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Ophiopogon japonicus polysaccharides (OJPS), the principal bioactive
constituents isolated from Ophiopogon japonicus, demonstrate substantial
physiological efficacy. OJPS is characterized by a high molecular weight,
typically ranging from 2.48 to 324.7 kDa. Emerging evidence indicates that
OJPS modulates the composition and structural organization of the gut
microbiota, thereby maintaining intestinal barrier integrity and enhancing both
gastrointestinal and systemic homeostasis. Moreover, OJPS and its metabolic
derivatives engage in dynamic interactions with microbial communities,
mediating cellular signaling cascades and endocrine regulation to elicit
hypoglycemic effects. Despite these findings, comprehensive analyses of
OJPS extraction and purification methodologies, structural elucidation,
biological functionalities, and mechanistic insights into its crosstalk with the
gut microbiota remain scarce. This review systematically synthesizes
contemporary knowledge pertaining to the preparation, structural attributes,
bioactivity, and mechanistic underpinnings of OJPS, with particular emphasis
on its dual regulatory role in host physiology and gut microbial ecology.
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1 Introduction

Ophiopogon japonicus (L. f.) Ker-Gawl., a perennial herbaceous species of the family
Liliaceae, is pharmacologically characterized by its desiccated fleshy tuberous roots, which
have been extensively employed in traditional medicine. Predominantly distributed across
China, this species is widely regarded as one of the most esteemed medicinal plants in
Chinese pharmacopeia. Initially documented in the classical treatise Shennong Ben Cao
Jing, it has been historically utilized to alleviate cardiac fire, replenish yin, hydrate
pulmonary tissues, and stimulate fluid secretion. In 2024, Ophiopogon japonicus was
formally incorporated into China’s Catalog of Medicinal and Food Homologous
Substances, thereby expediting its application in patent Chinese medicines and
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functional food products. Phytochemical investigations have
elucidated a diverse array of bioactive metabolites in Ophiopogon
japonicus, including steroidal saponins, isoflavones, terpenoids, and
polysaccharides. Among these, Ophiopogon japonicus
polysaccharides (OJPS) constitute a principal bioactive fraction,
which has been demonstrated to exhibit immunomodulatory,
antioxidant, cardioprotective, cerebrovascular-protective, and
hypoglycemic activities (Wang Yang, 2023).

As the principal bioactive macromolecule, OJPS are
structurally characterized by a backbone predominantly
composed of β-fructose and α-glucose residues linked via
glycosidic bonds. The gut microbiota serves as a critical
mediator between polysaccharides and host physiological
homeostasis. Plant-derived polysaccharides not only function
as essential carbon and energy substrates for intestinal
microbial communities but also contribute to the maintenance
of intestinal barrier integrity. Microbial fermentation of
polysaccharides yields short-chain fatty acids (SCFAs), which
exert regulatory effects on the intestinal microenvironment.
Accumulating evidence from recent studies has substantiated
the regulatory role of OJPS in gut microbiota modulation. OJPS is
predominantly metabolized by gut microbiota, and its bioactive
metabolites have been demonstrated to modulate microbial
composition and diversity while concurrently mediating
systemic beneficial effects through microbiota-derived
signaling pathways. Thus, elucidating the mechanistic
interplay between OJPS and intestinal microbiota is essential
for understanding their synergistic roles in preserving intestinal
homeostasis and promoting systemic health.

In recent years, several comprehensive reviews have been
published elucidating the research progress regarding the
extraction, isolation, structural characteristics, and biological
activities of OJPS. Zhu et al. (2025) systematically documented
the preparation methodologies, structural configurations,
pharmacological properties, and potential therapeutic applications
of OJPS. Concurrently, Zhang et al. (2024) conducted a rigorous
evaluation of the extraction protocols, purification techniques,
structural elucidation, and chemical modifications of OJPS.
Notably, while these reviews have extensively covered the
methodological aspects of OJPS processing and its fundamental
bioactivities, the intricate relationship between OJPS and gut
microbiota remains insufficiently explored. Current literature
demonstrates a significant research gap in understanding the
microbiota-mediated mechanisms through which OJPS exerts its
physiological effects.

Consequently, this review comprehensively evaluates current
research progress regarding the extraction, purification, structural
characterization, and biological activities of Ophiopogon japonicus
polysaccharides (OJPS), with particular emphasis on elucidating
their microbiota-mediated effects on human health. The intricate
interactions between OJPS and gut microbiota are critically
examined, and the underlying mechanisms through which gut
microbiota maintain host homeostasis are systematically
analyzed. This review is expected to expand the utilization and
development of Ophiopogon japonicus resources, provide a
reference for the treatment of diseases related to the gut
microbiota, and provide information for drug and food
development.

2 Extraction and purification

The extraction of OJPS is predominantly performed through
aqueous ethanol precipitation, a method that effectively eliminates
impurities via alcohol sedimentation while maintaining satisfactory
extraction accuracy. However, this conventional approach is
constrained by several limitations, including prolonged
processing duration, suboptimal extraction efficiency, and
excessive energy requirements. With the development of energy
saving, environmental protection, high efficiency, and sustainability,
various new and efficient extraction methods have emerged,
including enzyme-assisted extraction, microwave-assisted
extraction, and ultrasound-assisted extraction. However, these
methods still have problems that need to be addressed; for
example, in microwave-assisted extraction, there are problems
such as solvent evaporation and uneven temperature rise, which
affect the efficiency and stability of extraction. Enzyme-assisted
extraction, owing to enzyme specificity and instability, makes the
extraction process of OJPS more complex and unstable. Similarly,
although ultrasound-assisted extraction can significantly increase
the extraction rate of polysaccharides, it can possibly alter the
glycosidic bond and affect biological activity. With the
advancement of science and technology and increasing research
on OJPS, more new methods will be more widely applied to the
extraction of OJPS, which will further improve efficiency and
sustainability. The combined use of various extraction methods is
a new approach for polysaccharide extraction (Table 1).

The extraction of OJPS through conventional methods
frequently yields products contaminated with significant
quantities of proteinaceous material, chromophoric compounds,
and flavonoid derivatives. These impurities not only adversely
affect the purity of the isolated polysaccharides but also
substantially interfere with accurate structural characterization
and reliable bioactivity evaluation. Protein removal represents a
particularly critical step in the purification process of
polysaccharides.

To obtain OJPS of pharmaceutical-grade purity suitable for
detailed analytical investigations, an optimized purification
protocol was systematically developed, incorporating
sequential decolorization, deproteinization, and dialysis
procedures. The decolorization process merits particular
attention, as residual pigment molecules have been shown to
artificially elevate molecular weight determinations through
spectroscopic interference while simultaneously creating steric
hindrance that obstructs cellular uptake pathways and
consequently diminishes biological activity. Currently
employed deproteinization techniques include the Sevage
method, enzymatic digestion approaches, trichloroacetic acid
precipitation, and combined enzyme-Sevage treatment. Recent
comparative investigations have conclusively demonstrated that
the integrated enzyme-Sevage method achieves significantly
enhanced protein removal efficiency compared to individual
techniques (Zhang et al., 2020), suggesting potential
synergistic interactions between enzymatic and chemical
purification mechanisms that warrant further investigation.

Further purification of OJPS forms the basis for exploring its
chemical structure and biological activity. This purification stage
employs physicochemical techniques guided by the molecular
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weight distribution, surface charge properties, and structural
features of the polysaccharide to enhance purity. The
implementation of established methodologies such as fractional
precipitation, ultrafiltration membrane separation, ion-exchange
chromatography, and size-exclusion chromatography enables
selective isolation of target polysaccharide fractions. Owing to the
complexity of the polysaccharide molecular structure, it is difficult to
choose an appropriate purification method to obtain highly
homogeneous polysaccharides. Stepwise precipitation is a method

that uses ethanol to precipitate polysaccharides in several gradients
according to the principle of “similar solubility” to achieve
purification. This method is typically used for large-scale
purification of polysaccharides. However, this method may lead
to intra- and intermolecular self-assembly, resulting in changes in
molecular weight and morphological features, as well as changes in
chain conformation and biological activity, making the structural
analysis of polysaccharides more difficult (Wang H. Y. et al., 2019).
Membrane separation technology is characterized by high

TABLE 1 Different extraction methods of OJPS.

Methods Principle Extraction
conditions

Extraction
rate

Evaluation References

Hydrotropic alcohol
precipitation

Utilizes water as a solvent to
disrupt cell walls, thereby
dissolving and isolating
polysaccharides

Liquid-solid ratio = 8 : 1 (mL/
g),t = 1.7 h,T = 80°C,Amount
of 95% ethanol solution 65 mL

20.17% Low cost, simple operation,
safe reagents, but long time
required, high energy
consumption

Wang Ying (2019)

Liquid-solid ratio = 20:1 (mL/
g),t = 135 min,T =
90°C,Amount of 85% ethanol
solution 60 mL

26.93% Zhang Xue-Lian
(2022)

Liquid-solid ratio = 9 : 1 (mL/
g) repeat three times, 80%
ethanol solution

10.02% Zhang Jing (2021)

Liquid-solid ratio = 10 : 1 (mL/
g),t = 4 h,T = 100°C, 95%
ethanol solution

10% Wang et al. (2019a)

Enzyme extraction Enzyme treatment can destroy
the cell wall or cleave the
macromolecular structure,
reduce the extraction resistance
and increase the polysaccharide
yield

Liquid-solid ratio = 35:1 (mL/
g),pH = 5.0, T = 45°C,t =
120 min,Enzyme dosage 0.5%

4.12% High efficiency, mild reaction
conditions,low energy
consumption, but high cost,
poor enzyme stability, easy
inactivation

Huang Shan (2009)

Microwave extraction The penetrating and selective
heating of microwave can
quickly destroy the cell
structure and promote the
dissolution of polysaccharides

Liquid-solid ratio = 40:1 (mL/
g), t = 20 min,T = 40°C

13.8% Even heat distribution, short
time, but high energy
consumption, high cost

Lu Shaoling (2018)

Liquid-solid ratio = 60:1 (mL/
g), t = 20 min, P = 700 w

8.20% Xiang (2007)

Ultrasound extraction The high-frequency vibration
and cavitation of ultrasound can
destroy cell structure and
enhance solvent permeability
and mass transfer efficiency

Liquid-solid ratio = 20: 1 (mL/
g),T = 41°C, t = 51 min,P =
250 W

20. 98% High efficiency, short time,
low energy consumption, but
the required cost is high, high
operation requirements

Feng Si-Si (2024)

Liquid-solid ratio = 22:1 (mL/
g), t = 27 min, P = 200 W

39.49% Wen and Su (2023)

Ultrasonic conditions were:
240 W ultrasonic treatment
lasting 10 s, with an interval of
15 s; repeated 90 times

8.74% Wang et al. (2018)

Ultrasonic condition: 80 W
ultrasonic treatment for 10 s,
with an interval of 15 s;
repeated 90 times

11.87% Wang L. Y. et al.
(2012)

Ultrasound-assisted dual-
phase aqueous extraction

Extraction and separation are
based on the difference in
solubility of substances in two
immiscible phases.Ultrasound-
assisted extraction, on the other
hand, damages the cellular
structure of the plant and
enhances solute dissolution and
diffusion through the technique
of “cavitation”

Liquid-solid ratio = 17: 1 (mL/
g),ethanol concentration of
34%, ammonium sulfate
concentration of 23%, P =
480 W

9.41% ± 0.12% Low cost, high efficiency, can
significantly improve the
purity of polysaccharides

Tian et al. (2024)

Frontiers in Pharmacology frontiersin.org03

Li et al. 10.3389/fphar.2025.1583711

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1583711


separation efficiency and high applicability. For example, OJPS
maximally retains the original active metabolites after ceramic
membrane ultrafiltration and its purification effect is better than
that of high-speed centrifugation and direct decompression
concentration (Li Jing, 2017). In addition, column
chromatography is a commonly used method in the separation
of OJPS, such as gel chromatography, anion-exchange
chromatography, and macroporous resin column
chromatography. Column chromatography has high separation
efficiency and stable performance and is suitable for the
separation of OJPS with different molecular weights. In gel
chromatography column chromatography, commonly used gels
include Sephadex and Sepharose, which utilize the principle of
size exclusion and varying concentrations of salts and buffer
solutions as eluents to purify some of the proteins and pigments
in adsorbed OJPS In addition, column chromatography is a
commonly used method in the separation of OJPS, such as gel

chromatography, anion-exchange chromatography, and
macroporous resin column chromatography. Column
chromatography has high separation efficiency and stable
performance and is suitable for the separation of OJPS with
different molecular weights. Subsequently, in gel chromatography
column chromatography, commonly used gels include Sephadex
and Sepharose, which utilize the principle of size exclusion and
varying concentrations of salts and buffer solutions as eluents to
purify some of the proteins and pigments in adsorbed OJPS (Wen
and Su, 2023).

Consequently, the development of an optimized purification
system that ensures both high efficiency and reproducibility while
minimizing procedural variability represents a critical research
priority. Such advancement is essential to eliminate potential
confounding factors that may interfere with the accurate
structural elucidation of OJPS and subsequent biological activity
assessments.

TABLE 2 Chemical composition of OJPS.

Name Molecular
weight (kDa)

Monosaccharide
composition

Molar ratio
(nmol)

Method Refences

MDG-1 4.8 Fru,Glc 35:1 HPLC,UV,1H NMR,13C NMR Xu et al. (2005)

AP-1 124.3 — — HPGPC Huang Ni (2011)

AP-2 324.7 — — HPGPC Huang Ni (2011)

AP-3 6.7 — — HPGPC Huang Ni (2011)

OJPS-
2-SG

125 Man,Gal,Glc,Rha 5.15:26.39:8.7284 HPGPC,UV,FT-IR Tian et al. (2024)

OJP2 35.2 Rha,Ara,Xyl,Glc,Gal 0.5:5:4:1:10 HPGPC,GC-MS Fan Y. P. et al.
(2015)

OPF-1 48 Fru,Glc 16:1 HPLC,GC,IR Lv et al. (2012)

OJP1 35.2 Ara,Glc,Gal 1:16:8 HPGPC,GC Chen et al. (2010)

POJ-U1b 4.02 Glc GC,FT-IR,1H NMR,13C NMR Wang X. M. et al.
(2012)

OJP-W1 2.48 Fru,Glc 17:1 HPGPC,1H NMR,13C NMR,FT-IR Wang et al. (2019b)

OJP 1 35.2 Ara,Glc,Gal 1:16:8 GC,HPGPC Chen et al. (2013)

ROH05 16.7 Gal HPGPC,RID,UV,GC-MS,1H NMR 和

13C NMR
Gu et al. (2018)

LSP 4.742 Glc,Fru 28:1 GC,GC-MS,infrared, NMR Gong et al. (2017)

OJP 4.925 Glc,Fru 29:1 GC,GC-MS,infrared, NMR Gong et al. (2017)

LMP 4.138 Glc,Fru 24:1 GC,GC-MS,infrared, NMR Gong et al. (2017)

ORP-1 3.667 Glc,Fru 0.85 : 0.15 HPGPC,IC,FT-IR,NMR Wang et al. (2023)

OJZ — Fru,Glc,Ara,Man,Gal,Xyl 93.65:6.48:1.00:0.88:
0.76:0.39

HPSEC-MALLS-RID,HPAEC-PAD Chen et al. (2022)

OJC — Fru,Glc,Ara,Man,Gal,Xyl 175.10:12.83:1.00:1.21:
1.08:0.37

HPSEC-MALLS-RID,HPAEC-PAD Chen et al. (2022)

LM — Fru,Glc,Ara,Man,Gal,Xyl 253.30:21.98:1.00:0.65:
0.58:0.33

HPSEC-MALLS-RID,HPAEC-PAD Chen et al. (2022)

LS Fru,Glc,Ara,Man,Gal,Xyl 236.06:17.31:1.00:0.89:
0.64:0.35

HPSEC-MALLS-RID,HPAEC-PAD Chen et al. (2022)

POJ 19.315 KDa Glc, Man, Gal,Xyl 4.35:5.21:1.34: 1 PMP-Precolumn Derivatization、
infrared

Ren et al. (2022)
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3 Structural characterization

Polysaccharides exhibit complex and distinctive structural
configurations that fundamentally govern their biological
activities and functional properties. The biological potency of
polysaccharides is determined by multiple structural parameters,
including monosaccharide composition, glycosidic linkage patterns,
and molecular weight (Mw) distribution. OJPS demonstrate a broad
Mw range of 2.48-324.7 kDa (Table 2), typically presenting as high-
molecular-weight polymers with considerable polydispersity.
Structural analyses reveal that OJPS primarily consist of β-
(1→4)-linked glucose and β-(1→3)-linked fructose residues in
the main chain, featuring acetyl modifications and rhamnose
branch points. This structural heterogeneity not only influences
fundamental physicochemical characteristics (e.g., aqueous
solubility and solution viscosity) but also directly modulates
biological activity. Monosaccharide composition analyses indicate
the predominant presence of glucose (Glc) and fructose (Fru), with
minor constituents including arabinose (Ara), galactose (Gal), and
mannose (Man). Certain OJPS fractions may additionally contain
rhamnose (Rha) residues. Notably, acetylated OJPS fractions have
been demonstrated to exhibit enhanced macrophage-stimulating
capacity, while non-acetylated counterparts are more susceptible to
microbial degradation into bioactive oligosaccharides within the
gastrointestinal tract (Gu et al., 2018). Comparative studies have
revealed significant structural variations between OJPS preparations
obtained through different extraction methodologies. For instance,
ultrasonically extracted POJ-U1a displays distinct structural
characteristics compared to its hot water-extracted counterpart,
likely attributable to ultrasound-induced glycosidic bond cleavage
(Wang L. Y. et al., 2012). Geographical variations significantly
impact OJPS composition, as evidenced by phytochemical
analyses. Chen et al. (2010) reported modest variations in
polysaccharide content and monosaccharide profiles across
different cultivation regions, harvest years, and Ophiopogon
subspecies. Subsequent investigations by Xin Ya et al. (2024)
systematically compared nine geographical sources, revealing
consistently higher polysaccharide yields in Zhejiang-origin
specimens relative to Sichuan-derived materials. While the
fructose-to-glucose molar ratios remain comparable
(approximately 15:1 vs. 14:1, respectively) between these regional
variants (Chen et al., 2022), Zhejiang OJPS demonstrates superior
antioxidant and immunostimulatory activities. This enhanced
bioactivity may be attributed to differential contents of minor
monosaccharides (Man, Ara, and Xyl), which have been
correlated with antioxidant capacity and immunomodulatory
potential. Further investigation is required to elucidate the
structure-activity relationships governing these pharmacological
effects and to establish quantitative correlations between
physicochemical properties and biological responses.

4 Biological activities of OJPS

4.1 Hypoglycemic activity

Diabetes mellitus (DM) represents a heterogeneous group of
metabolic disorders characterized by persistent hyperglycemia, with

growing evidence indicating that OJPS possess considerable
therapeutic potential against diabetes and its associated
complications (He et al., 2023). Type 2 diabetes mellitus
(T2DM), primarily driven by insulin resistance, manifests as
systemic dysregulation of carbohydrate, lipid, and protein
metabolism. Experimental investigations have demonstrated that
OJPS administration effectively mitigates organ damage in diabetic
models through dual mechanisms of reducing oxidative stress
markers including malondialdehyde (MDA) and lipid
peroxidation products while simultaneously enhancing
endogenous antioxidant defense systems (Ding et al., 2025). The
antidiabetic effects of OJPS are further mediated through
improvement of insulin sensitivity via modulation of the InsR/
IRS-1/PI3K/Akt/GSK-3β/Glut-4 signaling pathway, resulting in
significant amelioration of characteristic metabolic abnormalities
including hyperglycemia, hyperinsulinemia, and dyslipidemia in
diabetic KKAy mice (Wang X. M. et al., 2012). It should be
emphasized that while the KKAy murine model serves as a
valuable tool for investigating obesity-associated diabetes, its
translational relevance to human T2DM may be limited due to
inherent differences in disease progression and pathophysiology.
The metabolic phenotype of this spontaneous polygenic model is
intrinsically shaped by progressive obesity development, potentially
restricting its utility for studying advanced diabetic complications.
Notably, OJPS has been shown to confer pancreatic β-cell protection
through multiple mechanisms. Comprehensive studies by Mao et al.
(2020) revealed that OJPS enhances glucose-stimulated insulin
secretion in pancreatic β-cells while concurrently suppressing IL-
1β-mediated inflammatory responses through inhibition of the IKK-
NF-κB pathway. These beneficial effects were consistently observed
across both genetic (db/db) and dietary (high-fat diet-induced)
murine models of diabetes, accompanied by significant
preservation of functional β-cell mass. The observed variability in
therapeutic efficacy among different OJPS preparations likely stems
from extraction method-dependent structural heterogeneity,
suggesting the existence of important structure-activity
relationships that merit further investigation to optimize
therapeutic potential.

Furthermore, OJPS has been demonstrated to exert therapeutic
effects on diabetic nephropathy and gestational diabetes mellitus
through multiple mechanisms, primarily via attenuation of chronic
hyperglycemia and reduction of serum albumin concentrations
(Wang et al., 2015). Experimental evidence indicates that specific
polysaccharide fractions derived from Ophiopogon japonicus
effectively suppress cardiomyocyte apoptosis in diabetic
atherosclerotic rabbit models. This cardioprotective effect is
mediated through modulation of critical signaling pathways,
including downregulation of the AGE-RAGE axis and regulation
of apoptosis-related proteins such as JNK, caspase-3, and Bcl-2 (Jin
et al., 2020).

4.2 Antioxidant activities

The current landscape of antioxidant therapeutics is
predominantly dominated by synthetic compounds, which are
frequently associated with undesirable side effects. This
limitation has prompted growing scientific interest in the
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exploration of naturally derived antioxidants, which are
increasingly recognized for their diverse biological sources,
favorable safety profiles, and potent biological activity (Lei
et al., 2021). Ophiopogon japonicus polysaccharides (OJPS)
have been demonstrated to exhibit remarkable antioxidant
properties through multiple mechanisms. Experimental studies
have revealed that OJPS effectively scavenges reactive oxygen
species, including hydroxyl radicals, superoxide anions, and 1,1-
diphenyl-2-picrylhydrazyl (DPPH) radicals, while simultaneously
enhancing the activity of endogenous antioxidant enzymes such as
superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GSH-Px) in murine hepatic and serum samples
(Wang X. et al., 2017). The red ginseng-Ophiopogon japonicus
complex polysaccharide (SMP-AP) has been identified as a
bioactive metabolite capable of mitigating oxidative stress-
related cellular damage through modulation of cellular defense
systems. In hydrogen peroxide (H2O2)-challenged IPEC-J2 cells,
OJPS treatment was shown to significantly elevate total antioxidant
capacity (T-AOC) and augment the activities of GSH-Px and SOD,
thereby counteracting oxidative damage and reducing
malondialdehyde (MDA) accumulation. Furthermore, OJPS was
found to upregulate the expression of nuclear factor erythroid 2-
related factor 2 (Nrf2) and its downstream antioxidant genes,
conferring protection against H2O2-induced oxidative stress in
HepG2 cells (Kang et al., 2023). Additional investigations have
elucidated the protective effects of OJPS against 1-methyl-4-
phenylpyridinium (MPP+)-induced cytotoxicity in PC-12 cells.
These effects were mediated through cellular rejuvenation,
suppression of apoptotic pathways, amelioration of oxidative
and endoplasmic reticulum (ER) stress, restoration of
mitochondrial function, and inhibition of the Notch signaling
pathway (Liu and Li, 2018). Moreover, OJPS has been shown to
activate the AMP-activated protein kinase (AMPK)/Nrf2/heme
oxygenase-1 (HO-1) signaling axis, leading to enhanced
expression of SOD, GSH-Px, and CAT mRNA, which
collectively ameliorated exercise-induced hepatic injury in
murine models (Ren et al., 2022). The relationship between
extraction parameters and antioxidant efficacy was
systematically investigated by Wang et al. (2018), who
demonstrated that ultrasound-assisted extraction power
significantly influences the antioxidant capacity of OJPS.
Maximum radical scavenging activity was observed at an
optimal ultrasonic power of 400 W, with antioxidant
performance following a biphasic pattern of initial enhancement
followed by attenuation as ultrasonic intensity increased. These
findings suggest that the antioxidant potential of OJPS is closely
associated with its molecular weight distribution and structural
modifications, highlighting the importance of optimized
extraction protocols for maximizing bioactivity.

Recent studies demonstrate that Ophiopogon japonicus tea
enhances antioxidant capacity in paraquat-exposed
Caenorhabditis elegans, extending lifespan while ameliorating
age-related pharyngeal dysfunction and reducing lipofuscin
accumulation (Yu et al., 2018). Furthermore, Ophiopogon-
containing phytochemical formulations attenuate fibroblast
senescence by suppressing p38 MAPK and p53/p21 pathways
(Xiang et al., 2023). These findings indicate OJPS’s therapeutic
potential for oxidative stress-related disorders.

4.3 Cardioprotective activity

OJPS exhibits cardioprotective effects by enhancing cellular
antioxidant defenses and maintaining cardiomyocyte viability.
Doxorubicin (DOX)-induced cardiotoxicity, mediated through
iron-dependent oxidative damage, was significantly attenuated by
OJPS via Nrf2/GPX4 axis activation, as demonstrated by Chen et al.
(2025). This mechanism effectively reduced iron-porphyrin
complex accumulation in cardiac models. Further studies reveal
OJPS protects vascular endothelial cells under oxidative stress. Li L.
C. et al. (2017) reported OJPS mitigated H2O2-induced apoptosis
and inflammation in HUVECs by regulating Bax/Bcl-2 ratio and
suppressing caspase-3 activation. Similar protection was observed in
brain microvascular endothelial cells, where OJPS alleviated high
glucose-induced damage through NF-κB/COX-2 pathway
inhibition (Gu et al., 2016). OJPS also demonstrates therapeutic
potential in myocardial injury models. Chen et al. (2019) found
OJPS enhanced TGF-β1-mediated cardiomyocyte survival while
reducing ROS accumulation and suppressing Wnt/β-catenin and
NF-κB signaling. In isoprenaline-induced cardiac injury, OJPS
treatment normalized electrocardiographic parameters, decreased
cardiac enzyme levels (AST, LDH, CK, CK-MB), and restored
ATPase activity (Fan et al., 2020). These findings collectively
establish OJPS as a multifunctional cardioprotective agent
targeting oxidative stress and inflammatory pathways (Figure 1).

While extensive in vitro studies have demonstrated OJPS’s
cardioprotective effects through multiple pathways, current in
vivo investigations remain limited by the use of homogeneous
animal models. This underscores the critical need for developing
more diverse cardiovascular disease models to better evaluate OJPS’s
therapeutic potential.

4.4 Immunomodulatory activity

OJPS has good immune-enhancing and stimulating effects (Liu
et al., 2017). Meanwhile, OJPS can significantly enhance the
immunization effect of the live Newcastle disease vaccine,
indicating its synergistic immune-enhancing effect (Song et al.,
2016). OJPS prepared as Ophiopogonan polysaccharide liposomes
(OPL) can enhance the activation of macrophages, which can
significantly improve their immune activity (Fan S. et al., 2015;
Sun et al., 2016), and can also significantly enhance splenocyte
proliferation as well as cytokine levels, antigen-specific antibody
titers, and immune organ indices in OVA-immunized mice (Fan
et al., 2016). OPL also enhances the immunoreactivity of KCs by
activating the TLR4-NFκB signaling pathway, thereby regulating
miR-1338 and miR-4796 and inhibiting cell apoptosis (Cui et al.,
2022; Duan et al., 2021). In addition, OPL was able to regulate the
expression of miR-14, which was able to significantly increase the
phagocytic activity of KCs, promote the expression of iNOS and
CD14, and reduce the level of apoptosis and secretion of ROS (Xing
Xue et al., 2022). Ophiopogon japonicus inhibited proliferation,
induced apoptosis, and inhibited the migration of NCI-H1299 cells
(Liu et al., 2022). Ophiopogon japonicus extracellular
polysaccharides (EPSs) reduce protease activity that inhibits the
migration of gastric cancer cells, thus exerting antitumor activity
(Xu et al., 2018). OJPS enhances the metabolic activity of
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macrophages by increasing the expression of MHC II, CD40, CD80,
and CD86 (Lv et al., 2016).

Although the cardioprotective mechanisms of Ophiopogon
japonicus polysaccharides (OJPS) have been extensively
elucidated through in vitro studies, their therapeutic potential
remains insufficiently characterized in vivo due to the
predominant use of standardized animal models. This limitation
highlights the necessity for establishing more sophisticated and
clinically relevant cardiovascular disease models to
comprehensively assess OJPS’s pharmacological efficacy.

5 Gut microbiota modulation effects

Ophiopogon japonicus has been extensively utilized as both a
dietary supplement and a therapeutic agent to enhance human
health and manage chronic diseases, primarily through
modulation of the gut microbiota and maintenance of intestinal
homeostasis. However, the systemic bioavailability of orally
administered polysaccharides is restricted due to their high
molecular weight and structural complexity, with most exerting
bioactivity via gut microbial fermentation rather than direct
intestinal absorption. Consequently, the interaction between
polysaccharides and the gut microbiota is regarded as the
predominant mechanism underlying their physiological effects
(Gan et al., 2022).

The gut microbiota is dynamically influenced by diverse
intrinsic and extrinsic factors, including geographical
environment, dietary patterns, and host pathological states
(Zhernakova et al., 2016; Gong et al., 2020). Alterations in
microbial composition are driven by sustained chemical,
physical, or biological stressors, such as chronic consumption
of high-sugar/high-fat diets, irregular eating habits, and
prolonged antibiotic exposure. OJPS exhibits broad-spectrum
bioactivities, encompassing anti-inflammatory, antioxidant,
antiviral, antitumor, and anti-aging properties, as well as
modulatory effects on gut microbiota composition and
intestinal immunity (Xue et al., 2024). Notably, OJPS has
demonstrated efficacy and a favorable safety profile in
preclinical models (Ye et al., 2023). Critically, OJPS serves as a
promising therapeutic candidate for chronic diseases, primarily
via remodeling gut microbial architecture, enhancing beneficial
bacterial proliferation, and restoring microbiota-host metabolic
crosstalk (Li et al., 2024a).

The gut microbiota is tightly regulated by host physiological
processes and encodes a diverse repertoire of carbohydrate-active
enzymes (CAZymes), which catalyze the depolymerization of
dietary polysaccharides into absorbable monosaccharides
(Holscher, 2017). Through microbial fermentation, indigestible
polysaccharides are metabolized into SCFAs, such as acetate,
propionate, and butyrate, which enhance intestinal nutrient
absorption and serve as bioactive metabolites. SCFAs reduce

FIGURE 1
Diagram of the molecular mechanism of the Cardioprotective activity of OJPS. Created by Figdraw.

Frontiers in Pharmacology frontiersin.org07

Li et al. 10.3389/fphar.2025.1583711

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1583711


luminal pH, establishing a mildly acidic colonic
microenvironment that selectively promotes the proliferation
of commensal probiotics (e.g., Lactobacillus and
Bifidobacterium) while suppressing pathogenic colonization,
thereby maintaining gut homeostasis. Additionally, SCFAs act
as signaling molecules or systemic energy substrates via portal
circulation, mediating both local mucosal immunity and
extraintestinal physiological responses (Yue et al., 2022).
Collectively, these findings underscore a symbiotic relationship
between polysaccharides and gut microbiota, highlighting their
profound implications for intestinal and systemic health.

5.1 Effect of OJPS on gut microbiota

Polysaccharides and gut microbiota maintain a symbiotic
relationship characterized by bidirectional modulation (Huang
et al., 2022). These compounds significantly influence both the
phylogenetic composition and functional capacity of intestinal
microbial communities, while gut microbiota mediate
polysaccharide metabolism and subsequent host physiological
effects. Microbial dysbiosis has been implicated in metabolic
disorder pathogenesis, suggesting microbiota modulation

represents a viable therapeutic strategy. Polysaccharides
regulate intestinal microecology through two primary
mechanisms: microbial fermentation of complex
carbohydrate structures generates metabolites that support
microbial growth and ecological stability, while their
prebiotic activity selectively promotes beneficial taxa (e.g.,
Bacteroides, Roseburia) and inhibits pathogenic organisms,
ultimately altering microbial diversity and functional
potential (Wang et al., 2025).

As demonstrated in Figure 2, Ophiopogon japonicus
polysaccharides (OJPS) exhibit distinct prebiotic
characteristics through selective enrichment of commensal
bacterial populations, effectively modulating gut microbial
phylogenetic composition and functional diversity to maintain
intestinal homeostasis (Song et al., 2021). Functioning as
preferential microbial substrates, OJPS fermentation
significantly enhances beneficial genera (Lactobacillus,
Bifidobacterium) while inhibiting pathogenic colonization.
Quantitative analyses have confirmed OJPS-mediated increases
in Bacteroidetes, Actinobacteria and Firmicutes populations,
with concurrent suppression of Enterococcus and Shigella
species. However, the molecular mechanisms governing these
microbial interactions and their dynamic regulation remain to be

FIGURE 2
The interaction between OJPS and the gut microbiota. Created by Figdraw.
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fully elucidated, necessitating further investigation to establish
robust therapeutic applications.

The red ginseng-Ophiopogon japonicus complex
polysaccharide (SMP-NP) has been shown to stimulate in vitro
proliferation of multiple Lactobacillus strains, particularly L.
johnsonii BS15, while enhancing production of short-chain fatty
acids including lactic acid and acetic acid, consequently acidifying
the culture medium (Kang et al., 2023). In murine models, OJPS
administration has been demonstrated to ameliorate high-fat diet-
induced microbial dysbiosis by preserving Actinobacteria and
Bifidobacteria populations while reducing fungal colonization
(Wang S. N. et al., 2019). Furthermore, OJPS treatment
effectively restored the physiological balance of Tenericutes and
Bacteroidetes in obese mice, concurrently promoting beneficial
genera (Alistipes, Ruminiclostridium, Rikenella) and suppressing
pathogenic species (Lactococcus, Enterorhabdus, Turicibacter)
(Wang X. et al., 2019). Notably, in non-alcoholic fatty liver
disease models, OJPS supplementation has been found to
enhance microbial diversity, with Akkermansia muciniphila
identified as a key mediator capable of fermenting OJPS
metabolites into acetate and propionate - metabolites inversely
associated with disease progression (Zhang et al., 2022).

However, the precise molecular mechanisms underlying A.
muciniphila’s therapeutic effects require further investigation.

5.2 Effects of OJPS on intestinal epithelium

The intestinal mucosal barrier is principally constituted by a
monolayer of epithelial cells interconnected through tight junctions,
which critically regulate paracellular permeability and establish an
essential physical barrier (Zhang et al., 2021). As the predominant
cellular constituents of this barrier, intestinal epithelial cells (IECs)
actively maintain intestinal immune homeostasis via complex
interactions with lamina propria cells (Liu et al., 2020; Xie et al.,
2019). As depicted in Figure 3, OJPS has been shown to exert
multifaceted protective effects on intestinal barrier function. These
effects are mediated through the upregulation of tight junction
protein expression, amelioration of mucosal immune dysfunction,
and modulation of inflammatory mediators, collectively leading to
enhanced barrier integrity and reduced intestinal permeability.
Importantly, these beneficial effects are further potentiated by
bioactive metabolites generated through microbial
fermentation of OJPS.

FIGURE 3
The interaction between OJPS and intestinal epithelium. Created by Figdraw.
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Yuan and Ying (2017) found that Ophiopogon japonicus and
Astragalus complex polysaccharides could attenuate the deleterious
effects on the intestinal mucosal barrier by inhibiting pro-
inflammatory factors (e.g., TNF-α, IL-2, and IL-6) and
stimulating the release of anti-inflammatory factors (IL-10).
Studies have shown that colitis can be alleviated by inhibiting
inflammation-related factors and repairing the intestinal mucosal
barrier (Li et al., 2022). An OJPS/chitosan/wheat protein (WP)-
assembled nanoparticle, can effectively inhibit the production of NO
and the expression of genes such as iNOS, COX2, TNF-α, CCL, etc.,
and thus attenuate the inflammatory response. OJPS nanocarriers
are also effective in preserving the integrity of the intestinal epithelial
barrier, preventing the damage caused by the inflammation in LPS-
stimulated macrophages, and alleviating intestinal epithelial TJ
barrier and permeability defects (Lin et al., 2020).

In addition, butyrate, a metabolite of the gut, significantly
promotes the expression of tight junction proteins (e.g., cld-1,
occludin, and ZO-1) in the ileum, thereby improving intestinal
epithelial permeability (Peña-Rodríguez et al., 2022). In addition to
stimulating the growth of beneficial bacteria through anaerobic
fermentation of the intestinal microbiota, OJPS promotes the
production of additional SCFAs in the gut. Therefore, it is
hypothesized that OJPS protects the intestinal barrier by
producing metabolites such as SCFAs.

Therefore, it is hypothesized that OJPS protects the intestinal
barrier by producing metabolites such as SCFAs.

5.3 Antidiabetic activity mediated by gut
microbiota and OJPS

Type 2 diabetes mellitus (T2DM) is a common metabolic
disorder characterized by insulin resistance and beta-cell
hypoplasia. The occurrence of T2DM is associated with various
factors such as human genetics, dietary habits, and exercise. Some
studies have shown that an imbalance in the gut microbiota is one of
the causative factors of T2DM (Wu et al., 2020). Studies have shown
that the composition of the gut microbiota changes significantly
before and after the onset of diabetes (Blandino et al., 2016). The
relative abundance of intestinal Lactobacillus, Bifidobacterium,
Bacteroides, Thick-walled phylum, Clostridium, and Ackermann’s
bacilli decreases in patients with T2DM compared to normal
subjects (Li et al., 2024b; Dong et al., 2025; Gurung et al., 2020),
while the relative abundance of Rumatococcus, Brachybacterium,
and Clostridium increases. The etiology of T2DM goes beyond
changes in a single microorganism and is associated with the
diversity of the gut flora and the balance of the gut flora. Food-
assisted modulation of the gut microbiota for the prevention and
treatment of diabetes is a new and viable approach (Figure 4).

Studies have shown that polysaccharides can regulate the
composition of the gut microbiota, thereby improving diabetic
blood glucose levels. Chinese botanical-based polysaccharides
such as astragalus polysaccharide (Song et al., 2022), dendrobium
polysaccharide (Chen et al., 2023), and mulberry huang

FIGURE 4
The Antidiabetic activity mediated by OJPS and gut microbiota. Created by Figdraw.
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polysaccharide (Ni et al., 2023) have been reported to ameliorate
diabetes mellitus by improving the composition of the gut
microbiota. ojps, which reduces the ratio of phylum Thickwiella/
anabolic bacillus in C57BL/6 mice, alters the lactobacillus Bacillus
spp. amino acid metabolism, and modulate abnormal gut
microbiota (Shi et al., 2015). Meanwhile, OJPS can increase the
number of intestinal probiotic flora such as Lactobacillus
rhamnosus, Lactobacillus taiwanensis, Lactobacillus spp. and
Bifidobacterium bifidum, and reduce the proliferation of harmful
bacteria such as Escherichia coli and Streptococcus spp (Shi Lin-Lin,
2015; Yi, 2011).

Secondly, abnormal levels of SCFAs are one of the mechanisms
that induce diabetes. Most polysaccharides cannot be directly
digested and absorbed by the body, but are fermented by
anaerobic bacteria in the gut to short-chain fatty acids SCFAs,
the vast majority of which are located in the colon and absorbed
by intestinal epithelial cells (Smith et al., 2013). Common SCFAs-
producing bacteria include Bacteroides, Bifidobacterium, and
Streptococcus. Abnormal SCFAs-producing bacteria can lead to
abnormal levels of SCFAs (Karlsson et al., 2013). SCFAs can not
only act directly on pancreatic β-cells to control their number and
function, but also affect the transport of colon epithelial cells and
accelerate the metabolism of colon epithelial cells (Ma et al., 2019).
In addition, abnormal SCFAs lead to the release of inflammatory
factors triggering intestinal inflammation, which impairs islet cell
function and leads to insulin resistance (Takeuchi et al., 2023).
Studies have shown that OJPS can restore gut microbiota
homeostasis and increase the relative abundance of SCFAs-
producing bacteria. OJPS, when degraded and utilized by the gut
flora, increased the content of SCFAs and significantly increased the
expression of the SCFA endogenous receptors G protein-coupled
receptor (GPR) 41 and GPR 43. These produced SCFAs bind GPR
and activate peroxisome proliferator-activated receptor (PPAR) γ,
thereby limiting energy intake and downregulating blood glucose
levels (Wang H. Y. et al., 2019).

In addition, the gut microbiota can alter the composition of bile
acids and the activation of their receptors, thereby affecting the
development of diabetes. Also, bile acids can inhibit the
overproliferation of gut bacteria (Shi et al., 2016; Li X. et al.,
2017). OJPS can adsorb and reduce bile acids in the intestinal
lumen, affecting the metabolic synthesis of primary bile acids,and
inhibiting their enterohepatic circulation. At the same time, the gut
microbiota can produce a variety of metabolites that mediate the
regulation of GLP-1 (Liang et al., 2024), which promotes insulin
secretion and can play a key role in glucose metabolism. Some
studies have shown that OJPS can significantly increase the
expression level of GLP -1 in serum and upregulate the
expression of GCK and GLUT4, thus enhancing insulin secretion
and improving glucose metabolism in rats (Jia Yixin, 2023). Yunyun
et al. found the hypoglycemic activity of OJPS in diabetic mice
through the metabolome of feces. Hypoglycemic activity (Zhu et al.,
2014) MDG-1 increased monosaccharide and succinate content,
improved intestinal environment, inhibited intestinal glucose
absorption and hepatic glucose catabolism, and induced the
secretion of GLP-1 from L cells. Meanwhile, OJPS could also
attenuate diabetes mellitus and diabetic nephropathy by
decreasing 7H-pyridine and 20-deoxyglucoside. In addition, OJPS
can significantly increase the activity of LXRα and then increase the

transcriptional activity of CYP7A1, which accelerates the conversion
of cholesterol to bile acids, i.e., OJPS can regulate the synthesis,
secretion, and reabsorption of bile acids, and ultimately improve
glucose tolerance and insulin resistance in mice (Wang Y. C.
et al., 2017).

6 Discussions and future perspectives

OJPS, a principal bioactive metabolite derived from
Ophiopogon japonicus, has garnered considerable attention
owing to its extensive pharmacological properties. Recognized as
a prominent traditional Chinese medicine with health-promoting
effects, OJPS has emerged as a focal point in research pertaining to
metabolic disorders and immunomodulation, attributable to its
structural heterogeneity, multi-target bioactivity, and regulatory
influence on gut microbiota. In this review, the advancements in
OJPS research are systematically examined, encompassing its
extraction methodologies, structural characterization,
pharmacological mechanisms, and interactions with the gut
microbiome. Furthermore, its potential therapeutic utility as a
natural bioactive compound is elucidated, while the limitations of
current investigations and prospective research directions are
critically discussed.

Traditional investigations have predominantly centered on the
direct pharmacodynamic effects of OJPS, including the amelioration
of insulin resistance through the PI3K/Akt signaling pathway and
the modulation of inflammatory responses via the TLR4/NF-κB
pathway. However, emerging evidence suggests that the biological
activity of OJPS may be intrinsically linked to its regulatory role in
the gut microbiota-host metabolic axis. The production of SCFAs
provides a mechanistic explanation for the systemic metabolic
effects of OJPS despite its limited oral bioavailability, thereby
substantiating the existence of a “microbiota-metabolite-host”
axis. OJPS has been demonstrated to selectively enrich SCFA-
producing bacterial taxa, such as Bifidobacterium and
Lactobacillus, while suppressing the proliferation of endotoxin-
secreting species (e.g., Escherichia coli), thereby enhancing the
functionality of the microbiota-gut-brain axis. OJPS-derived
metabolites have been implicated in interorgan communication.
Butyrate, generated through OJPS fermentation, activates FFAR2 on
intestinal L cells, stimulating GLP-1 secretion and improving insulin
sensitivity. Conversely, propionate modulates energy homeostasis
by crossing the blood-brain barrier, suppressing appetite-related
neuropeptide expression in hypothalamic neurons. Furthermore,
OJPS has been shown to attenuate high-fat diet-induced intestinal
hyperpermeability by upregulating tight junction protein expression
and enhancing mucin secretion, thereby mitigating systemic
inflammation associated with endotoxin translocation.

OJPS represents a novel therapeutic approach that integrates
traditional Chinese medicine with Western medical paradigms for
diabetes mellitus treatment through intestinal microecological
regulation. This strategy embodies the pharmacological
advantages of a ‘multi-metabolite, multi-target’ intervention.
Experimental studies have demonstrated that OJPS
administration significantly ameliorates fasting glucose levels,
insulin resistance, and dyslipidemia in diabetic model animals.
These therapeutic effects were concomitant with restoration of
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gut microbial diversity and increased abundance of specific
beneficial bacterial taxa. Notably, OJPS exhibits selective
microbiota-modulating properties, particularly in suppressing the
excessive proliferation of conditionally pathogenic bacteria.
Subsequent metabolomic analyses revealed significant elevation in
fecal SCFA levels, including butyrate and propionate, coupled with
reduced endotoxin (LPS) concentrations in treated subjects. These
findings strongly suggest that the amelioration of microbiota-host
metabolic interactions constitutes the core mechanistic basis for
OJPS-mediated therapeutic effects.

Current research on OJPS has achieved significant progress, yet
several critical issues remain to be addressed through further
investigation. The structural heterogeneity of OJPS has been
identified as a potential determinant of its bioactivity, as
functional variations have been observed among polysaccharide
fractions derived from the same extraction batch. This
underscores the necessity for comprehensive structure-activity
relationship analyses. Furthermore, while the microbiota-
modulating effects of OJPS have been preliminarily characterized,
current investigations remain largely descriptive, focusing
predominantly on compositional changes in microbial
populations without elucidating the underlying metabolic
pathways or establishing causal relationships. To advance
understanding, integrated multi-omics approaches should be
employed to systematically delineate the complex interplay
between OJPS, gut microbiota, and host physiology. Such studies
would facilitate identification of crucial regulatory nodes, whether
specific microbial taxa or metabolic pathways, within the OJPS-
microbiota-host network.

Recent advances in OJPS formulation strategies have
demonstrated promising therapeutic applications. A notable
study by Lin et al. (2022) developed chitosan/OJPS/casein
hydrolysate (CS/OJPS/CL) co-assembled biodegradable
nanoparticles, which were shown to significantly enhance the
protective effects of OJPS against Ni2+-induced cytotoxicity and
suppress LPS-stimulated nitric oxide production more effectively
than OJPS alone. These findings suggest that polysaccharide-protein
nanocomplexes may serve as efficient nanocarriers for oral delivery
of bioactive polysaccharides. Furthermore, OJPS has been
successfully employed to improve the biopharmaceutical
properties of tetrandrine (THSG), including enhanced
bioavailability and prolonged pharmacological activity (Sun et al.,
2018). Collectively, these innovative approaches provide valuable
insights for expanding the therapeutic applications of OJPS through
advanced formulation technologies.

7 Conclusion

This investigation elucidates the intricate interactions between
OJPS and gut microbiota, highlighting its potential pharmaceutical
and nutraceutical applications. Current research progress in gut
microbiota-disease correlations has enabled more precise
characterization of specific microbial species and their
metabolic byproducts. Distinct microbial signatures and

associated metabolic profiles have been identified as potential
diagnostic biomarkers. As a bioactive prebiotic agent, OJPS
exhibits therapeutic efficacy in intestinal homeostasis
maintenance through selective microbiota modulation,
presenting novel intervention strategies for microbiota-related
disorders while supporting overall host health.
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