes that were positively
and negatively associated with ARID1A (Figures 10B, C). GSEA was
subsequently performed on the top 100 genes coexpressed with
ARID1A. The results of the GO analysis revealed a significant

function in the regulation of chromatin remodelling and gene
expression (Figure 10D). The results of the KEGG analysis were
mainly enriched in the Hedgehog signalling pathway, regulation of
stem cells, ErbB signalling pathway, Notch signalling pathway and
oxidative phosphorylation (Figure 10E). GSEA analysis of ARID1A
was also conducted via TCGA database. The results showed that
enrichment of ARID1A was involved in the PI3K/Akt/mTOR
signalling pathway (Figure 10F). Studies have shown that
abnormal activation of the ErbB signalling pathway activates the
downstream PI3K/Akt/mTOR pathway, which are the key EGFR-
independent signalling pathways that cause resistance to EGFR-
TKIs (Liu et al., 2018). We further detected the effects of knockdown
ARID1A on the EGFR/AKT/mTOR pathway using WB. As shown
in Figure 10G, ARID1A knockdown activated the EGFR/AKT/
mTOR signalling pathway by promoting expression of p-EGFR,
p-AKT and p-mTOR. Thus, ARID1A knockdown confers resistance
to osimertinib by activating the EGFR/AKT/mTOR
signalling pathway.

4 Discussion

Although the majority of EGFR-mutant NSCLC patients
benefit from treatment with EGFR-TKIs, acquired resistance is

FIGURE 6
Flowchart of clinical study in our centre.
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inevitable, thus leading to tumor recurrence and metastasis.
Therefore, the identification of novel candidate targets to
clarify the mechanism of EGFR-TKI resistance, predict patient
response and optimize patient selection is highly important.
ARID1A, which encodes a key subunit of the SWI/SNF
complex, plays a critical role in regulating gene expression by
controlling chromatin accessibility and histone acetylation
(Zhang et al., 2023). ARID1A alterations occur across many
cancers, accounting for approximately 5%–10% of NSCLC.
Sun et al. found that ARID1A deficiency drove metastatic
progression in LUAD (Sun et al., 2021). Huang et al. revealed
that loss of ARID1A upregulated VASN expression via the
NOTCH1 signalling pathway, contributing to lung cancer
advancement (Wu et al., 2024). ARID1A deficiency due to
somatic mutations is an independent prognostic factor for
poor OS in patients with NSCLC (Hung et al., 2020). In this
study, we explored the roles of ARID1A mutations in EGFR-
mutant LUAD and concluded that ARID1A mutations are
associated with significantly poor OS and a greater proportion
of distant metastases in EGFR-mutant LUAD patients.

Emerging evidence highlights TMB and PD-L1 overexpression
as dual biomarkers predictive of ICIs response, with growing
attention to TKI therapeutic resistance. Current studies have
revealed that TMB is increased in TKI-resistant patients and
correlate with reduced OS in EGFR-driven LUAD (Offin et al.,
2019). Similarly, high PDL1 expression has been detected in EGFR-
TKI-resistant samples and shown to be correlated with primary
resistance to EGFR-TKIs (Hsu et al., 2019). In our study, a high PD-
L1 positive rate and TMB were observed in patients with ARID1A
mutations, thereby suggesting that ARID1A mutations indicate a
poor response to EGFR-TKI treatment and a poor prognosis in
patients with LUAD. Furthermore, studies have shown that
concurrent genetic alterations and genomic instability play major
roles in cancer heterogeneity and drug resistance (Skoulidis and
Heymach, 2019). Chen et al. (Guo et al., 2020) found that concurrent
genetic alterations were negatively correlated with ORR, PFS and
drug responses in patients with EGFR-mutant LUAD treated with
EGFR-TKIs as a first-line therapy. Chang et al. (Chang et al., 2019)
reported that patients with any concomitant mutations exhibited a
worse OS when treated with first-generation EGFR-TKIs. Moreover,

FIGURE 7
The role of ARID1A expression in the prognosis of EGFR-mutant LUAD patients receiving EGFR-TKIs as a first-line treatment after postoperative
progression. (A) Comparison of PFS between patients with low ARID1A expression and patients with high ARID1A expression. (B) Forest plots for the
univariate and multivariate analyses of PFS.
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FIGURE 8
The role of ARID1A in the prognosis of EGFR-mutant LUAD patients receiving postoperative adjuvant EGFR-TKI treatments. (A) Comparison of DFS
between patients with low ARID1A expression and patients with high ARID1A expression. (B) Forest plots for univariate and multivariate analyses of DFS.
(C) Nomogram for the prediction of 1-, 2- and 3-year survival. (D) Calibration curves of the nomogram.

Frontiers in Pharmacology frontiersin.org12

Yang et al. 10.3389/fphar.2025.1582005

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1582005


TP53 mutations have been identified as the most common
concurrent mutations, with 30%–65% of patients exhibiting
EGFR-mutant NSCLC (Hou et al., 2019). TP53 mutations are
associated with a poor prognosis even in patients with a good
response to initial EGFR-TKI treatment and lead to rapid
acquired resistance by initiating genetic instability and
mutagenicity (Vokes et al., 2022). Other comutations that have
been identified as independent prognostic markers for poor
prognosis include KRAS, CDKN2A, PIK3CA, RB1 and PTEN
mutations (Sun et al., 2022; Hellyer et al., 2022). In our study, we
compared the effects of ARID1A and the abovementioned six genes
coexisting with EGFR mutations on the prognosis of patients with
EGFR-mutant LUAD. The results revealed that the ARID1A
comutation subgroup exhibited a worse OS than the comutation
subgroup with the abovementioned six genes in EGFR-mutant
LUAD. Therefore, the prognostic influence of ARID1A was
greater than that of concurrent EGFR mutations in TP53, KRAS,
CDKN2A, PIK3CA, RB1 or PTEN.

Many studies have shown that ARID1A serves as a potential
predictive biomarker for cancer treatment. ARID1A deficiency
potentiates immunotherapy efficacy by elevating PD-L1
expression and TMB, impairing mismatch repair (MMR)
function, and remodelling the tumor immune microenvironment
(TIME) (Wang et al., 2020). Loss of ARID1A expression also leads to
chemotherapy resistance in a variety of tumors, including lung

cancer (Huang et al., 2024), ovarian cancer (Duska et al., 2023)
and pancreatic cancer (Li et al., 2022). There are few studies on the
prognostic effect of ARID1A on EGFR-TKI. The current study only
shows that advanced LUAD patients with low ARID1A expression
exhibited worse PFS when receiving first-line treatment with first-
generation EGFR-TKIs (Sun et al., 2023). To further investigate the
impact of ARID1A on EGFR-TKI efficacy, particularly given that the
incidence of the ARID1A comutation in EGFR-mutant LUAD is
relatively low, and loss-of-function (LOF) alterations in ARID1A are
likely to cause loss of protein expression (Jin et al., 2023). We
established two clinical cohorts to analyse the effect of ARID1A
expression on the response to EGFR-TKIs. We found that loss of
ARID1A expression was an independent predictor of poor clinical
prognosis in EGFR-mutant LUAD patients for whom treatment
with EGFR-TKIs was used as a first-line treatment after
postoperative progression (cohort A) or as a postoperative
adjuvant therapy (cohort B). We also verified that ARID1A
konckdown attenuated the efficacy of osimertinib in PC9 cell.
These data suggest that ARID1A deficiency attenuates the
response to EGFR-TKIs and is associated with poor prognosis in
EGFR-mutant LUAD patients.

EGFR-TKI resistance mechanisms encompass secondary
mutations (T790M/C797S), alternative pathway activation (MET/
HER2 amplification), histological transformation, abnormal
activation of downstream signalling pathway, and ABC

FIGURE 9
Loss of ARID1A expression confers resistance to Osimertinib in PC9 cell. (A)Western blot analysis of ARID1A protein expression in the control group
(shNC) and the knockdown group (shARID1A). (B) The IC50 for osimertinib in the control group and the knockdown group. (C) Flow cytometry analysis of
ARID1A konckdown effect on apoptosis with and without osimertinib treatment. (D) Transwell migration analysis of ARID1A konckdown effect on
migration with and without osimertinib treatment. * *P < 0.01, ****P < 0.0001.
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transporter-mediated drug efflux (Sun et al., 2022; Dhanyamraju,
2024). In order to further explore the underlying mechanism by
which the ARID1A deficiency attenuates the response to EGFR-
TKIs in LUAD. We conducted the functional analysis of ARID1A
via the LinkedOmics database. The results were mainly enriched in
the Hedgehog signalling pathway, regulation of stem cells, ErbB
signalling pathway, Notch signalling pathway and oxidative

phosphorylation (OXPHOS). We also found that enrichment of
ARID1A was involved in the PI3K/Akt/mTOR signalling pathway
via TCGA database. EGFR (ErbB-1), which is a receptor tyrosine
kinase (RTK) of the ErbB family, is activated by binding to ligands,
after which it subsequently activates downstream pathways.
Abnormal activation of the ErbB signalling pathway is involved
in abnormal activation of the PI3K/Akt/PTEN/mTOR and RAS/

FIGURE 10
ARID1A knockdown confers resistance to EGFR-TKI by activating the EGFR/AKT/mTOR signalling pathway. (A) Genes coexpressed with ARID1A. (B)
The top 50 genes that were positively associated with ARID1A. (C) The top 50 genes that were negatively associated with ARID1A. (D) GO analysis of
ARID1A coexpressed genes. CC: cellular component, BP: biological process, MF: molecular function. (E) KEGG analysis of ARID1A coexpressed genes. (F)
GSEA analysis of ARID1A via TCGA database. (G) Western blot analysis of ARID1A konckdown effect on EGFR/AKT/mTOR pathway-related protein.
*P < 0.05.
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RAF/MEK/ERK pathways, which are the key EGFR-independent
signalling pathways that cause resistance to EGFR-TKIs (Liu et al.,
2018). Our study verified that ARID1A knockdown activated the
EGFR/AKT/mTOR signalling pathway by promoting expression of
p-EGFR, p-AKT and p-mTOR in PC9 cell. Thus, ARID1A
deficiency may confer resistance to EGFR-TKIs through aberrant
activation of the EGFR-AKT-mTOR signalling axis.

The above results underscore the importance to optimize
treatment for EGFR-driven LUAD characterized by concomitant
ARID1A alterations. Metabolic reprogramming, which is a
hallmark of cancer, contributes to acquired resistance, and the
combination of an EGFR-TKI plus an inhibitor of OXPHOS
reverses EGFR-TKI resistance (Lin et al., 2023). Emerging
evidence highlights the PRC2 catalytic subunit EZH2 as a
therapeutic dependency within ARID1A-deficient malignancies,
and delineates a synthetic lethal interaction between ARID1A
dysfunction and EZH2 inhibitors (Keller et al., 2024).
Furthermore, ARID1A knockdown stimulates neovascularization
through transcriptional modulation of Ang-2; conversely, anti-
vascular therapy attenuates the invasive phenotypes of tumor
(Yoodee et al., 2021). The abovementioned studies provide a
basis for exploring a promising combination therapy strategy.
Phosphatase inhibitors, EZH2 inhibitors, and anti-angiogenic
treatment may synergize with EGFR-TKI therapy in EGFR-
mutant LUAD characterized by ARID1A deficiency.

While this study validates ARID1A deficiency as a predictive
biomarker for EGFR-TKI in LUAD, the constrained sample size
inevitably reduced the universality of the study. Larger-scale clinical
trials are essential to validate the efficacy and search for appropriate
complementary therapies.

5 Conclusion

In conclusion, our study further defines the effects of ARID1A
deficiency on outcomes in patients with EGFR-mutated LUAD, thus
suggesting that ARID1A deficiency could be an independent
prognostic marker and that this deficiency attenuates the
response to EGFR-TKIs in patients with EGFR-mutant LUAD. In
addition, loss of ARID1A expression confers resistance to EGFR-
TKI by activating the EGFR/AKT/mTOR signalling axis.
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