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Introduction: Pharmacogenomics investigates the impact of genetic variation on
drug metabolism, enabling personalized medicine through optimized drug
selection and dosing. This study examines the effect of the dynamic star allele
nomenclature system on diplotypes and therapeutic recommendations using the
GeT-RM dataset while also presenting a revised version to address outdated
diplotypes.

Materials and methods: PharmVar data up to version 6.2 were downloaded to
analyze the evolution of the star allele nomenclature system. FASTQ files from
70 samples of the GeT-RM project were downloaded and aligned to GRCh38,
followed by star allele calling using Aldy, PyPGx, and StellarPGx. Diplotypes of the
samples were updated based on predefined criteria. Phenotype predictions and
therapeutic recommendations were inferred using the PyPGx core API, with CPIC
guidelines applied for statin-phenotype combinations.

Results: We reevaluated 1400 diplotypes across 20 pharmacogenes in
70 samples from the GeT-RM dataset using three star allele callers: Aldy,
PyPGx, and StellarPGx. Our analysis revealed inconsistencies in 15 of
20 pharmacogenes, with 272 (19.4%) diplotypes being outdated. SLCO1B1
showed the highest number of discrepant calls, impacting statin dosing
recommendations for NA19226.

Discussion: Our findings demonstrate that outdated allele definitions can alter
therapeutic recommendations, emphasizing the need for standardized
approaches including mandatory PharmVar version disclosure, implementation
of cross-tool validations, and incorporation of confidence metrics for star allele
calling tools to ensure reliable pharmacogenomic testing.
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1 Introduction

Pharmacogenomics (PGx) investigates the impact of genetic
variation on an individual’s ability to metabolize drugs. PGx plays a
central role in enabling the advancement of personalized medicine
in healthcare systems through optimizing drug selection and dosage
(Singh, 2020). Recent studies have shown that genotype-guided
treatment can effectively reduce the incidence of adverse drug
events by up to 30% (Swen et al., 2023).

With a growing understanding of the genetic basis behind
variable drug metabolism, curation and annotation of
pharmacogenetic data became essential (Nebert, 2000). To
address this, the star allele nomenclature system was developed,
providing a standardized approach for describing pharmacogenetic
variants (Robarge et al., 2007). This system allows for the
classification of alleles based on their functional impact on
enzyme activity. Consequently, an individual’s combination of
two star alleles, typically called diplotype, can be translated into a
phenotype reflecting the metabolization rate. Based on ones
metabolization rate, individuals are generally categorized into
four groups: poor metabolizer, normal metabolizer, rapid
metabolizer, and ultra-rapid metabolizer (Zanger et al., 2004).
These can then be used in evidence-based guidelines for
therapeutic recommendations, such as those formulated by the
Clinical Pharmacogenomics Implementation Consortium (CPIC)
and the Dutch Pharmacogenetics Working Group (DPWG) (Relling
and Klein, 2011; Swen et al., 2008).

Currently, the Pharmacogene Variation Consortium
(PharmVar) serves as a cornerstone of pharmacogenetic research,
as it curates the star allele nomenclature system for 15 major
pharmacogenes, including several Cytochrome P450 (CYP) genes
(Gaedigk et al., 2021). The definitions of star alleles are regularly
updated as new star alleles are identified and experimentally
validated. Additionally, the PharmVar database incorporates
functional annotations for star alleles and their impact on protein
activity. PharmVar collaborates closely with the Pharmacogenomics
Knowledgebase (PharmGKB) and CPIC (Thorn et al., 2013) to
ensure consistency and appropriate standardization. PharmVar
focuses on standardizing pharmacogenetic variants, while
PharmGKB and CPIC complement this by providing guidelines
and more detailed clinical information about the pharmacogenetic
variants (Gaedigk et al., 2020).

Several tools exist to determine an individual’s combination of
star alleles (Twesigomwe et al., 2021; Hari et al., 2023; Lee et al.,
2022). These tools typically compare the genetic variants of an
individual with a database of annotated variants. As star allele
definitions are continuously evolving, it is essential that the
annotation used in the tool is regularly updated and
synchronized with the PharmVar definitions.

The implications of the dynamic nature of the star allele
nomenclature system on the translation of diplotypes into
therapeutic recommendations are poorly understood. Therefore,
this study examines the impact of the dynamics of this
nomenclature system on the diplotype and therapeutic
recommendations of samples from the Genetic Testing Reference
Materials Coordination Program (GeT-RM) (Pratt et al., 2016). The
GeT-RM dataset offers robust, experimentally validated reference
materials for benchmarking, making it a crucial resource for the

development and validation of star allele calling tools and
genotyping assays. Since star alleles are updated continuously,
several diplotypes in the GeT-RM dataset are outdated and
require reassessment. In addition to evaluating the impact on
therapeutic recommendations of outdated star alleles, we also
present an extension of the GeT-RM dataset with updated
diplotype calls for 69 out of 70 samples.

2 Materials and methods

2.1 Star allele calling

FASTQ files of 70 samples of the GET-RM project were
downloaded from the European Nucleotide Archive with study
accession id PRJEB19931. These FASTQ files were aligned to
GRCh38 using the BWA-MEM algorithm (version 0.7.17) (Li
and Durbin, 2009), followed by sorting and indexing with
Samtools (version 1.18) (Li et al., 2009). Duplicates were marked
using Picard Toolkit (version 3.1.1) (Picard Toolkit, 2019). Pre-
processed BAM files were then called for star alleles using Aldy
(version 4.5), PyPGx (version 0.25.0) and StellarPGx (version 1.2.7)
(Hari et al., 2023; Lee et al., 2022; Twesigomwe et al., 2021).

2.2 PharmVar analysis

All available PharmVar versions up to 6.2 were downloaded
from the PharmVar website (https://www.pharmvar.org/
download). Sub alleles were removed and core star alleles were
counted for each gene. DPYD was excluded from this analysis
because DPYD variants should be described using Human
Genome Variation Society nomenclature rather than legacy star
alleles (Pratt et al., 2024).

2.3 Revision of diplotypes in GeT-RM dataset

The consolidated consensus PGx diplotypes were downloaded
from the Center for Disease Control and Prevention web page
(https://www.cdc.gov/lab-quality/php/get-rm/reference-materials.
html). A set of criteria was defined to update the diplotypes of the
70 reference samples from the GeT-RM dataset. The criteria for
updating diplotypes included: (1) When all diplotype callers identify
the same diplotype that differs from the original GeT-RM call, the
consensus call was accepted. (2) When the majority of callers
identified an allele that could be verified through other sources
such as other benchmarks or manual inspection, this call was
accepted. (3) In cases where the majority of tools called an allele
that extended the ground truth allele (e.g., *5 changed to *2 if
*5 includes all core variants of *2), the update was applied. For wild-
type alleles, changes were made when one or more callers identified a
recently added allele, provided all other callers either called the wild-
type allele (suggesting outdated allele databases in those callers) or
the same new allele. (4) Obsolete alleles no longer present in
PharmVar were removed. and (5) In cases of ambiguous calls
where no consensus emerged among callers, the original
experimentally observed GeT-RM allele was retained if the
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calling tools contained this allele in their databases. Based on these
criteria, 70 samples from the GeT-RM dataset were subjected to
review and updated if the criteria were met. The updated diplotypes
and their respective criteria are provided in Supplementary Table S1.
UGT2B7, UGT2B15, UGT2B17, SLCO2B1, SLC15A22, and SLC22A2
were not included in the analysis due to limited implementation in
current star allele calling algorithms, which impeded cross-tool
validation. CYP2E1 was not included in the reevaluation due to
insufficient consistency across star allele callers.

2.4 Phenotype prediction and therapeutic
recommendations

Phenotypes for each diplotype were predicted using the PyPGx
core API (Lee et al., 2022). Recommendations for each statin-
SLCO1B1-phenotype combination were used from the CPIC
guidelines and programmatically accessed using the PyPGx core
API. For the recommendations of fluvastatin and rosuvastatin,
CYP2C9 and ABCG2 were assumed to have a normal
metabolizer profile.

3 Results

3.1 The star allele content of PharmVar is
highly dynamic over time

We examined the number of updates to core star alleles in the
PharmVar database from the earliest accessible version (1.1.9) to
version 6.2. During this period, 471 core alleles were added, while
49 core alleles were redefined or removed (Figure 1A). This increase in
core alleles, accelerated by the emergence of high-throughput
sequencing technologies, reflects the advancements of
pharmacogenetic research, with new star alleles being continuously
discovered, characterized, and curated (Russell et al., 2021).

Figure 1B illustrates the number of major star alleles across
different pharmacogenes throughout these versions. Between

1.1.9.2 and 2.0, several genes from the CYP family were added,
resulting in an addition of 53 major alleles. A major version release
of 3.0 did not include any additional star alleles. However, this
version included an update of the nomenclature system. One major
allele was redefined/removed from CYP2C19 between version
3.0 and 4.0. Moreover, 39 major alleles were added in total from
version 3.0 to 4.0. Between version 4.0 and 5.0, the star allele
definitions of CYP2B6 were incorporated into the database.
Additionally, CYP2A6 was added to the database in version 5.2.
Version 6.0 marked a significant revision of the database,
characterized by the retirement of several CYP genes and the
elimination of previously retired genes from the active database.
In version 6.1, NAT2 was incorporated in the PharmVar database,
which was originally curated by the Arylamine N-acetyltransferase
Gene Nomenclature Committee (Hein et al., 2013). Lastly, the most
recent version (6.2) also provides a newly curated nomenclature for
CYP1A2. These iterative updates to the PharmVar database
highlight the dynamic nature of this repository and underscore
the importance of maintaining up-to-date star allele definitions in
clinical practice, research settings, and reference materials.

3.2 Reevaluation of GeT-RM dataset using
star allele callers

Based on the diplotype calls of Aldy, PyPGx, and StellarPGx, we
reevaluated 1400 diplotypes in 20 pharmacogenes of 70 whole genome
sequencing (WGS) samples from GeT-RM. In total, 272 diplotypes
(19.4%) were updated according to a predefined set of criteria
(Supplementary Table S1). 339 (12.1%) star alleles investigated in
the GeT-RM dataset, were identified as outdated or inconsistent
with current star allele definitions and required revision. To examine
the root cause of these discrepancies, the revised alleles were classified in
five groups: original, confirmed, concordant, legacy and discordant star
alleles. Original and concordant alleles remain unchanged between the
original dataset and our revised version. Confirmed alleles were initially
tentative, with insufficient experimental evidence in the original GeT-
RM dataset, but were validated by multiple star allele callers in our

FIGURE 1
Evolution of the number of core star alleles throughout PharmVar versions. (A) Sankey diagram detailing the number of added (green), retired (red),
and unaltered (gray) alleles in each version of the PharmVar database. Numbers in parentheses indicate the total allele count for each version. (B) Bar plot
showing the number of alleles per gene in each major version since release.
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reanalysis. Legacy star alleles use outdated nomenclature systems, and
discordant alleles do not align with the results of Aldy, PyPGx and
StellarPGx. 15 out of 20 pharmacogenes show at least one inconsistent
diplotype (Figure 2). The extent of these inconsistencies varies
considerably across genes, with SLCO1B1 demonstrating the highest
number of discrepant calls, attributed by 43 legacy calls and
38 discordant calls. One tentative call for sample NA21781 was
confirmed (*5/*15) in SLCO1B1, and 42 alleles remained unchanged.

Next to classifying the star alleles, we provide a reevaluated
version of the GeT-RM dataset and found star alleles not previously
reported by GeT-RM (see Table 1). We identified 33 additional star
alleles using Aldy, PyPGx, and StellarPGx. The majority of these star
alleles were previously reported by other studies (Hari et al., 2023;
Lee et al., 2019; Liu et al., 2023). However, eight star alleles were not
reported yet. These alleles were not included in the original gene
panels used for GeT-RM characterization and could have remained
undetected due to their relatively recent incorporation into star allele
calling algorithms (Pratt et al., 2016). SLCO1B1 shows the highest
number of previously unreported star alleles by GeT-RM, while
CYP2A6*46 has the highest allele frequency (17.9%) of the
unreported star alleles. Several newly defined star alleles were
found in the GeT-RM dataset for NAT2. These include NAT*38,
NAT*39, NAT*44 and NAT*47 with respective allele frequencies of
0.71%, 1.43%, 0.71% and 0.71%. Other newly reported alleles are
CYP4F2*5, CYP4F2*6 and CYP4F2*7.

3.3 Outdated alleles can have an important
impact on therapeutic dosage
recommendations

Given its high number of discordant calls, we focused on
SLCO1B1 as a case study to evaluate the clinical implications of

updated allele definitions. SLCO1B1 plays a crucial role in statin
pharmacokinetics, and changes in its activity can significantly
alter therapeutic recommendations (Romaine et al., 2010).
Alterations in metabolizer class were observed in three
samples (4.3%) for SLCO1B1, not taking into account
indeterminate phenotypes (Supplementary Figure S1). Table 2
summarizes the impact of the inconsistency of the SLCO1B1 call
in NA19226 between GeT-RM and our study on statin dosage
recommendations. While the original GeT-RM diplotype (*1/
*1) indicated normal function and suggested standard dosing
for all statins based on disease-specific guidelines, our
reevaluation identified a SLCO1B1*31/*37 diplotype,
indicating a decreased function. This leads to more cautious
dosing recommendations: alternative statins should be
considered for simvastatin and lovastatin (with dose limits
of <20 mg/day if therapy is warranted), increased monitoring
is needed for rosuvastatin and pravastatin (especially at
doses >20 mg and >40 mg per day respectively), specific dose
limitations apply for atorvastatin ( ≤ 40 mg starting dose) and
pitavastatin ( ≤ 2 mg starting dose), and careful monitoring is
recommended for fluvastatin at doses >40 mg per day. For both
atorvastatin and pitavastatin, the guidelines suggest considering
combination therapy with non-statin medications if higher
doses are needed for desired efficacy (Cooper-DeHoff
et al., 2022).

4 Discussion and conclusion

This study underscores the clinical implications of the dynamic
star allele nomenclature system in PGx. Our findings demonstrate
that outdated allele definitions can substantially impact diplotype
assignments and therapeutic recommendations. This is

FIGURE 2
The number of star alleles classified as discordant, legacy, concordant, confirmed, or original in the reevaluated dataset compared to the GeT-RM.
Original alleles (light blue) remained unchanged and up to date; confirmed alleles (yellow) were initially tentative in GeT-RM, but validated by multiple
tools in this study. Concordant alleles (green) showed agreement between the original dataset and star allele callers, whereas legacy alleles (red) were
outdated, and discordant alleles did not align with the tools.
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particularly evident in our analysis of SLCO1B1, for which updated
calls in the GeT-RM dataset resulted in altered statin dosing
recommendations for NA19226. While the size of our dataset
limits our ability to observe rare variants with clinical impact,
population-scale studies conducted on the UK Biobank cohort
have demonstrated that nearly one-quarter (22.9%) of individuals

carry genetic variants associated with decreased SLCO1B1 function
(McInnes et al., 2021). Given that statins are among the most
prescribed medicines, accurate identification of these variants has
substantial population-level implications for preventing statin-
induced myopathy through appropriate dosage adjustments
(Salami et al., 2017).

TABLE 1 Star alleles identified in this study and not previously reported by GeT-RM (n = 70).

Gene Star allele Frequency (%) Previous reports

CYP1A1 *2A 9.29 H, L

*2B 4.29 H, L

*11 0.71 H, L

*13 7.14 H, L

CYP1A2 *14 0.71 H, L

CYP2A6 *1x2 0.71 H

*7 1.43 H, L

*15 0.71 H, L

*19 1.43 H, L

*23 0.71 H, L

*24 1.43 H, L

*35 2.14 H, L

*46 17.9 —

CYP2B6 *17 0.71 H

*23 0.71 H, L, P

CYP2D6 *106 0.71 H, P

CYP4F2 *5 7.14 —

*6 3.57 —

*7 0.71 —

NAT1 *10 15.0 L

NAT2 *38 0.71 —

*39 1.43 —

*44 0.71 —

*47 0.71 —

SLCO1B1 *20 2.86 H, L, P

*27 1.43 H, L, P

*31 0.71 H, L, P

*39 0.71 H, P

*41 1.43 H, P

*42 0.71 H, P

*43 0.71 H, P

*44 0.71 H, P

*46 0.71 H, P

Dashes (−) indicate no previous reports in the literature on this dataset. H: reported by Hari et al. (2023); L: reported by Lee et al. (2019); P: reported by Liu et al. (2023).
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These results not only highlight the impact of evolving star allele
definitions on therapeutic recommendations but also reveal systemic
challenges in pharmacogenomic analyses. The use of
pharmacogenomic panel tests or star allele calling tools that rely
on outdated allele definitions can potentially lead to suboptimal drug
dosing regimes, thereby compromising treatment efficacy and
patient safety. The root causes of inconsistencies between star
allele calling tools can be attributed to several factors. Hard-
coding star allele definitions within tools create technical debt, as
updates to more recent PharmVar definitions are not automatically
incorporated in the internal databases of these tools. Second, there is
often limited transparency regarding the source and version of star
allele definitions used in star allele callers, creating a ’black box’
scenario for clinicians interpreting results. Additionally, many star
allele calling tools lack quality control metrics indicating the
confidence level associated with their diplotype assignments,
making it more challenging to assess the reliability of test results.
To address these challenges, we propose several recommendations
for standardization: (1) pharmacogenetic testing reports should
mandatorily disclose the PharmVar version used for
interpretation; tools that fail to provide this information should
be considered unsuitable for clinical application. (2)
Implementation of quality control measures that compare results
across multiple calling tools on the same sample could serve as an

important safeguard, particularly for pharmacogenes with high
clinical impact (PharmGKB level 1A). (3) Incorporate
transparent confidence scoring systems for each star allele
assignment.

Moreover, we provide a reevaluated version of GeT-RM
consisting of 33 additional previously unreported star alleles in
GeT-RM. Although we provide a revised version of GeT-RM, we
strongly advocate for the further development of updateable
reference materials for benchmarking and validation purposes,
such as the Star Allele Search database (Gharani et al., 2024).
The Star Allele Search database is an essential resource in this
context as it offers a periodically updated repository, by
synchronizing with the latest version of PharmVar, of publicly
available 1000 Genomes biospecimens. As the field of PGx
continues to evolve rapidly, maintaining up-to-date resources and
tools is crucial for translating genetic knowledge into effective,
reliable, and personalized therapeutic strategies.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

TABLE 2 Therapeutic recommendations based on SLCO1B1 diplotype of NA19226 from the CPIC guidelines (Relling and Klein, 2011).

GeT-RM Updated version

Genotype and phenotype information

Diplotype *1/*1 *31/*37

Phenotype Normal function Decreased function

Therapeutic recommendations by statin

Statin Original recommendation Revised recommendation

Simvastatin Prescribe desired starting dose and adjust doses based on disease-specific
guidelines

Prescribe an alternative statin depending on the desired potency. If simvastatin
therapy is warranted, limit dose to < 20 mg/day

Rosuvastatin Prescribe desired starting dose and adjust doses of rosuvastatin based on
disease-specific and specific population guidelines

Prescribe desired starting dose and adjust doses of rosuvastatin based on
disease-specific and specific population guidelines. Prescriber should be aware
of possible increased risk for myopathy especially for doses > 20 mg

Lovastatin Prescribe desired starting dose and adjust doses based on disease-specific
guidelines

Prescribe an alternative statin depending on the desired potency. If lovastatin
therapy is warranted, limit dose to ≤ 20 mg/day

Pravastatin Prescribe desired starting dose and adjust doses based on disease-specific
guidelines

Prescribe desired starting dose and adjust doses of pravastatin based on disease-
specific guidelines. Prescriber should be aware of possible increased risk for
myopathy with pravastatin especially with doses > 40 mg per day

Atorvastatin Prescribe desired starting dose and adjust doses based on disease-specific
guidelines

Prescribe ≤ 40 mg as a starting dose and adjust doses of atorvastatin based on
disease-specific guidelines. Prescriber should be aware of possible increased risk
for myopathy especially for 40 mg dose. If dose > 40 mg needed for desired
efficacy, consider combination therapy (i.e., atorvastatin plus non-statin
guideline directed medical therapy)

Fluvastatin Prescribe desired starting dose and adjust doses of fluvastatin based on disease-
specific guidelines

Prescribe desired starting dose and adjust doses of fluvastatin based on disease-
specific guidelines. Prescriber should be aware of possible increased risk for
myopathy especially for doses > 40 mg per day

Pitavastatin Prescribe desired starting dose and adjust doses based on disease-specific
guidelines

Prescribe ≤ 2 mg as a starting dose and adjust doses of pitavastatin based on
disease-specific guidelines. Prescriber should be aware of possible increased risk
for myopathy especially for doses > 1 mg. If dose > 2 mg needed for desired
efficacy, consider an alternative statin or combination therapy (i.e., pitavastatin
plus non-statin guideline directed medical therapy)
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