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Introduction: Epilepsy, a complex neurological disorder characterised by
recurrent seizures and significant genetic heterogeneity, presents considerable
challenges form accurate diagnosis and drug target identification. While
traditional genomewide association studies (GWAS) and sequencing
technologies have advanced our understanding of epilepsy-related gene
targets, they often struggle to identify novel and rare variants crucial for
precise diagnosis and targeted drug development. The increasing availability
of large-scale genomic data, coupled with the power of deep learning, offers
a promising avenue for progress.

Method: In this work, we introduce GraphTransNet, a novel hybrid neural
network model designed for predicting epilepsy-associated gene targets, with
direct implications for improved disease diagnosis and therapeutic target
identification. GraphTransNet leverages protein language models (specifically
ESM) to generate numerical embeddings from gene sequences. These
embeddings are then processed by a novel architecture integrating
transformer and convolutional neural network (CNN)components to predict
epilepsy-related gene targets.

Results: Our results demonstrate that GraphTransNet achieves high accuracy in
identifying epilepsy targets, outperforming existing predictive tools in terms of
both recall and precision metrics for reliable disease diagnosis and effective drug
target identification. Rigorous comparisons with established machine learning
methods and other deep learning architectures further underscore the efficacy of
GraphTransNet.

Discussion: This approach represents a valuable computational tool for
advancing epilepsy genetics research, with the potential to contribute to more
accurate diagnostic strategies and the discovery of novel drug targets for
improved treatment outcomes.
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1 Introduction

Disease diagnosis prediction and drug target identification are
fundamental challenges in modern medicine. Computational
approaches have emerged as powerful tools, offering novel
perspectives and solutions in these areas. Epilepsy, a chronic and
highly heterogeneous neurological disorder, affects approximately
50 million people worldwide, ranking among the most prevalent
neurological conditions. Characterized by recurrent, unprovoked
seizures stemming from abnormal electrical brain activity, epilepsy
significantly impacts patients’ lives (Fisher et al., 2014; Thurman
et al., 2011). Despite medical progress, around 30% of epilepsy
patients suffer from drug-resistant epilepsy (DRE), which not only
deteriorates their quality of life but also heightens the risk of severe
complications like sudden unexpected death in epilepsy (SUDEP)
(Holger, 2020; Devinsky et al., 2016). In this context, computational
methods hold great potential for understanding the genetic basis of
epilepsy, which is crucial for identifying new therapeutic targets,
especially for DRE patients.

The genetic landscape of epilepsy is incredibly intricate,
involving diverse genetic variations such as single nucleotide
polymorphisms (SNPs), copy number variations (CNVs), and
rare de novo mutations (Ellis et al., 2020). Over 500 genes have
been associated with epilepsy, covering ion channels,
neurotransmitter receptors, and synaptic proteins, all vital for
maintaining neuronal excitability and synaptic transmission
Scheffer and Berkovic (1997); Myers and Mefford (2015); Liang
et al. (2025). Computational techniques could potentially untangle
this complexity. However, the genetic architecture of epilepsy
remains incompletely understood, with many cases lacking a
genetic explanation. For example, generalized epilepsy often has
polygenic origins, while rare monogenic forms like Dravet syndrome
and Lennox-Gastaut syndrome are linked to mutations in specific
genes such as SCN1A and GABRG2. These genetic patterns pose
challenges that computational methods are uniquely positioned to
address, as they can analyze large datasets and identify hidden
relationships among genes (Ji et al., 2020b; 2025).

The advent of next-generation sequencing (NGS) technologies,
including whole-exome sequencing (WES) and whole-genome
sequencing (WGS), has transformed epilepsy research (Daniel et al.,
2024; DC et al., 2013; Consortium et al., 2013). These methods have
allowed the identification of rare mutations and genetic risk factors
previously undetected by traditional techniques. Transcriptomic studies
and epigenomic profiling have also shed light on how regulatory
elements, non-coding RNAs, and chromatin modifications
contribute to epilepsy pathogenesis. However, the vast amount of
data generated by NGS presents significant analytical hurdles.
Computational approaches are essential for managing and
interpreting this data. In particular, distinguishing pathogenic
variants from benign ones is a complex task. Conventional
alignment-based methods often face limitations in identifying novel
or divergent genetic variants due to their reliance on reference databases
(Wang et al., 2023; Wei et al., 2024), highlighting the need for advanced
computational algorithms to uncover new epilepsy-associated genes.

Emerging computational approaches, especially machine
learning and deep learning, offer promising solutions to these
challenges (Kenji, 2016). Deep learning models, particularly
genomic language models trained on large scale sequencing data,

are designed to extract complex patterns and relationships from
genetic information (Ji et al., 2020a; 2024). These models utilize the
contextual information within nucleotide sequences to capture
subtle genetic signals related to diseases. For example, they can
analyze the sequence data to predict the likelihood of a gene being
associated with epilepsy. However, their accuracy is currently
constrained by limited training data, a significant obstacle,
especially for rare and heterogeneous disorders like epilepsy. This
limitation underscores the need for innovative computational
strategies to enhance the performance of these models in disease
diagnosis prediction and drug target identification.

To overcome these limitations and improve disease diagnosis
prediction and drug target identification in the context of epilepsy, we
propose EffuTCN, a novel framework. EffuTCN combines pre-
trained protein language models with Transformer (Ashish et al.,
2017) and CNN-based neural networks (Lecun et al., 1998). By
leveraging this combination, EffuTCN aims to enhance the
prediction of epilepsy-related targets, which is crucial for both
diagnosing the disease at a genetic level and identifying potential
drug targets. The flowchart of EffuTCN is presented in Figure 1.
EffuTCN uses the gene sequence data as inputs to the protein
language model ESM (Lin et al., 2023) to obtain corresponding
numerical features. These features are then fed into a neural
network model for epilepsy gene prediction. This innovative
approach not only addresses the drawbacks of traditional methods,
but also provides a new avenue for a more in-depth understanding of
the genetic structure of epilepsy, ultimately contributing to more
effective prediction of disease diagnosis and drug target identification.

2 Materials and methods

2.1 Evaluation Method

We used multiple metrics to evaluate the prediction
performance of GraphTransNet for epilepsy genes, specifically, in
addition to accuracy (ACC), precision (Prec), recall (Rec), f1 score
(F1), Matthews correlation coefficient (MCC), AUPR (area under
the precision-recall curve) and AUC (area under the ROC curve,
which is plotted by the false-positive rate (FPR) and true-positive
rate (TPR)). They are calculated using the following Equations 1-6:

accuracy � TP + TN

TP + FP + TN + FN
(1)

precision � TP

TP + FP
(2)

TPR � recall � TP

TP + FN
(3)

F1_score � 2 × precision × recall

precision + recall
(4)

MCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (5)

FPR � FP

FP + TN
(6)

Where TP denotes the number of actual labels that are positive and
predicted to be positive as well, FP denotes the number of actual
labels that are negative and predicted to be positive, and the same for
TN and FN.
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FIGURE 1
The workflow of the GraphTransNet method, which has three main steps: (1) Data preprocessing filters sequences with over 90% similarity using a
0.9 CD-HIT threshold, then extracts numerical features using the ESM protein language model. (2) Epilepsy gene prediction uses Transformer and CNN
networks for feature extraction, combines the features, and performs binary classification. (3) Performance analysis and visualization evaluate and display
the predictive performance of GraphTransNet.
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2.2 Data preprocessing

Several databases provide information on epilepsy-related
genes, forming the foundation for building a prediction
model. We collected epilepsy-related genes from recent
databases and research papers and retrieved their sequences
from the UniProt database, resulting in a total of

6,452 sequences. Detailed information about these databases is
presented in Table 1.

It is important to note that the extracted sequences included
duplicates and sequences with high similarity. To address this, we
applied CD-HIT with a 0.9 threshold to remove sequences with more
than 90% identity to others. Additionally, we reviewed and corrected
any erroneous amino acid representations in the sequences.

For negative samples, we randomly selected an equal number of
protein sequences from the UniProt (Consortium, 2015) database,
ensuring that none overlapped with the positive sample dataset. This
step balanced the dataset with an equal number of positive and negative
samples. After obtaining equal numbers of positive and negative sample
sequences, we processed these sample sequences through ESM (Lin
et al., 2023) to obtain the digital features of each sample.

To assess the robustness of the prediction model, we conducted
five-fold cross-validation. Specifically, in each fold, 20% of the initial
dataset was randomly selected as the validation set, while the remaining
80%was used as the training set to develop the model. This process was
repeated five times to ensure comprehensive evaluation.

2.3 Protein-protein interaction prediction
based on transformer and CNNs

Transformer is a deep learningmodel architecture introduced by
Vaswani et al. (2017), widely applied in natural language processing

TABLE 1 The detailed information for the positive benchmark dataset about
epilepsy-associated genes.

Database Amount

GWAS (https://www.ebi.ac.uk/gwas/home) (Elliot et al., 2023) 86

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) (Landrum et al.,
2016)

184

Uniprot (https://www.uniprot.org/) (Consortium, 2015) 487

EpilepsyGene (http://www.wzgenomics.cn/EpilepsyGene/) (Xia et al.
, 2015)

499

Genes4Epilepsy (github.com/bahlolab/genes4epilepsy) (Oliver et al.,
2023)

955

Wang et al. (Jie et al., 2017) 977

DisGeNET (https://www.disgenet.org/) (Janet et al., 2016) 3264

Total 6452

TABLE 2 The average performance of GraphTransNet obtained through five-fold cross-validation.

Dataset Acc. (%) Prec. (%) Rec. (%) F1. (%) MCC(%) AUPR(%) AUC(%)

dataset 88.16 89.98 85.91 87.84 76.48 95.55 95.42

FIGURE 2
Five-fold cross-validation ROC curve and PR curve of GraphTransNet predicting epilepsy genes.

TABLE 3 Epilepsy gene prediction results under five-fold cross validation using GraphTransNet with and without the feature fusion module.

Dataset Acc. (%) Prec. (%) Rec. (%) F1. (%) MCC(%) AUPR(%) AUC(%)

with fusion 88.16 89.98 85.91 87.84 76.48 95.55 95.42

without fusion 86.40 88.45 84.01 85.98 73.17 94.21 93.99
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TABLE 5 Epilepsy gene prediction results under five-fold cross validation using GraphTransNet with and without the CNN module.

Dataset Acc. (%) Prec. (%) Rec. (%) F1. (%) MCC(%) AUPR(%) AUC(%)

with CNN 86.40 88.45 84.01 85.98 73.17 94.21 93.99

without CNN 85.65 88.19 82.48 85.11 71.61 93.66 93.40

TABLE 6 Epilepsy gene prediction results of GraphTransNet with different encoder layers under five-fold cross-validation. “encoder-n”means that there are
n encoder layers.

Dataset Acc. (%) Prec. (%) Rec. (%) F1. (%) MCC(%) AUPR(%) AUC(%)

encoder-1 83.18 87.59 77.41 81.96 67.06 92.81 92.38

encoder-2 88.16 89.98 85.91 87.84 76.48 95.55 95.42

encoder-3 89.88 91.02 88.51 89.66 79.93 96.43 96.34

encoder-4 89.32 88.86 89.96 89.37 78.71 95.64 95.69

encoder-5 85.21 90.92 78.06 83.78 71.33 94.00 93.86

encoder-6 81.99 83.54 81.14 81.95 64.60 92.15 91.63

TABLE 7 Epilepsy gene prediction results of GraphTransNet for incomplete sequences under 5-fold cross validation.

Dataset Acc. (%) Prec. (%) Rec. (%) F1. (%) MCC(%) AUPR(%) AUC(%)

dataset 87.11 88.19 85.83 86.89 74.41 94.93 94.87

FIGURE 3
Five-fold cross-validation ROC curve and PR curve of GraphTransNet predicting epilepsy genes with incomplete sequences.

TABLE 4 Epilepsy gene prediction results under five-fold cross validation using GraphTransNet with and without the Transformer module.

Dataset Acc. (%) Prec. (%) Rec. (%) F1. (%) MCC(%) AUPR(%) AUC(%)

with Transformer 86.40 88.45 84.01 85.98 73.17 94.21 93.99

without Transformer 83.71 83.31 84.46 83.83 67.51 91.30 91.59
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(NLP) and other fields (Ashish et al., 2017). Its core innovation is the
self-attention mechanism, which captures long-range dependencies
in sequence data, addressing the vanishing gradient problem
encountered by traditional recurrent neural networks (RNNs) in
long sequences (Rumelhart et al., 1986). The Transformer employs
multi-head attention to perform parallel computation, significantly
improving training efficiency. It does not rely on sequential
processing, instead preserving order information through
positional encoding, offering strong parallelization capabilities
and scalability. This architecture has become the foundation of
many modern NLP models, and has also achieved success in image
processing and other domains.

Convolutional Neural Networks (CNNs) are a class of deep
learning models designed to process data with a grid-like structure,
such as images (Lecun et al., 1998). CNNs are composed of multiple
layers, including convolutional layers, pooling layers, and fully
connected layers. The convolutional layers apply filters (or
kernels) to the input data, allowing the network to automatically
learn spatial hierarchies of features, such as edges, textures, and
shapes. Pooling layers downsample the data, reducing its
dimensionality and computational complexity while retaining
important features. CNNs have been particularly successful in
computer vision tasks, such as image classification, object
detection, and segmentation, due to their ability to learn complex
patterns and generalize well to unseen data.

In GraphTransNet, we used both Transformer and CNN to
predict whether a gene was related to epilepsy. Specifically, we used
their numerical features as input to the Transformer encoder and the
CNN, respectively. Finally, the features obtained from both were
fused through the self-attention fusion module, followed by a binary
classification task.

Assuming the input isXwith shape (numsample, numfeature),
when we use the Transformer for feature extraction, we first
transform X into X′ with shape (1, numsample, numfeature).
Then, the multi-head self-attention module processes X′, and its
computation can be described by the following Equations 7-20:

Qi � X′WQ
i (7)

Ki � X′WK
i (8)

Vi � X′WV
i (9)

Where Q is the query matrix, K is the key matrix, V is the value
matrix,WQ

i ,W
K
i ,W

V
i are trainable weight matrices, i represents the

ith self-attention head.
Attention weights are then calculated using scaled dot product

attention. For each head i, the dot product of the query and key is
first calculated, then scaled and the softmax function is applied
as follows:

Ai � softmax
QiK

T
i��

dk

√( ) (10)

the formula for dk is as follows:

dk � dmodel

nhead
(11)

where d_model is the feature dimension of the model, nhead is the
number of attention heads.

Then use the attention weight matrix Ai to add the weights
matrix Vi, the formula is as follows:

Oi � AiVi (12)
Oi is the output of each header.

Subsequently, we concat the output of all the headers according
to the last dimension, the formula is as follows:

O � concat O1, O2, . . . . . . , Onhead( ) (13)

Finally, a linear transformation matrix WO is used to transform
the spliced output to obtain the final multi-head self-
attention output:

Ofinal � OconcatW
O (14)

For the calculation of the CNN part, we convert the input X to
the shape of (batch_size, sq_num_feature, sq_num_feature) for
processing, where sq_num_feature is the square root of
num_feature. For this data, we only need to set the number of

FIGURE 4
The average AUC and AUPR of GraphTransNet in predicting epilepsy genes under different shuffle ratios.
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channels to 1. Thus, each convolution operation can be expressed
as follows:

Yo,i,j � σ ∑Cin

c�1
∑Kh−1

p�0
∑Kw−1

q�0
Wo,c,p,q ·Xc,i+p,j+q + bo⎛⎝ ⎞⎠ (15)

where Xc,i,j represents the pixel value at position (i, j) of the cth
channel in the input feature map, Cin represents the number of

channels, o represents the oth output channel, Kh and Kw represent
the height and width of the convolution kernel, p and q are the offset
indexes of the convolution kernel, bo is the bias term of the oth
output channel, andWo,c,p,q is the weight of the convolution kernel.
σ is the activation function, here it means ReLU, its formula is
as follows:

f x( ) � max 0, x( ) (16)

FIGURE 5
ROC of five-fold cross validation of GraphTransNet at different shuffle ratios.
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The convolution operation is followed by the addition of a
maximum pooling layer with the following equation:

Yi,j,k � max
P

p�0
max
Q

q�0
Xk,i+p,j+q (17)

where P and Q are the height and width of the pooling window.
Subsequently, for the feature fusion module, we assume that the

features obtained after Transformer and CNN processing are T and

C, respectively. we first compute the attention weights with the
following formula:

a � softmax W2 · tanh W1 · T;C][ ] + b1( ) + b2( ) (18)

Among them, W and b are learnable parameters, and [T;C]
means concatenating T and C. Both softmax and tanh are
activation functions.

FIGURE 6
PR Curves of five-fold cross validation of GraphTransNet at different shuffle ratios.
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After the above processing, the attention weight a � [ac, at] is
obtained, and then the feature is weighted by the attention weight,
and the formula is:

T′ � at ·Wt · T, C′ � ac ·Wc · C (19)
Next, concatenate them to get the fused features, namely, the

following formula:
Ffused � T′;C′[ ] (20)

Finally, the binary classification task is performed through the
fully connected layer.

3 Results and discussion

3.1 Evaluation of prediction performance

In this section, we used five-fold cross validation to divide the
data into five parts, where 4/5 of the data was used for training and
1/5 was used for validation. We used the metrics mentioned in the
Evaluation Method to evaluate the performance of GraphTransNet.
The results are shown in Table 2. In addition, in order to more
visually demonstrate the performance of GraphTransNet on the task
of predicting epilepsy genes, we plotted the ROC and PR curves for
five-fold cross-validation, as shown in Figure 2. As we observed, the
AUC and AUPR were higher than 0.92 in all five validations, which
also demonstrated the stability of GraphTransNet on the task of
predicting epilepsy genes.

3.2 Ablation study

3.2.1 Ablation experiment of feature fusion module
In this section, we will compare the performance of

GraphTransNet using the feature fusion module with that
without the module. The model without the feature fusion
module directly concatenates the features extracted by
Transformer and CNN and then performs the binary
classification task. The results are shown in Table 3. We can
observe that the GraphTransNet with the feature fusion module
has at least one percent improvement in all metrics.

3.2.2 Ablation experiment of transformer module
In this part, we will investigate the improvement of the

GraphTransNet performance by the Transformer module,
specifically, we will set up another set of models with only CNN
module for the task of binary classification of epilepsy genes. In order
to ensure the only variable, we compare it with GraphTransNet
without feature fusion module. The results are shown in Table 4.
We can observe that almost all of them achieve at least a two percent
improvement in performance, except for the recall metric, which also
demonstrate the importance of the Transformer module in the
GraphTransNet model.

3.2.3 Ablation experiment of CNN module
In this section, we will investigate the improvement in

GraphTransNet performance brought by the CNN module.
Specifically, we will set up another model with only the

Transformer module for the binary classification task of epilepsy-
related genes. As in the previous experiment, we compare with the
model that directly concatenates the features extracted by
Transformer and CNN. The results are shown in Table 5. It can
be observed that there is at least one percent performance
improvement in almost all metrics.

3.2.4 Ablation experiment on the number of
encoder layers in the transformer module

In this section, we further investigate whether the number of
encoder layers in the transformer module affects the prediction
performance of epilepsy genes. Specifically, we vary the number of
encoder layers in the transformer module in GraphTransNet in the
expectation of finding an optimal number of encoder layers. The
results are shown in Table 6. We can observe that when the number
of encoder layers is 3, the performance is optimal across almost all
metrics. However, as the number of encoder layers increases further,
the performance gradually declines.

3.3 Investigation of prediction with
incomplete sequences

In this section, we investigated the prediction performance of
GraphTransNet for epilepsy genes with incomplete sequences.
Specifically, we intercepted the first 500 amino acids of the
sequence corresponding to each gene to explore the prediction
performance of GraphTransNet for incomplete sequences. The
results are shown in Table 7. In addition, we plotted the ROC
and PR curves under five-fold cross validation, as shown in Figure 3.
We can observe that the performance degradation on almost all
metrics is less than one percent (compare with Table 2).
Furthermore, as shown in Figure 3, both AUC and AUPR exceed
0.93 across five-fold cross-validation, demonstrating the stability of
GraphTransNet in predicting epilepsy genes with
incomplete sequences.

3.4 Investigation on the prediction
performance in the presence of noise

In this section, we introduced noise into the sequences to explore
its impact on the performance of GraphTransNet. Specifically, we
randomly selected certain continuous segments from the complete
sequences and shuffled the selected segments to simulate noise. We
conducted a total of five experiments, where we randomly selected
and shuffled segments accounting for 10%–50% of the length of the
complete sequences. Each experiment was performed using five-fold
cross-validation, and the average AUC and AUPR obtained from the
five-fold cross-validation were visualized, as shown in Figure 4. We
can observe that as the shuffle ratio increases, both AUC and AUPR
decrease. However, when the shuffle ratio reaches 50%, both AUC
and AUPR remain above 0.85. Additionally, to demonstrate the
stability of GraphTransNet in terms of performance at different
shuffle ratios, we plotted the ROC and PRC curves from five-fold
cross-validation for each shuffle ratio. As shown in Figures 5, 6. As
observed, when the shuffle ratio is below 50%, the AUC and AUPR
for each validation are consistently above 0.85. Even with a shuffle
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ratio of 50%, both AUC and AUPR remain above 0.8 in every
validation.

4 Conclusion

In this study, we introduced GraphTransNet, a deep learning
framework specifically designed to predict epilepsy-related Protein-
Protein Interactions (PPIs)—a critical advancement for uncovering
disease mechanisms and accelerating therapeutic discovery. By
integrating structural insights from protein language models with
a hybrid Transformer-CNN architecture, our model addresses the
unique challenges of mapping dynamic PPIs underlying
epileptogenesis. GraphTransNet’s ability to simultaneously resolve
local interaction interfaces (e.g., ion channel binding motifs) and
global PPI network dependencies (e.g., synaptic complex
formations) represents a paradigm shift in computational
epilepsy research.

Through rigorous five-fold cross-validation and comprehensive
benchmarking, we demonstrated GraphTransNet’s superior
performance in PPI prediction accuracy, particularly for noisy
biological datasets where traditional methods falter. The model’s
robustness stems from its dual capability: the Transformer
component identifies long-range structural determinants of PPIs,
while CNNs decode evolutionarily conserved interaction patterns
within protein sequences. Our ablation studies confirmed that both
architectural elements synergistically enhance PPI prediction
fidelity, disproving trivial feature reliance and validating the
design’s biological relevance.

Beyond technical innovation, GraphTransNet offers
transformative practical value. Its computational efficiency
enables large-scale PPI network mapping across diverse hardware
environments, democratizing access for both research and clinical
applications. This capability is particularly crucial for epilepsy,
where pathogenic PPIs often involve rare variants in multi-
protein complexes like GABA receptors or potassium channel
clusters. By systematically prioritizing therapeutically actionable
PPIs, our framework bridges the gap between genomic findings
and mechanistic insights—a persistent bottleneck in
precision neurology.

The clinical implications are profound: GraphTransNet’s PPI-
centric predictions provide a roadmap for repurposing existing
drugs (e.g., those targeting NMDA receptor interactions) and
developing novel biologics to disrupt seizure-driving PPIs.
Furthermore, its ability to interpret variant-induced PPI
perturbations enhances diagnostic precision for drug-resistant
epilepsy cases. As the first model explicitly optimized for
epilepsy-specific PPIs, GraphTransNet establishes a new standard

for computational target discovery, with potential extensions to
other neurological disorders governed by dysregulated
interaction networks.
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