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Objectives: Ensuring quality and authenticity of traditional medicines is crucial,
particularly formulti-ingredient formulations like commercial Chinese polyherbal
preparations (CCPPs). This study aims to authenticate Renshen Jianpi Wan
(RSJPW), a classical CCPP composed of 11 prescribed botanical drugs, using
DNA metabarcoding to overcome challenges in species-level identification of
processed biological ingredients.

Methods: We analyzed 56 commercial RSJPW products from different
manufacturers and production batches, alongside eight laboratory-prepared
reference samples serving as authentic controls. A dual-marker protocol
combining ITS2 and psbA-trnH regions was employed, with optimized DNA
extraction and PCR protocols to mitigate degradation issues.

Results: Detection rates varied across samples, with the highest detection being
10 out of 11 prescribed ingredients in a single sample. The key fungal ingredient
Poria cocos (茯苓) was consistently undetectable, likely due to DNA degradation
during processing and challenges in extracting fungal DNA from complex
matrices. Multiple high-abundance non-prescribed species from Fabaceae,
Apiaceae, Brassicaceae, and other families were frequently detected as
potential contaminants.

Conclusions: This study establishes a systematic framework for molecular
authentication of complex herbal formulations, providing technical support for
reliable identification of botanical drugs. While DNA metabarcoding offers
valuable insights into CCPP composition, authentication of heavily processed
ingredients remains a significant technical limitation. The integration with
complementary analytical methods such as metabolomics could provide more
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comprehensive quality assessment in future studies, demonstrating the necessity
of multi-analytical approaches in ensuring the authenticity of traditional medicine.

KEYWORDS

commercial Chinese polyherbal preparations, DNA metabarcoding, ITS2, PSBA-TRNH,
quality control

1 Introduction

Traditional herbal medicine has been a cornerstone of global
healthcare systems for millennia, offering natural therapeutic
approaches deeply rooted in diverse cultural and theoretical
frameworks. The COVID-19 pandemic has renewed global
interest in these remedies, particularly for their potential roles in
symptom management and immune system modulation,
highlighting their adaptability and accessibility during public
health crises (Lyu et al., 2021). This resurgence of interest
coincides with the substantial growth of traditional Chinese
medicine (TCM) market, which was valued at $231.3 billion in
2023 and is projected to reach $420.7 billion by 2032, with a
compound annual growth rate (CAGR) of 6.87% (Business
Research Insights, 2024). This expansion is driven by increasing
consumer preference for natural healthcare products, greater
awareness of alternative medicine, and a broader shift toward
preventive health strategies (Emergen Research, 2024). Despite
this market growth, significant challenges persist regarding the
safety, efficacy, and authentication of traditional herbal products.
These concerns are particularly acute in regions where herbal
medicines serve as primary healthcare options, such as China,
Bangladesh, India, Vietnam, and South Africa (Zhang B. et al.,
2022). The lack of standardized regulation and comprehensive
scientific validation of potential adverse effects continues to
impede their global acceptance and integration into modern
healthcare systems (You et al., 2022).

China, as the largest producer and consumer of herbal
medicines, faces particular challenges in the authentication of
Commercial Chinese Polyherbal Preparations (CCPPs) (Xia et al.,
2022)—standardized pharmaceutical preparations derived from
traditional herbal prescriptions. The accurate authentication of
medicinal material sources is particularly critical for quality
control, as the therapeutic efficacy of CCPPs directly depends on
using the correct plant species in their preparation. Recent incidents
have highlighted critical issues in product safety and authenticity.
Documented cases include the substitution of Isotrema
manshuriensis (Kom.) H. Huber with Akebia quinata (Houtt.)
Decne. in Longdan Xiegan Wan (Xin et al., 2018a), or the
detection of undeclared toxic aconite in Bisset (1981).
Additionally, products such as Simotang (Yi et al., 2012) have
raised public health concerns due to the presence of potentially
carcinogenic substances like betel nut. These incidents not only
jeopardize consumer trust but also reveal systemic vulnerabilities in
authentication methods.

Traditional authentication methods, including microscopic
identification (Zhao et al., 2005) and thin-layer chromatography
(TLC) (Zhang et al., 2018), have long been employed in the quality
control of botanical drugs. However, these methods face significant
limitations in dealing with the complexity of CCPPs, which often

involve processed and multi-ingredient formulations. As herbal
formulations become more sophisticated and diverse, there is a
growing need for more advanced approaches to ensure product
quality and regulatory compliance. DNA metabarcoding,
introduced by Taberlet et al. (2012) in 2012, has emerged as a
transformative tool for species identification by enabling the
simultaneous detection of multiple species within complex
samples. This method uses genetic markers to amplify specific
regions of DNA, allowing for the comprehensive analysis of
species composition in herbal preparations. Coghlan et al. (2012)
utilized high-throughput sequencing to analyze herbal preparations
and identified a wide range of plant and animal species, including
toxic and endangered species. Since then, DNA metabarcoding has
been increasingly adopted for biodiversity biomonitoring and
environmental assessments (Miya, 2022; Pawlowski et al., 2022),
and its application in CCPP authentication has gained increasing
recognition for its accuracy and efficiency (Arulandhu et al., 2017;
Gao et al., 2019; Liu et al., 2019; Seethapathy et al., 2019; Yu et al.,
2021; Shah et al., 2023).

This study focuses on Renshen Jianpi Wan (RSJPW), a
representative traditional CCPP with extensive clinical application.
The formula, first recorded in Zhengzhi Zhunsheng Leifang by
Kentang Wang during Ming Dynasty, includes 11 botanical drugs
with distinct therapeutic roles. These botanical drugs, including
Ginseng Radix et Rhizoma (Renshen), Atractylodis Macrocephalae
Rhizoma (Baizhu), Poria (Fuling), andDioscoreae Rhizoma (Shanyao)
etc., are commonly used to strengthen the spleen and stomach,
promote digestion, regulate qi, and alleviate various gastrointestinal
disorders (Zu et al., 2023). Its widespread use is evidenced by its
current market presence. According to the National Medical Products
Administration database, 141 pharmaceutical companies hold
production licenses for RSJPW, with over 40 manufacturers
actively selling their products. However, quality concerns have
emerged alongside its increasing market demand. For instance, the
National Medical Products Administration reported quality
deficiencies in five batches of RSJPW from three manufacturers in
2010 (The Central People’s Government of the People’s Republic of
China, 2010). Current quality control methods, as specified in the
Chinese Pharmacopoeia Committee (2020), only provide
authentication protocols for 6 out of the 11 prescribed botanical
drugs and rely primarily on operator-dependent techniques.
Moreover, these methods cannot effectively detect unauthorized
substitutions or adulterations. The complex manufacturing process
of RSJPW, which involves pulverization, drying, and high-temperature
processing, poses additional challenges for quality control by
potentially degrading DNA and other chemical markers. These
factors make RSJPW an ideal candidate for exploring advanced
authentication approaches.

In this study, we developed and validated a DNA
metabarcoding-based method for systematic authentication of the
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biological composition of RSJPW. By analyzing both reference
materials and commercial samples, we aimed to establish a
reliable authentication strategy that addresses the technical
challenges in authenticating complex herbal formulations. Our
method was specifically designed to detect both legitimate
botanical drugs and potential adulterants, with particular
attention to discriminating between Panax ginseng C. A. Mey.
and its common adulterant (Chen et al., 2013), Panax
quinquefolius L. This research provides not only a practical tool
for RSJPW species authentication but also demonstrates a
systematic approach to DNA-based authentication of CCPPs.

2 Materials and methods

2.1 Materials

2.1.1 Collection and identification of raw materials
The RSJPW formula comprises 11 medicinal ingredients

(Table 1): Ginseng Radix et Rhizoma (Renshen), Atractylodis
Macrocephalae Rhizoma (Baizhu, stir-fried with wheat bran),
Poria (Fuling), Dioscoreae Rhizoma (Shanyao), Citri Reticulatae
Pericarpium (Chenpi), Aucklandiae Radix (Muxiang), Amomi
Fructus (Sharen), Astragali Radix (Huangqi, honey-processed),
Angelicae Sinensis Radix (Danggui), Ziziphi Spinosae Semen
(Suanzaoren, stir-fried), and Polygalae Radix (Yuanzhi,
processed). Raw materials were collected from authorized

traditional Chinese medicine pharmacies and certified online
pharmaceutical platforms during 2022–2023. Additionally,
Panacis Quinquefolii Radix (P. quinquefolius, Xiyangshen), a
common adulterant of Ginseng Radix et Rhizoma, was included
as a positive control. All materials were stored in airtight bags at
room temperature (20–25°C) with relative humidity maintained
below 60% until analysis.

The morphological identification of botanical drugs was
performed by Dr. Jing Zhou according to the macroscopical
identification criteria specified in the Chinese Pharmacopoeia
(2020), including examination of characteristic features such as
shape, size, color, surface, texture, fracture (cross-sectional
appearance), odor, and other distinctive physical properties of the
medicinal parts. For molecular identification, DNAwas extracted from
each botanical drug separately. The internal transcribed spacer 2 (ITS2)
and psbA-trnH intergenic spacer regions were amplified following the
guidelines in the Chinese Pharmacopoeia Committee (2020).
However, as Poria (Fuling), a fungal medicinal material, cannot be
amplified using the ITS2 and psbA-trnH primers specified in the
Pharmacopoeia, we used ITS primers ITS1 (5′-TCCGTAGGTGAA
CCTGCGG-3′) and ITS4 (5′-TCCGCTTATTGATATGC-3′) for its
identification (Qin et al., 2023). The sequencing data were analyzed
using BLAST against the GenBank database (NCBI), with a sequence
similarity threshold of ≥99% and query coverage ≥95% for species-
level identification. This molecular approach, combined with
morphological identification, ensured the accurate identification of
the collected raw materials for subsequent quality analysis.

TABLE 1 Composition and Botanical Sources of prescribed ingredients in RSJPW (Chinese Pharmacopoeia, 2020).

Herbal ingredients Dosage (g) Ratio (%) Medicinal part Botanical source Family

Ginseng Radix et Rhizoma (Renshen) 25 4 Root and Rhizome Panax ginseng C.A. Mey Araliaceae

Atractylodis Macrocephalae Rhizoma
(Baizhu)

150 24 Rhizome Atractylodes macrocephala Koidz Asteraceae

Poria (Fuling) 50 8 Sclerotium Poria cocos (Schw.) Wolf Polyporaceae

Dioscoreae Rhizoma (Shanyao) 100 16 Rhizome Dioscorea polystachya Thunb Dioscoreaceae

Citri Reticulatae Pericarpium (Chenpi) 50 8 Fruit Citrus reticulata Blanco Rutaceae

Aucklandiae Radix (Muxiang) 12.5 2 Root Aucklandia costus Decne Asteraceae

Amomi Fructus (Sharen) 25 4 Fruit Amomum villosum Lour Zingiberaceae

A. villosum var. Xanthioides
T.L. Wu et Senjen

A. longiligulare T.L. Wu

Astragali Radix (Huangqi) 100 16 Root Astragalus membranaceus var.
Mongholicus (Bye.) Hsiao

Fabaceae

A. membranaceus (Fisch.) Bge

Angelicae Sinensis Radix (Danggui) 50 8 Root Angelica sinensis (Oliv.) Diels Apiaceae

Ziziphi Spinosae Semen (Suanzaoren) 50 8 Seed Ziziphus jujuba var. Spinosa
(Bunge) Hu ex.H.F. Chou

Rhamnaceae

Polygalae Radix (Yuanzhi) 25 4 Root Polygala tenuifolia Willd Polygalaceae

P. sibirica L.

Panacis Quinquefolii Radix (Xiyangshen) 12.5 2 Root Panax quinquefolius L. Araliaceae
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2.1.2 Collection of commercial samples
A total of 56 commercial RSJPW samples from

12 manufacturers were collected in 2022–2023. Each
manufacturer contributed 2 to 6 batches of samples, which were
purchased frommajor online pharmaceutical platforms and licensed
brick-and-mortar pharmacies across China (Supplementary Table
S1). All samples were within their shelf life and stored according to
the manufacturer’s instructions until analysis.

2.1.3 Preparation of reference materials
Two sets of reference materials were prepared to validate the

detection method. The authenticated raw materials (including P.
quinquefolius) were individually ground and sieved. For the
standard formula reference set (RF05−RF08), the 11 medicinal
ingredients were weighed and mixed according to the
proportions specified in the Chinese Pharmacopoeia (2020)
(Table 1). The mixture was then processed into pills (10 g each)
according to standard procedures. For the positive control set
(RF01−RF04), P. quinquefolius powder was incorporated at
1.96% w/w (equivalent to the proportion of Aucklandiae Radix)
into the standard formula before pill formation.

2.2 Development of DNA metabarcoding
method for authentication

2.2.1 DNA extraction
After preliminary comparison of two extraction methods

(CTAB and commercial kit), the plant genomic DNA extraction
kit (Beijing Biomed Gene Technologies Co., Ltd.) was selected and
optimized for CCPPs. The protocol was optimized through the
following modifications: (1) cleaning samples with 75% ethanol; (2)
adding Tris-HCl buffer (pH 8.0) during grinding; and (3) extending
the water bath duration. To maximize DNA recovery, extracts were
processed in triplicate with subsequent combination during AC
column adsorption.

DNA quality and concentration were assessed using a
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,
United States).

2.2.2 PCR amplification
ITS2 and psbA-trnH regions were selected as complementary

markers following recommendations from the Consortium for the
Barcode of Life (CBOL) and previous studies demonstrating their
effectiveness in botanical drug authentication (Kress and Erickson,
2007; Chen et al., 2010; Yao et al., 2022). ITS2 provides superior
species-level resolution for medicinal plants, and psbA-trnH offers
robust discriminatory power even in processed materials. This dual-
marker approach has been validated in multiple studies as
particularly effective for traditional medicine authentication,
providing complementary identification power when analyzing
complex botanical formulations (Arulandhu et al., 2017).
Universal primers were modified with sample-specific 6-bp tags
at their 5′ ends (Supplementary Tables S1, S2). PCR was performed
using TransStart Fastpfu DNA Polymerase (TransGen AP221-02) in
a 20 μL reaction system: 10 μL of 2× Pro Taq buffer, 0.8 μL of
forward primer (5 μM), 0.8 μL of reverse primer (5 μM), 4 μL of
template DNA (10 ng/μL), and ddH2O added to a final volume of

20 μL. Specific amplification conditions for each marker are detailed
in Supplementary Table S2.

2.2.3 Library construction and sequencing
The PCR products were visualized on 2% agarose gel

electrophoresis and purified using the AxyPrep DNA Gel
Extraction Kit (AXYGEN). DNA quantification was performed
using the QuantiFluor™-ST Blue Fluorescence Quantification
System (Promega). Libraries were constructed using the TruSeq™
DNA Sample Prep Kit according to the manufacturer’s protocol.
Paired-end 300 bp sequencing was performed on the Illumina
MiSeq platform by Majorbio Bio-pharm Technology Co., Ltd.
(Shanghai, China). The raw sequence data has been submitted to
NCBI wth the accession number of PRJNA1242227.

2.2.4 Bioinformatic analysis
Raw sequence data processing and analysis were performed

using QIIME two software v. 2021.2 (Hall and Beiko, 2018).
After quality assessment using q2-demux, primers and sample-
specific tags were removed with q2-cutadapt. Quality filtering
parameters were set as follows: minimum quality score of 25,
trimming of first 10 bases, and maximum expected errors of 2.0.
The filtered sequences were processed using q2-dada2 for denoising,
paired-end read merging and chimera removal. Feature tables and
representative sequences were generated, and their statistics were
analyzed using the feature-table summarize command. To minimize
potential sequencing artifacts and improve data reliability,
Amplicon Sequence Variants (ASVs) with fewer than 10 reads
per sample were filtered out, a threshold determined based on
the complexity of botanical drug matrices and sequencing depth.

For accurate species identification, each representative sequence
was manually compared against the NCBI GenBank database using
BLAST, with stringent criteria optimized for RSJPW authentication
(sequence similarity ≥98% and query coverage ≥95%). To ensure
specificity in the context of traditional Chinese medicine, only plant
species documented in Chinese pharmacopoeia were considered as
valid matches to avoid false positives from closely related species.
For diversity analysis, alpha diversity (Shannon index) was
calculated using the q2-diversity plugin to evaluate species
richness and evenness across samples. Beta diversity analysis was
performed using Bray-Curtis distances, and the results were
visualized through Principal Coordinates Analysis (PCoA) to
examine compositional differences between samples. The analysis
was optimized to address the unique challenges of RSJPW, focusing
on comparing species composition and relative abundances across
different commercial samples to evaluate formula consistency and
detect potential adulterations in this complex preparation.

2.2.5 Method validation
The reproducibility and reliability of the established workflow

was validated through parallel reference samples. Two sets of
quadruplicate reference samples were prepared: RF01−RF04
(spiked with P. quinquefolius) and RF05−RF08 (without P.
quinquefolius) serving as positive controls and quality control
materials, respectively. The validation protocol included: (1)
Technical reproducibility through consistency analysis of species
detection across quadruplicate samples; (2) Method specificity by
comparing species profiles between samples with and without P.
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quinquefolius; (3) Cross-validation of species detection between
ITS2 and psbA-trnH markers. Sixteen unique 6-bp tags were
designed and appended to the 5′ end of the universal primers for
both ITS2 and psbA-trnH sequences (Supplementary Table S1) to
distinguish PCR amplicons from different samples.

3 Results

3.1 Authentication of RSJPW raw materials

All 11 medicinal ingredients used in the RSJPW formula, along
with the positive control P. quinquefolius, were verified through both
morphological and molecular approaches. Morphological
characteristics of all materials matched their corresponding
authentic descriptions in Chinese Pharmacopoeia (2020). For
molecular authentication, ITS2 and psbA-trnH sequences
showed ≥99% similarity to their corresponding authentic species
in reference databases, except for the fungal material Poria cocos
(Schw.) Wolf (Poria) which was authenticated using ITS region due
to its taxonomic classification. All raw materials were authenticated
as genuine species documented in Chinese Pharmacopoeia (2020).

3.2 Development and validation of DNA
metabarcoding workflow for botanical
ingredient authentication

A stepwise DNA metabarcoding workflow was established to
authenticate and profile the biological ingredients of RSJPW

(Figure 1), which comprises four main steps: sample processing,
molecular amplification, high-throughput sequencing, and
bioinformatic species annotation.

The sequencing quality assessment showed robust data
generation, with a total of 291,339 and 439,257 reads obtained
for ITS2 and psbA-trnH regions, respectively, all of which
achieved a mean Q30 quality score exceeding 95% (Table 2). The
Shannon rarefaction curves (Figures 2A, B) reached clear plateaus,
indicating sufficient sequencing coverage to capture species diversity
within RSJPW samples.

The workflow validation was conducted using eight laboratory-
prepared RSJPW reference samples, including four spiked with P.
quinquefolius (RF01−RF04) and four standard formula samples
(RF05−RF08). After quality filtering, ITS2 and psbA-trnH regions
yielded 66 and 59 ASVs, respectively (Table 2; Supplementary Table
S3). ITS2 marker detected seven prescribed ingredients with
relatively consistent detection across replicates, including P.
ginseng C. A. Mey., Aucklandia costus Decne., Amomum villosum
Lour., Astragalus membranaceus (Fisch.) Bge., Angelica sinensis
(Oliv.) Diels, Z. jujuba var. Spinosa (Bunge) Hu ex.H.F. Chou,
and Polygala tenuifolia Willd. In the cross-validation analysis
using psbA-trnH marker, P. ginseng and Ziziphus jujuba var.
Spinosa were consistently detected, while Dioscorea polystachya
Thunb. Was uniquely identified by this marker, demonstrating
complementary detection capabilities of the two markers. The
positive control P. quinquefolius was specifically identified in
spiked samples (RF01−RF04) while absent in standard formula
samples (RF05−RF08), demonstrating the workflow’s sensitivity
and its ability to identify formula adulteration. However, despite
their successful authentication in raw materials, Citrus reticulata

FIGURE 1
Workflow for biological ingredient monitoring of RSJPW using DNA metabarcoding.
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Blanco, P. cocos, and Atractylodes macrocephala Koidz. Were not
detected in the prepared formula samples by either marker
(Table 3; Figure 3).

3.3 Analysis of commercial RSJPW samples

3.3.1 Sequencing results and prescribed
ingredients detection

High-throughput sequencing of 56 commercial RSJPW samples
using ITS2 and psbA-trnHmarkers yielded high-quality data (Q30 >
94%, Table 2). Shannon rarefaction curves also plateaued for all
samples, indicating sufficient sequencing depth for species diversity
assessment (Figures 2C, D). Post-quality filtering, ITS2 sequencing
generated 941 ASVs across commercial samples (13–175 ASVs per
sample), while psbA-trnH produced 842 ASVs (3–151 ASVs per
sample) (Figure 4; Supplementary Tables S4, S5). These values
considerably exceeded those from reference samples (66 and
59 ASVs for ITS2 and psbA-trnH, respectively), indicating
enhanced biological complexity in commercial formulations.

The two markers exhibited complementary detection patterns
for prescribed ingredients. ITS2 demonstrated complete detection
(100%) for Z. jujuba var. spinosa, with high detection rates for P.
ginseng and A. membranaceus (94.64%), as well as A. sinensis
(91.07%). However, ITS2 failed to detect P. cocos and D.
polystachya across all samples. For psbA-trnH analysis, A.
sinensis showed complete detection (100%), followed by Z. jujuba
var. spinosa (92.86%). Notably, psbA-trnH uniquely identified D.
polystachya (78.57%) but showed limited detection of P. tenuifolia
(3.57%). Five prescribed ingredients (A. macrocephala, P. cocos, C.
reticulata, A. costus, and A. villosum) remained undetected by psbA-
trnH. When combining both markers, 10 out of 11 prescribed
ingredients were successfully detected in the commercial samples,
with detection frequencies varying from 3.57% to 100%. Thus, the
combined use of both markers enabled the detection of a broader
range of species, with each marker contributing unique detection
capabilities.

The relative abundance of detected species, inferred from
sequencing reads, showed substantial variation among samples
(Supplementary Tables S6, S7), suggesting potential differences in
ingredient proportions across manufacturers. Due to the variable
detection patterns across the 56 batches and incomplete detection of
all prescribed ingredients, direct correlation analysis between read
abundance and ingredient proportions in the original RSJPW
formula was not feasible.

3.3.2 Non-prescribed species identification
Metabarcoding analysis using dual markers (ITS2 and psbA-

trnH) revealed substantial non-prescribed species contamination in
commercial RSJPW samples. These species can be classified into
three categories: non-formula medicinal plants, food crops, and
wild plants.

A total of 120 non-prescribed species (Tables 4, 5;
Supplementary Table S8) were identified using the ITS2 region,
representing 43 different families. Species from the Leguminosae
and Apiaceae families were the most prevalent. Verbena officinalis L.
had the highest relative abundance with 23,911 reads across
36 ASVs, and was detected in 25% of samples. Other frequentlyT
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detected species included Alnus nepalensis D. Don (44.64%),
Cucurbita moschata Duchesne (39.29%), and Triticum aestivum
L. (42.86%). Moreover, we also identified closely related species or
potential substitutes of the prescribed ingredients, such as
Hedysarum polybotrys Hand.-Mazz., a substitute for A.
membranaceus, and several confusable varieties of P. ginseng,
including P. quinquefolius, P. japonicus (T. Nees) C. A. Meyer
and Codonopsis pilosula (Franch.) Nannf., etc. Beyond plant
species, two fungi- Bacillus altitudinis and Dimargaris
bacillispora, were also detected by the ITS2 sequence, both
exclusively in samples from the manufacturer TY.

Parallel analysis using the psbA-trnH sequence verified the findings
of ITS2 in terms of species composition patterns and revealed an
additional 55 non-prescribed species (Supplementary Table S9) from
26 different families. Species from the Leguminosae and Salicaceae
families were predominant.Arachis hypogaea L. had the highest relative
abundance, with a total of 62,146 reads across 9 ASVs, and a detection
frequency of 64.29%. In addition, Salix alba L. (48.21%), Polygonum
multiflorum Thunb. (16.07%), and Ziziphus mauritiana Lam., a known
adulterant of Z. jujuba var. spinosa, (16.07%) were also frequently
detected. Notably, Paeonia rockii (S.G. Haw and Lauener) T. Hong and
J.J. Li, a first-class protected plant in China, was detected in 10.71% of
the samples, with a total read count of 3,135.

3.3.3 Batch-to-batch and manufacturer variation
Metabarcoding analysis successfully detected all prescribed

species except P. cocos. However, distinct inter-manufacturer and
inter-batch variations in both ASV abundance and species detection
profiles were revealed (Supplementary Tables S4, S5).

ITS2 sequencing demonstrated marked manufacturer-specific
variation in ASV diversity. Ziziphus jujuba var. spinosa exhibited the
most substantial variation, with manufacturer TY samples yielding
52–82 ASVs compared to <12 ASVs from other manufacturers.
Amomum villosum displayed moderate variation (1–18 ASVs). In

contrast, core prescribed species, including P. ginseng, A.
macrocephala, C. reticulata, A. costus, A. membranaceus, A. sinensis,
and P. tenuifolia, maintained consistent ASV profiles (1–4ASVs) across
all manufacturers. The psbA-trnH marker analysis corroborated these
variation patterns, with notably high ASV counts in Z. jujuba var.
spinosa samples frommanufacturerML (77–94ASVs). Additionally,D.
polystachya and A. sinensis showed elevated diversity in specific
manufacturers, while the remaining prescribed species maintained
relatively stable profiles across all sources.

Species detection rates exhibited substantial heterogeneity across
manufacturers and batches. In ITS2 analysis, manufacturers showed
varying levels of consistency in species detection: YH and TR
demonstrated reliable performance by consistently detecting 6 out
of 11 prescribed species across all batches, while other manufacturers
displayedmore variable detection patterns. Detection capability ranged
from high-performing batches, such as KM02 which detected up to
9 species, to notably poor performance in some cases, with certain TY
batches detecting only a single species in psbA-trnH analysis. This
heterogeneity in detection rates is consistent with the observed
variations in ASV profiles and is further supported by PCoA
analysis (Figure 5), which revealed manufacturer-specific clustering
patterns ranging from highly cohesive (as seen in TY samples) to
broadly dispersed distributions, suggesting varying levels of
standardization and quality control among manufacturers.

4 Discussion

4.1 DNA metabarcoding for botanical drug
authentication in CCPP: advantages and
challenges

Commercial Chinese polyherbal preparations (CCPPs) are
typically composed of multiple biological drugs with complex

FIGURE 2
Rarefaction curves based on Shannon index. (A) ITS2 sequences from reference samples; (B) psbA-trnH sequences from reference sanples; (C)
ITS2 sequences from commercial samples; (D) psbA-trnH sequences from commercial samples.
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TABLE 3 Detection of prescribed ingredients in RSJPW reference samples using ITS2 and psbA-trnH markers.

Herbal ingredients ITS2 psbA-trnH

RF01 RF02 RF03 RF04 RF05 RF06 RF07 RF08 RF01 RF02 RF03 RF04 RF05 RF06 RF07 RF08

Ginseng Radix et Rhizoma (Renshen) √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Atractylodis Macrocephalae Rhizoma (Baizhu) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

Poria (Fuling) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

Dioscoreae Rhizoma (Shanyao) -- -- -- -- -- -- -- -- √ √ √ √ √ √ √ √

Citri Reticulatae Pericarpium (Chenpi) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

Aucklandiae Radix (Muxiang) √ √ √ √ √ √ √ √ -- √ √ -- -- -- -- √

Amomi Fructus (Sharen) √ √ √ √ √ √ √ -- -- -- -- -- -- -- -- --

Astragali Radix (Huangqi) √ √ √ √ √ √ √ √ -- -- -- -- -- -- √ √

Angelicae Sinensis Radix (Danggui) √ √ √ √ √ √ √ √ -- -- -- -- -- -- -- --

Ziziphi Spinosae Semen (Suanzaoren) √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Polygalae Radix (Yuanzhi) √ √ √ √ √ √ √ √ -- -- -- -- -- -- -- --

Panacis Quinquefolii Radix (Xiyangshen) √ √ √ √ -- -- -- -- -- -- -- -- -- -- -- --

Note: -: the ingredient was not detected for the sample. Boldface indicates positive control herbal ingredients.
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sources. The frequent inconsistencies between pharmacopoeia-
specified materials and their substitutes present unique challenges
in quality assessment, which directly impact therapeutic reliability
and safety. While current analytical methods, including
chromatography and mass spectrometry, are valuable for specific
aspects of quality assessment, they lack the capability for
simultaneous multi-ingredient authentication (Wang et al., 2021).
DNA metabarcoding overcomes this limitation by enabling
comprehensive detection of multiple species in complex mixtures
(Taberlet et al., 2012; Urumarudappa et al., 2020; Pandit et al., 2021;
Raclariu et al., 2021; Travadi et al., 2023). This approach
demonstrated high efficiency in our study by successfully
identifying 10 out of 11 prescribed ingredients in RSJPW
samples. The complementary use of ITS2 and psbA-trnH
markers enhanced detection comprehensiveness through their
distinct molecular characteristics (Lv et al., 2020; Zhu et al.,
2022). ITS2’s broad taxonomic coverage enables wide species
identification, while psbA-trnH’s specific amplification efficiency
compensates for ITS2’s limitations in certain taxa. For instance,
while ITS2 successfully identified most botanical materials, psbA-
trnH specifically enabled the detection of D. polystachya, likely due
to its conserved chloroplast genome regions that remain intact
during processing.

The method’s enhanced sensitivity revealed both
environmental contamination and authentication issues that
conventional TLC (Raclariu et al., 2017b) and HPLC-MS
(Raclariu et al., 2017a) techniques might overlook. Multiple
high-abundance non-prescribed species from Fabaceae,
Apiaceae, and Brassicaceae were frequently detected, raising

significant quality control concerns. The primary sources may
include field contamination during harvesting where non-target
plants grow alongside medicinal plants, cross-contamination
during processing on shared production lines, possible storage
contamination as well as challenges in completely removing
environmental DNA from raw materials. The presence of
related species suggested potential cross-contamination or
deliberate substitution during manufacturing (Liu et al.,
2021b). Fungi were detected in the samples of some
manufacturers (TY), suggesting improper preservation of
botanical drugs in the production process. These contaminants
could potentially affect therapeutic efficacy or safety through
unexpected biological activities or allergenicity. These findings
provide crucial insights into critical control points in the
production chain that require strengthened monitoring (Liu
et al., 2018). Notably, the identification of a nationally
protected Class I species (P. rockii) in commercial samples
demonstrated the technique’s value in conservation
monitoring and regulatory compliance, highlighting the need
for systematic oversight in raw material sourcing. Our findings
thus emphasize the importance of implementing more rigorous
quality control measures throughout the supply chain, including
stricter source material authentication, improved cleaning
procedures, dedicated production lines to prevent cross-
contamination, and regular DNA metabarcoding screening as
part of quality control protocols.

However, like any analytical method, DNA metabarcoding
faces specific technical challenges, particularly regarding DNA
integrity and processing effects. The failure to detect P. cocos and
variable detection rates of A. macrocephala and C. reticulata
revealed distinct DNA degradation patterns related to processing
methods and taxonomic differences. Poria cocos, being a fungal
ingredient, represents a taxonomic limitation of our plant-
optimized markers. The ITS2 and psbA-trnH markers selected
for this study are plant-specific, with the primers designed to
preferentially amplify plant DNA. Fungal ingredients would
require different marker regions and primers specifically
optimized for fungal DNA, such as the full ITS region (ITS1-
5.8S-ITS2) with fungal-specific primers. This highlights the need
for multi-marker approaches when analyzing complex
formulations containing ingredients from diverse taxonomic
origins. For plant ingredients, processing-related DNA
degradation presented variable challenges. The high-
temperature processing of A. macrocephala, which typically
involves stir-frying at 180–220°C, likely leads to DNA
fragmentation, as thermal treatment is known to cause DNA
degradation through denaturation (Karni et al., 2013).
Additionally, oxidative metabolites in aged C. reticulata peel
directly interfere with DNA stability (Li et al., 2024). These
processing-specific DNA degradation mechanisms emphasize
the importance of considering molecular integrity in quality
control protocols (Li et al., 2023).

DNA metabarcoding should be integrated with other analytical
approaches for comprehensive quality assessment. Its unique ability
to detect both intended and unexpected ingredients makes it
valuable for CCPP botanical drug authentication, despite
limitations with processed materials. The integration with
chemical analysis methods, particularly metabolomics, could

FIGURE 3
ASV abundances for detected species in reference samples. (A)
ASV abundances through ITS2 analysis; (B) ASV abundances through
psbA-trnH analysis.
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provide both qualitative authentication and quantitative
composition assessment, offering a more complete quality control
solution (Coghlan et al., 2015; Gao et al., 2023). This integrated
approach would provide complementary authentication
perspectives, i.e., DNA metabarcoding identifies the biological
origins, while metabolomics characterizes the bioactive
metabolites. By detecting characteristic metabolites specific to
each botanical ingredient, metabolomic profiling can confirm the
presence of medicinally relevant compounds even when DNA is
heavily degraded, enabling authentication at both the species level
(DNA) and functional level (metabolites). Combined datasets could
also help establish correlations between botanical ingredients and
their metabolite profiles, potentially creating more robust
authentication frameworks for complex formulations.

4.2 Technical optimization and
methodological considerations for
CCPP analysis

Previous research has demonstrated that modified extraction
protocols can significantly improve DNA recovery from complex
CCPP formulations (Arruda et al., 2017). Drawing on these findings,
our protocol incorporated several refinements to address the
complex nature of processed materials. The application of 75%
ethanol pretreatment effectively reduced interference from
polysaccharides and other processing-derived metabolites, while
extended water bath incubation (1.5 h) enhanced DNA recovery
from recalcitrant materials. These modifications were essential for
improving DNA yield from highly processed botanical drugs,

FIGURE 4
ASV Abundances for detected species across commercial RSJPW samples. (A) ASV abundances through ITS2 analysis; (B) ASV abundances through
psbA-trnH analysis.
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particularly those containing heavily processed or fungal materials.
Though DNA recovery efficiency varies among ingredients due to
their distinct processing methods and chemical compositions, the
utilization of the AxyPrep DNA Gel Extraction Kit, combined with
triplicate processing and pooling strategy, enabled consistent DNA
isolation from complex CCPP matrices.

PCR bias emerged as a critical methodological challenge in our
analysis, particularly evident in the dramatic fluctuations of Z.
jujuba var. spinosa ASV counts. This phenomenon, well-
documented in amplicon sequencing studies (Berry et al., 2011;

Peng et al., 2015), manifested in our analysis as ASV count variations
ranging from less than 10 to more than 90, suggesting substantial
amplification preferences. These variations likely stem from
differences in template GC content and secondary structure,
factors known to influence PCR efficiency (Coissac et al., 2012).
Recent advances in PCR optimization have suggested several
promising approaches for bias mitigation. Modification of
thermal cycling protocols and careful adjustment of reaction
parameters have shown potential in reducing preferential
amplification (Kanagawa, 2003). The development of

TABLE 4 Non-prescribed species detected in commercial RSJPW samples based on ITS2 sequences.

Family Latin name Reads
no.

ASV
no.

Sample
no.

Detection
frequency (%)

Possible source
category

Verbenaceae Verbena officinalis L. 23,911 36 14 25.00 Medicinal plant

Brassicaceae Brassica napus L. 18,182 58 15 26.79 Food crop

Cucurbitaceae Cucurbita moschata (Duch. Ex Lam.)
Duch. Ex Poir

11,870 15 22 39.29 Food crop

Apiaceae Peucedanum caespitosum H. Wolff 9,926 17 6 10.71 Medicinal plant

Brassicaceae Raphanus sativus L. 5,067 9 14 25.00 Food crop

Apiaceae Peucedanum praeruptorum Dunn 4,776 11 8 14.29 Medicinal plant

Asteraceae Artemisia argyi H. Lév. and Vaniot 4,707 10 1 1.79 Medicinal plant

Poaceae Setaria viridis (L.) P. Beauv 4,356 2 6 10.71 Wild plant

Betulaceae Alnus nepalensis D. Don 4,351 10 25 44.64 Wild plant

Convolvulaceae Cuscuta australis R. Br 3,977 7 17 30.36 Medicinal plant

Poaceae Triticum aestivum L. 3,938 9 24 42.86 Food crop

Cucurbitaceae Cucumis sativus L. 3,122 12 3 5.36 Food crop

Pinaceae Pinus tabuliformis Carrière 1,438 6 12 21.43 Wild plant

Paeoniaceae Paeonia × suffruticosa Andrews 1,040 3 3 5.36 Medicinal plant

Amaryllidaceae Hymenocallis littoralis (Jacq.) Salisb 987 20 6 10.71 Wild plant

Note: This table shows the 15 species with the highest sequencing read counts. Detection frequency = (Number of samples where the species is detected/Total number of samples) × 100%.

TABLE 5 Related species of prescribed ingredients detected in commercial RSJPW samples based on ITS2 sequences.

Family Latin name Reads
no.

ASV
no.

Sample
no.

Detection
frequency (%)

Related prescribed
species

Fabaceae Hedysarum polybotrys Hand.-Mazz 343 3 5 8.93 Astragalus membranaceus

Rhamnaceae Ziziphus mauritiana Lam 551 8 2 3.57 Ziziphus jujuba

Araliaceae Panax quinquefolius L. 95 1 2 3.57 Panax ginseng

Araliaceae Panax japonicus (T. Nees) C. A.
Meyer

11 1 1 1.79 Panax ginseng

Campanulaceae Codonopsis pilosula (Franch.)
Nannf

116 1 2 3.57 Panax ginseng

Rutaceae Citrus sinensis (L.) Osbeck 16 1 2 3.57 Citrus reticulata

Apiaceae Angelica acutiloba (Siebold and
Zucc.) Kitag

12 1 1 1.79 Angelica sinensis

Zingiberaceae Amomum compactum Soland ex
Maton

65 1 1 1.79 Amomum villosum

Note: Detection frequency = (Number of samples where the species is detected/Total number of samples) × 100%.
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standardized controls using mock communities has also
demonstrated value in quantifying and correcting for
amplification bias (McLaren et al., 2019).

The systematic validation of our methodology through standard
controls and P. quinquefolius-spiked samples demonstrated robust
qualitative detection capabilities, particularly for low-abundance
ingredients. However, our findings revealed that quantitative
applications require careful consideration of species-specific
amplification efficiencies, highlighting the importance of appropriate
controls and standardization procedures. The validation process
provided crucial insights into both the strengths and limitations of
our approach, establishing a foundation for method optimization.

Recent advancements have significantly expanded the analytical
toolkit for CCPP authentication beyond conventional DNA barcoding.
Although DNA barcoding has provided a foundational approach for
botanical identification, its application to complex or processed
formulations presents numerous challenges. Our metabarcoding
approach demonstrated significantly greater sensitivity than
conventional barcoding for detecting botanical ingredients in
complex CCPP mixtures. However, alternative methodologies offer
additional advantages for specific analytical challenges. For instance,
shotgun metagenomics can eliminate amplification-related distortions
while providing broader genomic coverage (Liu et al., 2021a),

particularly beneficial for complex mixtures where PCR bias is
problematic. For analyzing degraded DNA in processed materials,
Single-Molecule Real-Time (SMRT) sequencing (Jia et al., 2017; Xin
et al., 2018b) shows particular promise, though cost considerations
currently limit its widespread adoption. TaqMan probe-based
quantitative real-time PCR has emerged as another valuable
technique for specific taxa like Panax notoginseng in complex
CCPP formulations, offering greater sensitivity and quantitative
capabilities (Lou et al., 2022). Unlike standard DNA barcoding,
qPCR methods can detect target species at concentrations as low as
0.1%, making them particularly valuable for quality control in highly
processed products where DNA is degraded. Complementary
analytical approaches include multi-omics integration frameworks
combining genomic, metabolomic, and chemical profiling data for
holistic authentication (Wang et al., 2022). These integrative
approaches have shown superior discriminatory power compared to
single-method authentication, particularly for processed formulations
where molecular integrity is compromised. Advanced computational
methodologies have similarly transformed CCPP authentication.
Machine learning algorithms, including deep learning and ensemble
methods, have significantly improved pattern recognition capabilities
for complex botanical mixtures (Chen and He, 2022; Magdas and
Berghian-Grosan, 2023; Wang et al., 2024). These approaches can
process multi-dimensional data from diverse analytical platforms,
potentially overcoming the limitations of individual methods while
providingmore robust authentication frameworks. Recent innovations
in molecular authentication include nucleotide signature-based
identification strategies specifically optimized for processed
materials (Zhang T. et al., 2022; Niu et al., 2024) and isothermal
amplification methods for rapid authentication of complex materials
(Sheu et al., 2023). While many of these technologies have primarily
been validated in experimental settings, their translation to routine
CCPP quality control represents a promising direction for future
applications.

4.3 Future perspectives: Database
development and bioinformatic integration

While DNA metabarcoding has become a powerful tool in
environmental microbiome research with established specialized
databases (SILVA, GreenGenes, and RDP) (McDonald et al., 2012;
Quast et al., 2013; Cole et al., 2014), its application in TCM
authentication faces significant database limitations. Currently,
specialized platforms like the TCM DNA Barcode Identification
System (Chen et al., 2014) and the DNA barcode databases from the
Institute of Medicinal Plant Development (Chen et al., 2012) represent
the primary resources for TCM identification.However, as demonstrated
in our RSJPW analysis, these systems’ heavy reliance on public databases
like NCBI limits their effectiveness for processed botanical materials. To
enhance the practical application of DNA metabarcoding in CCPP
quality control, several strategic advancements are crucial, such as
development of comprehensive, validated reference databases
specifically tailored for traditional medicinal plants and their
common adulterants, iImproved bioinformatic pipelines optimized
for highly processed materials with degraded DNA, standardized
authentication protocols considering the unique challenges of
complex formulations and integration of automated identification

FIGURE 5
PCoA plot of species detected in commercial samples based on
Bray-Curtis distance. (A) Analysis results of ITS2 sequences. (B)
Analysis results of psbA-trnH sequences.
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systems with regulatory databases. The processing of high-throughput
sequencing data in CCPP analysis presents unique bioinformatic
challenges beyond conventional environmental DNA studies. While
QIIME 2 provides a robust analytical framework (Bolyen et al.,
2019), our study revealed limitations in taxonomic assignment due to
the scarcity of CCPP-specific reference databases. This issue is
particularly evident in processed materials where DNA modifications
can affect sequence matching accuracy. Recent studies have
demonstrated improved authentication accuracy through specialized
reference databases incorporating both raw and processed material
sequences (Xin et al., 2018b).

The integration of bioinformatic tools with tiered analytical
approaches represents a promising development direction in CCPP
authentication. Recent work by Mück et al. (2024) demonstrated how
combining DNA metabarcoding data with chemical profiles achieves
improved authentication accuracy for complex formulations. This
multi-analytical strategy provides both qualitative and quantitative
insights, overcoming the limitations of conventional DNA barcoding
which often proves insufficient for processed herbal materials.
Furthermore, the development of automated analysis pipelines can
streamline workflows and minimize reliance on high-performance
computing resources (Fung et al., 2021; Dubois et al., 2022). These
advances, coupled with expanding reference databases, will be crucial
for improving the reliability and accessibility of DNA metabarcoding
in CCPP authentication and could potentially create more robust
authentication frameworks for complex formulations.

5 Conclusion

This study applied DNA metabarcoding to authenticate RSJPW,
demonstrating both the capabilities and limitations of this approach
in CCPP botnical drug authentication. Our dual-marker strategy
successfully identified most prescribed ingredients while revealing
authentication issues, including contamination and potential
substitution in commercial products. However, processing-induced
DNA degradation significantly affected detection rates for certain
ingredients, particularly evident in P. cocos and heat-processed
materials. These findings highlight the importance of considering
processing effects in molecular authentication protocols.

While DNA metabarcoding offers advantages in multi-
ingredient authentication, our results indicate that comprehensive
CCPP quality assessment requires integration with complementary
analytical methods. The systematic validation approach and
optimized protocols developed in this study contribute to the
methodological framework for complex botanical drug
formulation analysis. Future improvements in CCPP-specific
reference databases and bioinformatic tools, combined with
chemical analysis methods (e.g., metabolomics), will be crucial
for enhancing the practical application of DNA metabarcoding in
CCPP botanical drug authentication.
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