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Benign prostatic hyperplasia (BPH) is a common disease affecting male urinary
system function and quality of life, with its incidence increasing due to population
ageing and unhealthy lifestyles. Modern medicine mainly adopts symptomatic
treatments such as 5-alpha reductase inhibitors and alpha1 adrenergic receptor
blockers. However, due to the complex pathogenesis of BPH, these drugs can
only partially alleviate symptoms and have shortcomings such as high treatment
costs and significant side effects. BPH is similar to the descriptions of “Jīng Lóng”
and “Lóng Bì” in traditional Chinese medicine (TCM), and its onset is closely
related to liver and kidney dysfunction. Kidney insufficiency and blood stasis are
common clinical syndromes of BPH. Compared with modern medicine,
treatment based on syndrome differentiation of TCM can achieve good results
in treating this subtype of BPH. Therefore, guided by the holistic view of TCM,
adopting a holistic and systematic research approach to explore therapeutic
targets and potential therapeutic components for BPH with a specific syndrome
can provide new ideas for the clinical treatment of BPH. This study integrated
clinical metabolomics and network pharmacology to identify therapeutic targets
for kidney insufficiency and blood stasis-type BPH. Serum analysis of BPH
patients and healthy controls for testosterone, estradiol, SRD5α2, NF-κB p65,
and TGF-β levels, alongside metabolomics and network pharmacology, revealed
hormonal imbalance, increased inflammatory/fibroticmarkers, and 58 differential
metabolites in BPH. Pathway enrichment analysis identified 6 key metabolic
pathways, while network pharmacology constructed four compound-
reaction-enzyme-gene networks and pinpointed 178 potential targets,
including 23 core targets. Reverse screening against the Yaozh Database-
Natural Product AI Engine Platform matched 11 druggable targets with
49 interacting components, and target-component fitting analysis confirmed
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the reliability of 8 core targets. This combined approach validated the findings of
hormonal imbalance and significant metabolic pathway changes and provided
valuable insights for BPH treatment and drug development.
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1 Introduction

Benign Prostatic Hyperplasia (BPH) is a common male
disease characterised by abnormal hyperplasia of prostate
tissue and often accompanied by symptoms such as urgency,
frequent urination, incontinence, increased urination frequency,
dysuria, and urinary retention (Infante Hernández et al., 2024).
Its pathogenesis and mechanism are complex, and the risk factors
involve metabolic diseases, hormonal imbalance disorders and
chronic inflammation (Devlin et al., 2021; Untergasser et al.,
2005; La Vignera et al., 2016). As a significant public health
problem in the global ageing process, the prevalence of BPH
increases significantly with age, and the incidence of BPH

increases significantly after the age of 40 years (Lim, 2017).
With the aggravation of global population ageing at present,
along with people’s bad living habits and high-stress working
environment, the incidence of BPH is showing an increasingly se
upward trend (GBD 2019 Benign Prostatic Hyperplasia
Collaborators, 2022). The lower urinary tract symptoms
caused by the disease seriously impair the quality of life of
patients, causing sleep disorders, anxiety, depression, and sexual
dysfunction, and causing complications such as acute urinary
retention and chronic kidney injury, resulting in the decline of
the quality of life and work ability of patients. Long-term drug
treatment and nursing costs pose continuous pressure on the
social medical and health system and the families of patients
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(Carnevale et al., 2020). Modern treatment is based on α-
receptor blockers and 5α-reductase inhibitors, but most of
them have limitations such as insufficient drug response rates
and long-term side effects (Wu et al., 2021; Strand et al., 2017;
Halawani et al., 2024).

According to traditional Chinese medicine (TCM) theory, the
pathogenesis of BPH is closely related to kidney insufficiency and
blood stasis (Xu X. et al., 2022; Ma et al., 2023). With ageing, men
gradually suffer from liver and kidney insufficiency and lack of qi and
blood sources, resulting in qi stagnation, blood stasis, and phlegm
dampness. Over time, it will congeal into hernia dysentery,
accumulation in the lower abdomen and pudendal region, and
develop urinary system diseases such as an adhesed bladder or
uncontrolled bladder (Yong et al., 2015). In the clinical treatment of
such diseases, TCM emphasises the coordination and compatibility of
prescriptions, that is, the overall and comprehensive regulatory effect is
achieved through the interaction of multiple components and targets
(Zhao et al., 2022; Zhang et al., 2022). Modern precision medicine
methods are also used to study traditional drugs and related
mechanisms, and some achievements have been made (Li S. et al.,
2024; Miao et al., 2023; Kong et al., 2023). Due to the differences in
thinking betweenmodern and traditional medical models, there are still
many deficiencies in traditional medicine research based on modern
precise models. For example, the reductionist approach focusing on a
single target cannot capture the TCM compound’s systemic effect. At
the same time, the efficacy screening based onmodern isolation, in vitro
and in vivo tests is time-consuming and expensive, and lacks the
predictive power for multi-target synergy, which is difficult to
translate into in vivo efficacy (Huo et al., 2022). This makes most
mechanism research superficial, and it is difficult to analyse the
interaction between endocrine, immune and metabolic pathways.
Limitations have hindered the discovery of lead compounds of TCM
with clinical translational value.

Reductionism and macro thinking are the most fundamental
differences between modern precision medicine and traditional
medicine models. The research model of single thinking is complex
in revealing the pathogenesis of diseases, and new research ideas and
methods are urgently needed (Welsby, 1999). Treating diseases is the
common purpose of modern precision medicine and traditional
medicine, both of which take tangible objective substances as
treatment carriers. Therefore, under the guidance of the common
purpose and treatment carrier of the two, research methods that can
link the two thinking modes of precision and macro are introduced,
which can not only avoid the one-sided thinking of reductionism, but
also reflect the characteristics of macroscopic regulation of diseases to
improve the effectiveness of drugs (Naaldenberg and Aarts, 2020).
Modern systems pharmacology, omics and integration technology can
provide a reference for the above research ideas (Li X. et al., 2024; Zhang
et al., 2020). Network pharmacology can analyse the biological process
of diseases and the coordinated action mechanism of multi-targets of
drugs step by step by constructing a multi-dimensional interaction
network of “disease-target/drug” (Li et al., 2021; Zhong et al., 2024).
Based on the changes of endogenous metabolites in an organism,
metabolomics accurately captures the characteristics of metabolic
phenotypes and their dynamic responses to diseases, providing a
molecular characterisation basis for traditional medicine’s “holistic
view” (Sun et al., 2023; Yu et al., 2021; Jiang et al., 2023). The
integrated analysis of network pharmacology-metabolome/

transcriptome/proteome can reveal the spatiotemporal
association between “microscopic molecular events” and
“macroscopic pathological phenotypes” in the occurrence and
development of diseases, and provide a quantifiable integrated
analysis framework for targeted intervention of precision medicine
and dialectical treatment of traditional medicine (Li X. et al., 2024;
Zhang et al., 2020).

In recent years, with the rapid development of metabolomics and
network pharmacology, reverse drug screeningmethods combinedwith
artificial intelligence (AI) technology provide new concepts and tools for
disease diagnosis and drug discovery for prevention and treatment
(Ocana et al., 2025; Ata et al., 2024). Network pharmacology based on
artificial intelligence can reveal the treatment mechanism of complex
diseases from a large number of omics data, significantly improve
the research efficiency of network pharmacology in traditional
Chinese medicine in terms of network relationship mining,
network target localization and network target navigation, and
help the mining of biological basis and clinical value of TCM
syndromes (Zhang et al., 2023). Machine learning and deep
learning algorithms based on artificial intelligence can
efficiently process and analyze large-scale biological data,
integrate them into the whole drug development process, and
accurately identify disease targets through multi-omics and
network pharmacology analysis (Ai et al., 2021; Wang et al.,
2023). For example, deep learning-based protein structure
prediction (such as AlphaFold) can parse the 3D conformation
of the target, supporting drug resistance assessment and
structure-oriented design (Wu et al., 2024). AI-driven
generative virtual screening has accelerated the development
of novel molecular entities, combined with pharmacophores
modelling to optimize pharmacokinetic/toxicological
properties, and significantly shortened the preclinical
development cycle (Gupta et al., 2021). The above application
cases verify the translational potential of “multi-omics data,
network pharmacology, and AI reverse design”. This
integration strategy realises dimensionality reduction mining
and network topology reconstruction of multi-dimensional
biological big data through the deep intersection of systems
biology and bioinformatics, which opens up a new path for
elucidating the mechanism of complex disease heterogeneity
and innovative drug development.

This study combined clinical metabolomics and network
pharmacology with drug reverse screening to screen and verify
potential therapeutic compounds for BPH with kidney insufficiency
and blood stasis. Firstly, the metabolic fingerprint of BPH with kidney
insufficiency and blood stasis was defined by clinical metabolomics, and
then the BPH-specific target library was constructed by network
pharmacology. On this basis, the differential endogenous metabolites
obtained from the metabolomics study and the targets obtained from
the network pharmacology study were imported into the Cytoscape
software, respectively. The built-in plug-in Metscape was used to
construct the metabolism-reaction-enzyme-gene network, and the
core targets in the network were mined. The Yaozh Database-
Natural Products AI Research and Development Platform
compound reverse screening module was used to explore potential
compounds against the above targets, and molecular fitting was
performed to verify. The detailed technical roadmap is provided in
Supplementary Figure S1.
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2 Materials and methods

2.1 Materials

Acetonitrile (Batch number: 24100506G102) and methanol
(Batch number: 21111019G112), both mass spectrometry grade,
were purchased from Oceanpak Company. Formic acid (Batch
number: H1913009), chromatography grade, was purchased from
Shanghai Aladdin Bio-Chem Technology Co., LTD.

2.2 Samples Collection

Samples from patients with kidney insufficiency and blood stasis
type BPH at Shanxi University of Chinese Medicine were collected
and designated as the BPH group, while samples from healthy male
individuals were collected and designated as the Control group. The
baseline age data between the two groups did not exhibit a
statistically significant difference (P > 0.05), indicating their
comparability. The study was approved by the Institutional
Ethics Committee (2022LL217). Blood samples of 5 mL were
collected from each individual in the healthy and BPH groups,
incubated at room temperature for 30 min, centrifuged at 3,000 rpm
for 15 min at 4°C, and the serum was separated, aliquoted, and
stored at −80°C for future use.

2.3 Serum biochemical indicators
determination

The serum samples from each group were collected as specified
in section 2.2. The levels of hormones such as testosterone (T) and
estradiol (E2), as well as the tissue enzyme levels of steroid 5α-
reductase 2 (SRD5α2), the affinity peptide of nuclear transcription
factor-κB subunit p65 (NF-κB p65), and the tissue growth factors
such as transforming growth factor β (TGF-β), were measured by
using human-specific double-antibody sandwich enzyme-linked
immunosorbent assay (ELISA) kits (T, Lot: 24110128H; E2, Lot:
24110120H; SRD5α2, Lot: 24110170H; NF-κB p65, Lot: 24110131H;
TGF-β, Lot: 24110108H; Shanghai Kexing Trading Co. Ltd., China)
according to the instructions provided with the Elisa kit. The
absorbance values of the above indicators in each sample were
measured by Rayto microplate reader (RT-6100, Shenzhen Leidu
Life Science Co., Ltd.) at a wavelength of 450 nm. The standard curve
regression equation was used for concentration conversion, and the
accurate quantification of the target substance concentration in each
sample was finally obtained.

2.4 Metabolomics study

2.4.1 Metabolomics Sample preparation
100 μL of serum was taken from each sample in the Control and

BPH groups, to which 300 μL of pre-cooled methanol (MS grade)
was added to precipitate proteins. The mixture was then vortexed for
1 min and centrifuged at 13,000 rpm at 4°C for 15 min. The
supernatant was collected and concentrated to dryness under a
stream of nitrogen. The residue was reconstituted with 200 μL of

methanol, vortexed for 3 min, and centrifuged again using the same
method. The supernatant was collected to obtain the final sample.
For each of the aforementioned processed samples, 3 μL was taken
and mixed thoroughly, and this mixture was used as the Quality
Control (QC) sample.

2.4.2 Metabolic profile detection
5 μL of each sample solution from section 2.4.1 was injected into

Ultra High Performance Liquid Chromatography (UHPLC)-MS/
MS (Thermo Fisher Instruments Co.) for metabolic profiling
analysis. Prior to the formal analysis of samples, QC samples
were injected consecutively six times to equilibrate the system,
and one QC sample was injected between every six samples to
monitor the stability of the analytical system. Endogenous
metabolites in serum were separated on an ACQUITY UPLC
BEH C18 column (2.1 × 100 mm, 1.7 μm, Waters). The flow rate
was controlled at 0.3 mL/min, with an injection volume of 5 μL and a
column temperature of 40°C. The mobile phase was composed of
acetonitrile (A) and 0.1% formic acid in water (B). The gradient
elution programwas as follows: 0.0–0.5min, 5%A; 0.5–1.5min, 5%–
15% A; 1.5–4.5 min, 15%–30% A; 4.5–6.0 min, 30%–60% A;
6.0–9.0 min, 60%–70% A; 9.0–12.0 min, 70%–100% A;
12.0–13.0 min, 100% A; 13.0–13.5 min, 100%–5% A;
13.5–16.0 min, 5% A.

Electrospray ionization (ESI) mass spectrometry was acquired
in both positive and negative ion modes. In positive ion mode, the
spray voltage was set at 3.2 kV, with a sheath gas flow rate of 40 arb,
an auxiliary gas flow rate of 5 arb, and an auxiliary gas heater
temperature of 350°C. In negative ion mode, the spray voltage was
adjusted to 2.5 kV, with a sheath gas flow rate of 38 arb, an
auxiliary gas flow rate of 10 arb, and an auxiliary gas heater
temperature of 300°C. The ion transfer tube temperature was
maintained at 320°C, and the lens voltage (S-Lens RF Level)
was set at 50 V. Full scan/data-dependent MS2 (Full MS/dd-
MS2) was performed with a scan range of m/z 100 to 1,000.
The first-stage mass resolution was 70,000 full width at half
maximum (FWHM), and the second-stage resolution was
17,500 FWHM. The collision energy was set at 30 eV.

2.4.3 Data preprocessing
The raw LC-MS/MS data files collected were imported into the

Thermo Compound Discoverer v3.3 software to perform
chromatographic peak alignment, peak filtering, peak extraction,
and automatic integration processing. This generated multi-
dimensional peak tables for both positive and negative ion
modes, containing information such as relative molecular mass,
retention time (RT), mass-to-charge ratio (m/z), and peak area.
These peak tables were then used for peak annotation by comparing
the secondary mass spectrometry information of the
chromatographic peaks against databases such as mzCloud and
ChemSpider, which include sub-databases like the Human
Metabolome Database, Serum Metabolome Database, KEGG, and
Metabolome Database. The obtained peak area data were
normalized using total peak area normalization and subsequently
imported into SIMCA-P v14.1 software for multivariate statistical
analysis, including principal component analysis (PCA) and
orthogonal partial least squares discriminant analysis (OPLS-
DA). Differential metabolites were screened based on the
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constraints of a variable importance plot (VIP) value greater than
1 and a P-value less than 0.05.

Differential metabolites were matched to their potential
chemical formulae by comparing their mass spectrometry data
against the HMDB database (Human Metabolome Database;
http://www.hmdb.ca/), with comparisons made between the
primary and secondary mass spectrometry information to
annotate further the obtained differential metabolites
(Schymanski et al., 2014). The online analysis platform
MetaboAnalyst 6.0 (https://www.metaboanalyst.ca/) was utilized
to conduct pathway enrichment analysis on the differential
metabolites, and a preliminary exploration of the relevant
metabolic pathways was carried out in conjunction with the
KEGG database (Kyoto Encyclopedia of Genes and Genomes;
https://www.genome.jp/kegg/).

2.5 Metabolomics-network pharmacology
integrated analysis

2.5.1 Target screening
The potential targets associated with BPH, using the keywords

“Prostatic Hyperplasia”, “Benign Prostatic Hyperplasia”, “Chronic
benign prostatic hyperplasia”, and “Prostate enlargement”, were
mined from OMIM Database (https://omim.org/), GeneCards
Database (https://www.genecards.org/), TTD Database (http://db.
idrblab.net/ttd/), and DisGeNET Database (http://www.disgenet.org).
Additionally, the targets of candidate drugs for the clinical treatment of
BPH were supplemented from DRUGBANK Database (https://go.
drugbank.com/). All BPH-related targets from these five databases
were combined, duplicates were removed, and a BPH disease target
Database was constructed. These targets were then imported into
Cytoscape v3.9.1 software, and the Metscape plugin was used to
explore further potential targets involved in the metabolite-reaction-
enzyme-gene network system that regulates BPH.

2.5.2 Integrated analysis
The BPH-characteristic metabolites obtained from section

2.4 and the targets related to BPH metabolic regulation identified
in section 2.5.1 were imported into the Metscape plugin of
Cytoscape v3.9.1 software, respectively, to explore the targets
that could participate in the regulation of BPH clinical
phenotypes. The compound (metabolite)-reaction-enzyme-
gene networks related to metabolite enrichment pathways
were also established.

2.5.3 Target interaction analysis
The StringDatabase (https://string-db.org/) was employed to conduct

protein-protein interaction (PPI) network analysis of the targets in section
2.5.1, and the results obtained were imported into Cytoscape v3.9.
1 software to construct the PPI network. The core subnetworks were
screened by employing the MCODE plugin in Cytoscape 3.9.1.

2.5.4 Target enrichment analysis
The relevant targets associated withmetabolic regulation in BPH

under item 2.5.2 were imported into the DAVID Database (https://
davidbioinformatics.nih.gov/) for Gene Ontology (GO) functional
annotation and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis. The species was set as
“Homo sapiens”, and a screening criterion of P < 0.05 was
applied. The obtained results were further sorted in ascending
order based on the P value. Subsequently, the entries in
Biological Process (BP), Cellular Component (CC), and
Molecular Function (MF) categories of GO functional
annotation, as well as the pathways in KEGG pathway
enrichment, were selected. These results were visualized using the
online bioinformatics analysis and visualization cloud platform of
Wei Sheng Xin (http://www.bioinformatics.com.cn/).

2.6 Target-based component reverse
screening and fitting validation

2.6.1 Target-based component reverse screening
The regulatory targets for BPH phenotypes, which were

integrated and analyzed under item 2.6, were imported into the
Yaozh Database-Natural Products AI Research and Development
Platform (https://npaiengine.yaozh.com/). Based on the AI
algorithms of the Yaozh Database-Natural Product AI Engine
Platform, activity predictions and rankings of candidate
compounds were conducted.

2.6.2 Target-component fitting validation
Based on the BPH phenotypic regulatory targets screened in

section 2.6, the corresponding 3D protein structures were
downloaded from the PDB (https://www.rcsb.org/) and
Uniprot (https://www.uniprot.org/) databases. Subsequently,
the protein structures were refined using the MOE software,
and charges were added using the Amber10: EHT force field
to identify suitable active pockets. Based on the lead compounds
identified in Section 2.6.1, a target compound database was
constructed by importing the data into the database module of
MOE software (Chemical Computing Group, Inc., Montreal,
Canada). The 3D structures of all compounds within the
database were subsequently subjected to energy minimization.
On this basis, a triangular matching position was adopted
utilizing the docking module of MOE software, and the
docking attempts for each compound were set to 10. With the
LondondG and GBVI/WSA dG scoring rules, the compound
database for each target was rigidly docked with the amino
acid residue pockets of the target. The affinity between the
screened lead compounds and the corresponding targets
regulating BPH clinical phenotypes was verified through the
fitting score of lead compound (ligand)-BPH phenotypic
regulatory target (receptor), the protein-ligand interaction
fingerprint (PLIF), and the 3D interaction target residue
analysis of ligand-receptor.

2.7 Statistical analysis

Statistical analysis was conducted on the serum biochemical
index data of item 2.3 using DPS software version 21.05 (Tang
and Zhang, 2013). The measurement data that conformed to a
normal distribution were expressed as Mean ± Standard
deviation. An independent-sample t-test was employed to
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compare the significant differences between the model and
healthy groups. When the homogeneity of variances was
satisfied, the Student’s t-test was performed; otherwise, a
corrected t-test was adopted. Statistical analysis of normalized
metabolomics peak area data was conducted using GraphPad
Prism v10 software, with significant differences between groups
analyzed through the Mann-Whitney test. The experimental
results are presented as Median ± Interquartile range
(Median ± IQR), with n = 18. The significance level between
BPH and Control groups was set at α = 0.05, and different levels
of significance were denoted as *P < 0.05, **P < 0.01, ***P < 0.001,
and ****P < 0.0001, respectively.

3 Results

3.1 Serum biochemical indicators analysis

The levels of various biochemical indicators in the serum of
the healthy and BPH groups were determined according to the
method described in section 2.2, as shown in Figure 1. The results

indicated that, compared with the healthy group, the serum T
level in the BPH group was significantly decreased (P < 0.001),
while E2 was significantly increased (P < 0.001), and the
T/E2 ratio was significantly decreased (P < 0.001). In addition,
the tissue enzyme level of SRD5α2 exhibited an increasing trend
(P < 0.001), and the nuclear factor NF-κB p65 and the
transforming growth factor TGF-β also showed a significant
upward trend (P < 0.001).

3.2 Metabolomics study

3.2.1 Metabolic profile analysis
Metabolomic studies were conducted using the UHPLC-Q-

Orbitrap HRMS technique. Taking QC samples as an example,
the total ion chromatograms of serum samples in both positive and
negative ion modes are presented in Supplementary Figure S2.

Multivariate statistical analysis was conducted on serum
metabolomics data, with the results presented in Figure 2. As
evident from the PCA analysis results (Figures 2A,B), the QC
samples clustered well in both positive and negative ion modes,

FIGURE 1
Serum biochemical indexes determination results. Control and BPH represent control and BPH groups, respectively. Data are presented as Mean ±
standard deviation (n = 18 per group). Normality was assessed using the Shapiro-Wilk test (P > 0.05), and homogeneity of variances was evaluated by F
test. Based on the assumptions, either Student’s t-test (equal variances) or Welch’s t-test (unequal variances) was applied to determine the significance of
differences between groups. Effect sizes were calculated as Cohen’s d with 95% confidence intervals (CI). Significance levels were denoted as *P <
0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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FIGURE 2
Multivariate statistical analysis of serum metabolomics under positive and negative ion modes. Positive ion mode (A,C,E,G) and Negative (B,D,F,H).
(A,B): PCA score scatter plots, (C,D): OPLS-DA score scatter plots, (E,F): Permutation test results (200 iterations), (G,H): S-plots. t [1] and t [2] represent the
first and second principal component scores, respectively, with scatter points corresponding to different groups.
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indicating the stability and reliability of the analytical method, and
the identified differential metabolites were able to reflect the
biological differences among samples. The samples from the
Control and BPH groups were clearly distinguished, and the
samples within each group clustered well within a specific range,
suggesting significant differences in the serum endogenous
metabolic profiles between BPH patients and healthy individuals.
Further OPLS-DA analysis results showed (Figures 2C,D) that the
model parameters were R2Y = 0.96 and Q2 = 0.915 in positive ion

mode and R2Y = 0.99 andQ2 = 0.86 in negative ionmode. R2Y andQ2

were close to 1 in both modes, indicating reasonable model
interpretation and prediction. The Permutation test results in
positive and negative ion modes (Figures 2E, 3F) showed that the
R2 and Q2 points on the left were lower than the original R2 and Q2

values on the right, and the regression line of the Q2 points
intersected the vertical axis below the origin, indicating that the
model was not overfitted and the model validation was passed.
S-plot diagrams were drawn (Figures 2G,H), in which the scatter

FIGURE 3
Normalized Peak Areas of Differential Metabolites under Positive Ion Mode. Control and BPH represent control and BPH groups, respectively. Data
are presented as median ± interquartile range (IQR; n = 18 per group). The Mann-Whitney U test was used to assess the significance of differences
between groups, as the data were non-normally distributed (Shapiro-Wilk test, P ≤ 0.05). Effect sizes were calculated as Cohen’s d with 95% confidence
intervals (CI). Significance levels were denoted as *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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points in the upper left corner and the lower right corner
represented metabolites with significant differences between the
two groups.

3.2.2 Differential metabolite analysis
Statistical analysis was conducted on the normalized peak

area data for the two groups to evaluate significant differences.
With reference to the S-plot scatter plot, differential metabolites
were screened based on the VIP value (VIP >1) and significance
test results (P < 0.05) as constraints. After annotation by

comparison with the HMDB database, a total of 58 differential
metabolites were obtained, mainly including organic acids and
their esters, phospholipids, amino acids and dipeptides, steroids
and their derivatives, prostaglandins, vitamins, and lactones, as
shown in Supplementary Table S1.

To further clarify the relative levels of the aforementioned
metabolites in the BPH patients compared to the healthy
population, the normalized peak areas of the selected
metabolites were imported into GraphPad Prism v10 software
to generate box plots, as shown in Figures 3, 4. The results

FIGURE 4
Normalized Peak Areas of Differential Metabolites under Negative Ion Mode. Control and BPH represent control and BPH groups, respectively. Data
are presented as median ± interquartile range (IQR; n = 18 per group). The Mann-Whitney U test was used to assess the significance of differences
between groups, as the data were non-normally distributed (Shapiro-Wilk test, P ≤ 0.05). Effect sizes were calculated as Cohen’s d with 95% confidence
intervals (CI). Significance levels were denoted as *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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indicated that, compared to the Control group, the relative levels
of 44 metabolites, including glutamic acid and pyroglutamic acid,
the dipeptides glutamylvaline, leucyl-glutamate, glutamylleucine,
and lysylarginine, the organic acids and esters oxoglutaric acid,
citric acid, 3-hydroxysuberic acid, 3-hydroxydodecanedioic acid,
3-hydroxytetradecanedioic acid, 16-hydroxyhexadecanoic acid,
azelaic acid, dodecanedioic acid, 6-hydroxypentadecanedioate,
9,10-DHOME, the phospholipids PC (22:6/18:1), LysoPC (15:0/
0:0), LysoPC (20:1 (11Z)/0:0), LysoPC (P-18:0/0:0), LysoPC
(20:2 (11Z, 14Z)/0:0), LysoPC (18:0/0:0), PA (18:3 (6Z, 9Z,
12Z)/0:0), PA (20:5 (5Z, 8Z, 11Z, 14Z, 17Z)/0:0), LysoPA (0:0/
18:2 (9Z, 12Z)), the vitamins retinal and 1,24,25-
Trihydroxyvitamin D2, the steroids stanolone glucuronate,
homodolichosterone, pregnenolone, the lactones 9-
acetoxyfukinanolide and 2-carboxy-4-tridecanolide, and
choline, N-acetylneuraminic acid, 4-hydroxynonenal,
heptadecanoic acid, glycerol tributanoate, 6-trans-12-epi-
LTB4, bicyclo-PGE2, S-(9-Deoxy-δ9,12-PGD2)-glutathione,
xanthosine, 3-oxo-4,6-choladienoic acid, plastoquinone
3, porrigenin A, were significantly elevated in the serum of the
BPH group. Conversely, the relative levels of 14 metabolites,
including levulinic acid and 3-oxohexadecanoic acid, the
phospholipids PI(16:0/16:2 (9Z, 12Z)), PE (22:5/22:6),

PC(22:0/22:6), the steroids testosterone sulfate and 27-
norcholestanehexol, and the compounds carnitine,
N-decanoylglycine, pectenotoxin 2 secoacid, thromboxane
B2, bilirubin, sphingosine 1-phosphate, pipericine, were
significantly reduced.

3.2.3 Metabolic pathway analysis
To further explore the differential metabolic pathways

between BPH patients and healthy individuals, the HMDB
numbers of the screened metabolites were imported into the
MetaboAnalyst 6.0 online analysis platform, combined with the
KEGG database for metabolic pathway enrichment and
metabolite network construction. A bubble plot was drawn
with the pathway impact factor (Impact) as the abscissa and
the P-value as the ordinate, as shown in Figure 5. A metabolite
network diagram was constructed based on the important
pathways involved by differential metabolites, as shown in
Figure 6. The results revealed a total of 23 enriched
metabolic pathways. Potential target pathways were further
screened based on the conditions of Impact ≥0.01 and P <
0.05, yielding glycerophospholipid metabolism, alanine,
aspartate and glutamate metabolism, arginine biosynthesis,
citrate cycle (TCA cycle), glutathione metabolism, porphyrin

FIGURE 5
Metabolic Pathway Enrichment Bubble Chart. Note: The larger the -log10(P) value, the redder the bubble color, indicating a higher significance of
the metabolic pathway; the more significant the Impact value, the bigger the bubble, indicating a more significant overall influence of the
metabolic pathway.
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metabolism, and glyoxylate and dicarboxylate metabolism. It
suggests that the occurrence of BPH may be related to these
pathways. As shown in Figure 6, the screened biomarkers played
important roles in pathways such as glycerophospholipid
metabolism, the TCA cycle, glutathione metabolism, and
porphyrin metabolism.

3.3 Metabolomics-network pharmacology
integrated analysis

3.3.1 Target screening
The keywords “Prostatic Hyperplasia”, “Benign Prostatic

Hyperplasia”, “Chronic benign prostatic hyperplasia” and

FIGURE 6
Network Diagram of BPH-Related Metabolites. Note: Red indicates metabolites with significantly elevated levels in the BPH group, while blue
indicates metabolites with significantly reduced levels in the BPH group. ①Alanine, aspartate and glutamate metabolism; ②Citrate cycle (TCA cycle);
③Porphyrin metabolism; ④Glutathione metabolism; ⑤Arginine biosynthesis; ⑥Glycerophospholipid metabolism.
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“Prostate enlargement” were searched in the OMIM database
(Online Mendelian Inheritance in Man; https://omim.org/),
resulting in the identification of 1,145 targets. Based on the
median rule (Sun et al., 2024), quickq extracted 1,606 targets
(with Relevance scores exceeding 10.5117 for Prostatic
Hyperplasia, 14.6494 for Benign Prostatic Hyperplasia, 22.
7554 for Chronic benign prostatic hyperplasia, and 0.2315 for
Prostate enlargement). Additionally, 12 targets were obtained
from TTD, and 331 (with scores exceeding 0.02) were retrieved
from DisGeNET. Furthermore, 96 drug targets for clinical
conditions, including prostatic hyperplasia, benign prostatic
hyperplasia, chronic prostatic hyperplasia, and prostate
enlargement, were supplemented from DRUGBANK. A BPH
disease target database containing 1,197 targets was established
by merging these five databases and removing duplicates. These
1,197 targets were then imported into the Metscape plugin of
Cytoscape v3.9.1 for further analysis, yielding 178 BPH-related
targets capable of participating in the metabolite-reaction-
enzyme-gene network regulation.

3.3.2 Integrated analysis
Through further integrated analysis, Metscape obtained

compound-reaction-enzyme-gene networks for
glycerophospholipid metabolism, the TCA cycle, porphyrin
metabolism, uric acid cycling, and amino acid metabolism,
respectively, as shown in Figure 7. Among them, targets such as
AGK, CDS1, ALDH2, PLA2G2A, PLA2G5, and LPL were found to
participate in glycerophospholipid metabolism through endogenous
metabolites including Phosphatidate, Phosphatidylethanolamine,
Choline, Phosphatidylcholine, and 1-Acyl-sn-glycero-3-
phosphocholine (Figure 7A). Targets such as SDHB, SDHD,
IDH1, and FH were able to regulate the TCA cycle through
metabolites like citrate and 2-Oxoglutarate (Figure 7B). Targets
such as UGT2B15, UGT2B7, UGT2B17, and HMOX-1 could
directly or indirectly regulate porphyrin metabolism through
endogenous metabolites, including Bilirubin (Figure 7C).
Additionally, targets such as GPT, ODC1, ALDH2, NOS3,
GCLC, GSR, GSTT1, GSTK1, GSTM1, and GSTP1 were found to
regulate uric acid cycling and amino acid metabolism through
endogenous metabolites like 2-Oxoglutarate, L-Glutamate, 5-
Oxoproline, and Carnitine (Figure 7D).

3.3.3 Target interaction analysis
On this basis, the 178 screened BPH targets were imported

into the String database, with the species set to “Homo sapiens”.
The default confidence level of 0.40 was selected for the
Minimum required interaction score (Szklarczyk et al., 2021;
Menche et al., 2015; Cheng et al., 2018), and isolated nodes were
removed to obtain these targets’ PPI information. Topological
analysis was conducted using Cytoscape v3.9.1 software to
construct the PPI network, as shown in Figure 8A1. Building
on this foundation and incorporating the integrated target
findings from section 3.3.2, the MCODE plugin in Cytoscape
3.9.1 was utilized to mine PPI core subnetworks, ultimately
identifying seven functional subnetworks with significant
connectivity. Among the subnetwork clusters, 3 core
subnetworks had high overlap with the integration targets of
item 3.3.2, see Figure 8A2 (overlaped with integrated targets

UGT2B7, HMOX1, GCLC and GSTM1), Figure 8A3 (overlaped
with integrated targets ALDH2 and GSTP1) and Figure 8A4
(overlaped with integrated targets PLA2G2A, PLA2G5, GSR,
SDHB and NOS3).

3.3.4 Target enrichment analysis
GO and KEGG enrichment analyses were conducted on

integrated BPH-related target genes from section 3.3.2. The BP,
CC, and MF terms ranked by GO annotation with P < 0.05 were
annotated, as shown in Figure 8B1. The results indicated that BP
primarily encompassed biological processes such as glutathione
metabolic process, tricarboxylic acid cycle, cellular oxidant
detoxification, xenobiotic metabolic process, positive regulation of
macrophage foam cell differentiation, estrogen metabolic process,
and cell redox homeostasis. CC mainly included cellular
components such as mitochondrion, extracellular exosome,
mitochondrial matrix, and respiratory chain complex II
(succinate dehydrogenase). MF primarily encompassed
glutathione transferase activity, electron transfer activity,
glutathione peroxidase activity, UDP-glycosyltransferase activity,
glucuronosyltransferase activity, NADP binding, succinate
dehydrogenase (quinone) activity.

Furthermore, the correlation analysis presented in Figure 8B2
between the key items of GO enrichment analysis and the
integration targets under item 3.1.2 reveals a network of
interconnected pathways involving glutathione metabolism
(GSTK1/GSTM1/GSTP1/GSR), mitochondrial energetics (TCA
cycle: IDH1/SDHB/SDHD/FH; respiratory complex II activity),
xenobiotic/estrogen detoxification (UGT2B/GSTT1), cellular
redox homeostasis (GSR/ALDH2), and extracellular exosome
components (GSTK1/IDH1). Key multifunctional nodes (GSTK1,
IDH1, SDHB/SDHD) integrate mitochondrial matrix functions,
oxidant detoxification, and electron transfer, while UGT2B
isoforms and GSTP1 highlight phase II metabolism. Enriched
terms like macrophage foam cell differentiation and NADP
binding suggest broader implications in metabolic-inflammatory
crosstalk and redox cofactor utilization. This multi-pathway synergy
underscores therapeutic potential in oxidative stress-related
pathologies, neurodegenerative disorders, and drug metabolism
variability.

The KEGG enrichment analysis presented in Figure 8C
underscores shared functional hubs across pathways, with GSTK1/
GSTM1/GSTP1/GSTT1, UGT2B15/UGT2B17/UGT2B7, IDH1, and
SDHB/SDHD acting as multipath regulators. These hubs converge on
glutathione-dependent detoxification (Glutathione/Drug/Chemical
carcinogenesis pathways), mitochondrial bioenergetics (Citrate
cycle/Carbon metabolism), and xenobiotic-hormone crosstalk
(Steroid/Retinol metabolism), bridging oxidative stress mitigation
(GSR/HMOX1), metabolic-epigenetic dysregulation (IDH1), and
carcinogen/drug processing (GST/UGT2B isoforms). Notably,
GSTK1 and UGT2B subfamily members co-regulate Chemical
carcinogenesis-DNA adducts, Drug metabolism-Cytochrome
P450, and extracellular exosome signaling, while IDH1/SDHB/
SDHD link TCA cycle defects to redox imbalance in diabetic
cardiomyopathy and tumorigenesis. These multifunctional
nodes highlight conserved targets for therapeutic intervention
in oxidative stress-driven pathologies, chemoresistance, and
metabolic-inflammatory diseases.
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FIGURE 7
The network of compound-reaction-enzyme-gene. (A) Glycerophospholipid metabolism pathway; (B) TCA cycle; (C) Porphyrin metabolism; (D)
Uric acid cycle and amino acid metabolism. Red hexagons indicate compounds, grey diamonds indicate reactions, green squares indicate enzymes, and
blue circles indicate genes. The darker shapes represent the BPH characteristic metabolites (dark red) and BPH-related targets (dark blue).
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FIGURE 8
PPI network, GO, and KEGG enrichment analysis of BPH-associated targets in the metabolite-enzyme-gene network. A1: PPI network of 178 BPH-
associated targets in themetabolite-enzyme-gene network. A2: Core subnetwork (Cluster 1, Score: 5.778).A3: Core subnetwork (Cluster 2, Score: 4.571).
A4: Core subnetwork (Cluster 3, Score: 3.000). In the PPI network (A1), the nodes represent protein targets associatedwith BPH, with the color and size of
the nodes adjusted according to their degree values, where a higher degree value indicates more interactions between the protein and other
proteins in the network. The edges represent the interaction relationships between proteins, with the thickness of the edges indicating the strength of the
interactions, where thicker edges represent stronger interactions. In the core subnetworks (A2–4), red nodes denote integrated targets while green

(Continued )
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3.4 Target-based component reverse
screening and fitting validation

3.4.1 Target-based component reverse screening
The 23 phenotypic regulatory targets involved in the clinical

metabolome of BPH from section 3.3.2 were imported into the
Yaozh Database-Natural Product AI Engine Platform. This resulted
in the identification of 11 human druggable targets, namely,
ALDH2, CDS1, ODC1, IDH1, NOS3, PLA2G2A, SDHB,
UGT2B7, HMOX1, PLA2G5, and GSR. Based on the platform’s
AI algorithms, screening criteria were established: ligands targeting
the targets were ranked in the top 10, with a minimum of one target
hit per ligand, and druggability was filtered for Drug-like properties.
Finally, 49 compounds with potential interactions with the
aforementioned 11 targets were reverse-screened and presented
in Table 1.

3.4.2 Target-component fitting validation
The receptor proteins of ALDH2 (PDB code: 3INJ), CDS1 (PDB

code: 2YIQ), ODC1 (PDB code: 7S3F), IDH1 (PDB code: 5DE1),
NOS3 (PDB code: 6PP4), PLA2G2A (PDB code: 5G3N), and
HMOX1 (PDB code: 6EHA) targets were downloaded from the
PDB database (https://www.rcsb.org/), while the AlphaFold target
receptor proteins of SDHB (P21912), UGT2B7 (P16662), PLA2G5
(P39877), and GSR (P00390) were downloaded from the UniProt
database (https://www.uniprot.org/). Based on the reverse screening
results of the lead compounds corresponding to each target in
section 3.4.1, a corresponding compound database was
established according to the method described in section 2.6.2.
The active pockets were identified using the co-crystallized
ligands of ALDH2 (BXB), CDS1 (YIQ), ODC1 (XAP), IDH1
(59D), NOS3 (OUS), PLA2G2A (X28), and HMOX1 (B5B) for
ligand-target residue pocket fitting. The active pockets of
UGT2B7, PLA2G5, and GSR targets were determined using the
site finder function of the MOE docking module, and ligand-target
residue pocket fitting was performed. A whole docking approach
was adopted for ligand-target residue fitting for the SDHB target.
The results of the ligand-target fitting scores are provided in
Supplementary Table S2. The PLIF analysis results and 3D
interaction diagrams of the ligand-target fitting residues are
shown in Figures 9, 10.

As can be seen from the results presented in Supplementary
Table S2, the mean docking scores of ALDH2, CDS1, ODC1, IDH1,
NOS3, PLA2G2A, SDHB, UGT2B7, HMOX1, PLA2G5, and GSR
with the corresponding database compounds ranged
from −4.95 to −6.74, −5.55 to −7.91, −4.23 to −6.66, −6.93 to −8.91,
−5.23 to −6.55, −6.04 to −7.33, −5.33, −5.40 to −5.93, −4.50 to −
6.91, −6.74, and −5.37, respectively. As revealed by the PLIF and
interaction analysis results of the target-residue docking in Figures 9,
10, Cys303, Cys302, and Phe459 were the primary residue binding
sites for the target ALDH2; Glu308, Glu273, Lys249, and

Val234 were the main residue binding sites for the target CDS1;
Glu274 and Gly237 were the primary residue binding sites for the
target ODC1; Ala282 and Tyr285 were the main residue binding
sites for the target IDH1; Cys184, Trp356, and Trp447 were the
primary residue binding sites for the target NOS3; Gly29, Gly31, and
Lys62 were the main residue binding sites for the target PLA2G2A;
Phe119, Met116, and His35 were the primary residue binding sites
for the target UGT2B7; Arg136 and Met34 were the main residue
binding sites for the target HMOX1; Gly49 and Gly42 were the
primary residue binding sites for the target PLA2G5; whereas the
residue binding sites for the targets SDHB and GSR were
relatively dispersed.

4 Discussion

BPH is a prevalent urological disorder in males, particularly
among elderly populations (Li S. et al., 2024). As a specific
syndrome, BPH’s kidney insufficiency and blood stasis pattern
exhibit complex pathological mechanisms and significant
therapeutic challenges (Xu X. et al., 2022; Ma et al., 2023).
Previous studies have demonstrated that multiple factors,
including hormonal imbalance, increased oxidative stress,
inflammatory responses, and alterations in various metabolic
pathways, are closely associated with BPH progression (El et al.,
2022; Wang et al., 2022; Inamura and Terada, 2024). TCM posits
that kidney insufficiency and blood stasis constitute a critical
pathogenic mechanism in BPH. Recent advancements in
metabolomics, network pharmacology, and AI technologies have
provided novel strategies for screening lead compounds in disease
prevention and treatment (Ai et al., 2021; Wang et al., 2023;
Chacko et al., 2022). This study established a metabolite-
reaction-enzyme-gene network for kidney insufficiency and
blood stasis-pattern BPH by integrating clinical metabolomics
and network pharmacology with an AI reverse-screening
platform to identify potential bioactive compounds targeting
disease-specific pathways. Serum biochemical analyses revealed
that compared to the healthy group, the BPH group exhibited
hormonal disturbances characterized by decreased serum
testosterone (T), elevated estradiol (E2), and a reduced
T/E2 ratio. Age-related declines in T levels and increases in
E2 levels contribute to T/E2 ratio imbalance, a metabolic
dysfunction strongly linked to prostatic hyperplasia (Xu et al.,
2016). SRD5α2 is a key enzyme in androgen metabolism, which
converts Testosterone (T) to the more active Dihydrotestosterone
(DHT) in the prostate. DHT plays a central role in the pathogenesis
of benign prostatic hyperplasia (BPH) by continuously activating
the androgen receptor signaling pathway and promoting the
proliferation of prostate epithelial cells (Wang et al., 2017).
Therapeutic strategies employing 5α-reductase inhibitors to
suppress testosterone conversion to dihydrotestosterone (DHT),

FIGURE 8 (Continued)

nodes represent non-integrated targets. Similarly, red edges indicate interaction relationships between integrated targets, whereas green edges
show interactions among non-integrated targets. B1: Plot illustrating the biological processes, cellular components, and molecular functions associated
with the integrated targets from Gene Ontology (GO) term enrichment analyses (P < 0.05). B2: Correlation chord diagram of GO terms (Gene ratio >15)
with integrated targets. C: The KEGG pathways Sankey diagram of integrated targets.
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TABLE 1 List of compounds identified through reverse screening based on targets.

ID Compounds name Predicted
level

Average
molecular ranking

Bioavailability Log
P

Targets

1 2-[(4-methyl-2-oxo-2H-chromen-7-yl)oxy]acetonitrile 3-HIGH 1 51.2416 2.0038 ALDH2

2 Prunetin 3-HIGH 1 51.2911 2.8798

3 methyl 2-[(4-methyl-2-oxo-2H-chromen-7-yl)oxy]propanoate 3-HIGH 1 51.7072 2.0417

4 14,15-dimethyl-9,13-dioxatetracyclo [8.7.0.02,7.012,16]heptadeca-
1(17),2(7),3,5,10,12 (16),14-heptaen-8-one

3-HIGH 1 45.7279 4.3092

5 13,14-dimethyl-8,12-dioxatetracyclo [7.7.0.02,6.011,15]hexadeca-
1(16),2(6),9,11(15),13-pentaen-7-one

3-HIGH 1 47.3155 3.6447

6 3,4,8,9-tetramethyl-7H-furo [2,3-f]chromen-7-one 3-HIGH 1 43.317 3.7729

7 2,3,5,6-tetramethyl-7H-furo [3,2-g]chromen-7-one 3-HIGH 1 50.3881 3.7729

8 3,5-dimethyl-6-propyl-7H-furo [3,2-g]chromen-7-one 3-HIGH 1 39.1559 4.1085

9 14,15-dimethyl-9,13-dioxatetracyclo [8.7.0.02,7.012,16]heptadeca-
1(17),2(7),10,12(16),14-pentaen-8-one

3-HIGH 1 46.7 4.0348

10 2,3-dimethyl-5-propyl-7H-furo [3,2-g]chromen-7-one 3-HIGH 1 42.3293 4.1085

11 6-ethyl-2,3,5-trimethyl-7H-furo [3,2-g]chromen-7-one 2-MED 2 42.7024 4.0269

12 2,3,5-trimethyl-6-(propan-2-yl)-7H-furo [3,2-g]chromen-7-one 2-MED 3 41.466 4.5879

13 15,16-dimethyl-10,14-dioxatetracyclo [9.7.0.02,8.013,17]octadeca-
1(18),2(8),11,13(17),15-pentaen-9-one

2-MED 6 45.5718 4.4249

14 5-butyl-2,3-dimethyl-7H-furo [3,2-g]chromen-7-one 2-MED 9 39.4772 4.4986

1 2-Bromo-4-(5-Hydroxy-2-Imino-3H-Imidazol-4-Ylidene)-
1H,5H,6H,7H-Pyrrolo [2,3-C]Azepin-8-One

3-HIGH 2 66.1292 0.0663 CDS1

2 2-Bromo-4-[(4Z)-5-Hydroxy-2-Imino-3H-Imidazol-4-
Ylidene]-1H,5H,6H,7H-Pyrrolo [2,3-C]Azepin-8-One

3-HIGH 3 64.5438 1.1163

3 2-Imino-5-{8-Oxo-1H,5H,6H,7H-Pyrrolo [2,3-C]Azepin-4-
Ylidene}Imidazolidin-4-One

2-MED 4 61.3411 −0.6962

4 2-Bromo-4-[(4E)-5-Hydroxy-2-Imino-3H-Imidazol-4-
Ylidene]-1H,5H,6H,7H-Pyrrolo [2,3-C]Azepin-8-One

2-MED 5 64.5438 1.1163

5 5-{3-Bromo-8-Oxo-1H,5H,6H,7H-Pyrrolo [2,3-C]Azepin-4-
Ylidene}-2-Iminoimidazolidin-4-One

2-MED 7 65.4907 0.0663

6 2-Bromo-4-[(4Z)-2,5-Dihydroxyimidazol-4-Ylidene]-
1H,5H,6H,7H-Pyrrolo [2,3-C]Azepin-8-One

2-MED 8 63.733 1.5059

1 8,8-Dimethyl-3-(2,4,5-Trimethoxyphenyl)-2H,3H-Pyrano [2,3-
F]Chromen-4-One

3-HIGH 1 42.9611 4.2555 ODC1

2 Pongachalcone Ii 3-HIGH 1 43.466 4.1867

3 Isobavachromene 3-HIGH 1 48.7957 4.1781

4 5-Methoxy-2,2-dimethyl-7-[2-(4-hydroxyphenyl)ethenyl]-2H-
1-benzopyran

3-HIGH 1 46.0978 4.7554

5 5-Methoxy-2,2-dimethyl-7-[2-(4-hydroxy-3-methoxyphenyl)
ethenyl]-2H-1-benzopyran

3-HIGH 1 45.5547 4.764

1 Gamma-Mangostin 3-HIGH 1 31.8231 4.786 IDHC

1 Ent-Epicatechin 3-HIGH 1 28.1641 1.5461 NOS3

1 Bolinaquinone 3-HIGH 1 40.2143 4.6695 PA2GA

1 (1R,2S,7S,8S,9S,10S)-2,6,6,9-Tetramethyltetracyclo
[5.4.0.02,9.08,10]Undecane

3-HIGH 1 54.5271 4.1048 UD2B7

2 (1R,2R,7S,9S)-3,3,7-Trimethyl-8-Methylidenetricyclo
[5.4.0.02,9]Undecane

3-HIGH 1 46.5439 4.415

(Continued on following page)
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thereby reducing intraprostatic DHT levels, or estrogen receptor
antagonists to modulate systemic T/E2 ratios, have proven effective
in alleviating BPH symptoms (Ishikawa et al., 2006). This is
consistent with the increase of SRD5α2, the imbalance of T and
E ratio in the BPH group in the present study, and the endocrine
hormone disorder in the pathogenesis of BPH. In this study,
elevated levels of NF-κB p65 and TGF-β in the BPH group
aligned with established mechanisms of chronic inflammation in
BPH pathogenesis (Inamura and Terada, 2024; He et al., 2016).

Compared with the control group, the serum metabolic profile
of BPH patients is significantly abnormal, involving multiple
pathophysiological pathways such as amino acid metabolism,
energy metabolism, oxidative stress, steroid hormones and
phospholipid remodelling. The levels of glutamic acid,
pyroglutamic acid and its derived dipeptides (such as
glutamylvaline and leucyl-glutamate) increased, indicating the
disorder of glutamyl metabolism and the enhancement of

oxidative stress (Yang et al., 1995). Glutamic acid may activate
the MAPK/ERK pathway through glutamate receptors (such as
mGluR) in prostate stromal cells and promote cell proliferation
(Koda et al., 2023). The accumulation of TCA cycle intermediates,
such as oxoglutaric and citric acid, reflects cell mitochondrial
dysfunction (Desideri et al., 2015; Martínez-Reyes and Chandel,
2020). However, the elevation of long-chain hydroxyfatty acids, such
as 3-hydroxydodecanedioic acid, is associated with impaired
mitochondrial β-oxidation (Guerra et al., 2022; Ribas and Vargas,
2022). The decrease of keto acids (such as levulinic acid, 3-
oxohexadecanoic acid) indicates the disorder of peroxisome
metabolism, which affects the regular operation of the α-
oxidation function (Pflanz et al., 2019). Mitochondrial
dysfunction may increase the reactive oxygen species (ROS)
generation, activate the NF-κ B pro-inflammatory pathways, and
drive prostate fibrosis (Adrian et al., 2024). BPH patients also show
significant oxidative stress characteristics, as shown by increased

TABLE 1 (Continued) List of compounds identified through reverse screening based on targets.

ID Compounds name Predicted
level

Average
molecular ranking

Bioavailability Log
P

Targets

3 (1aR,4S,4aR,7S,7aS,7bS)-1,1,4,7-tetramethyl-2,3,4a,5,6,7,7a,7b-
octahydro-1aH-cyclopropa [e]azulen-4-ol

3-HIGH 2 50.552 3.4657

4 (1R,2S,7S,8S,9R)-2,6,6,9-Tetramethyltricyclo [5.4.0.02,9]
Undecan-8-Ol

3-HIGH 3 47.9194 3.6098

5 (1R,2S,7S,8R,9R)-2,6,6,9-Tetramethyltricyclo [5.4.0.02,9]
Undecan-8-Ol

3-HIGH 4 47.9194 3.6098

6 (1S,2R,5S,6S,7S,8R)-1,5-Dimethyl-8-(Prop-1-En-2-Yl)Tricyclo
[5.3.0.02,6]Decane

3-HIGH 5 40.4694 4.2709

7 (1S,2R,5S,6S,7S,8S)-1,5-Dimethyl-8-(Prop-1-En-2-Yl)Tricyclo
[5.3.0.02,6]Decane

2-MED 6 40.4694 4.2709

8 (+)-Ledol 2-MED 7 50.552 3.4657

9 (1S,2R,7S,8R,9S)-2,6,6,9-tetramethyltricyclo [5.4.0.02,8]
undecan-9-ol

2-MED 8 50.3899 3.6098

10 (1S,2S,7S,8S)-2,6,6,9-Tetramethyltricyclo [5.4.0.02,8]Undec-
9-Ene

2-MED 9 45.1124 4.415

11 Epiglobulol 2-MED 10 50.552 3.4657

1 1-benzyl-1H-imidazole 1-LOW 2 55.807 1.9314 HMOX1

2 Climbazole 1-LOW 2 61.0545 3.7293

3 2-(1H-imidazol-1-yl)acetic acid 1-LOW 2 74.7304 −0.0323

4 3-{4-[(1H-imidazol-1-yl)methyl]phenyl}prop-2-enoic acid 1-LOW 2 71.7749 2.0292

5 3-(1H-imidazol-1-yl)-2-oxopropanoic acid 1-LOW 2 72.2215 −0.4632

6 Imidazolepropionic Acid 1-LOW 2 79.7363 0.3578

7 [1-hydroxy-2-(1H-imidazol-1-yl)-1-phosphonoethyl]
phosphonic acid

1-LOW 2 9.6113 −1.1154

1 2-benzyl-8-ethoxy-1,3-dimethyl-2H,4H-cyclohepta [c]pyrrol-
4-one

1-LOW 1 40.2403 4.0653 PA2G5

1 2-methanesulfonyl-6-{1-methanesulfonyl-5H,6H,7H,8H,9H-
cyclohepta [c]pyridin-3-yl}pyridine

1-LOW 1 66.3071 2.2195 SDHB

1 Isosorbide mononitrate 1-LOW 2 80.492 −1.2782 GSR

Note: Prediction level indicates the “credibility” of the prediction, with a higher numerical value indicating a higher level of credibility; average molecular ranking represents the average ranking

of all targets hit by the ligand, with a smaller ranking value indicating a higher ranking among the hit targets; the higher the bioavailability score, the higher the bioavailability.
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levels of 4-hydroxynonenal (4-HNE), 9, 10-Dhome and xanthosine
(Poli and Schaur, 2000; Chacko et al., 2016; Chen et al., 2022). At the
same time, the levels of antioxidant substances (such as bilirubin and
sphingosine 1-phosphate) are decreased (Hubáček and Vítek, 2019;
Wollny et al., 2022), and the above changes are closely related to
chronic low-grade inflammation. The accumulation of pro-

inflammatory mediators such as 6-trans-12-epi-LTB4 and bicyclo
PGE2 promotes matrix proliferation through the TGF-β/Smad
pathway (Kamata et al., 2019; Abo-El Fetoh et al., 2023).
Regarding steroid metabolism, increased pregnenolone levels
suggest enhanced steroid synthesis, while increased stanolone
glucuronate is closely related to increased local dihydrotestosterone

FIGURE 9
Compound overlay diagram in target (ALDH2, CDS1, GSR, HMOX1, IDH1, and NOS3)-component fitting (upper) and PLIF analysis chart (lower). The
upper Figures (A–F) represent the overlay diagrams between the targets ALDH2, CDS1, GSR, HMOX1, IDH1, NOS3 and the components. The lower Figures
(A–F) represent the PLIF fingerprint profiles of the interactions between the targets ALDH2, CDS1, GSR, HMOX1, IDH1, NOS3 and the components,
respectively; the column height represents the proportion of compounds interacting with target residues.
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(DHT) activity (Witzig et al., 2020; Choi et al., 2003). In addition,
parallel metabolic pathways exist between sulfated and unconjugated
steroids, and the synthesis of testosterone is mainly dependent on
sulfated precursors, which maintain the balance of steroid hormones
under the regulation of steroid sulfatase (Sánchez-Guijo et al., 2016;

Saez et al., 1967). The decreased level of testosterone sulfate is closely
related to the abnormal regulation of the 5α-reductase-DHT axis, and
DHT stimulates the proliferation of prostate cells through the androgen
receptor signalling pathway (Cooper and Page, 2014). Abnormal
phospholipid metabolism with increased lysophosphatides (LysoPC,

FIGURE 10
Compound overlay diagram in target (ODC1, PLA2G2A, PLA2G5, SDHB, UGT2B7)-component fitting (upper) and PLIF analysis chart (lower). The
upper Figures (A-E) represent the overlay diagrams between the targets ODC1, PLA2G2A, PLA2G5, SDHB, UGT2B7 and the components. The lower
Figures (A-E) represent the PLIF fingerprint profiles of the interactions between the targets ODC1, PLA2G2A, PLA2G5, SDHB, UGT2B7 and the
components, respectively; the column height represents the proportion of compounds interacting with target residues.
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LysoPA) and decreased phospholipids of long-chain polyunsaturated
fatty acids (such as PC(22:0/22:6), PE (22:5/22:6)) suggests membrane
phospholipid degradation or activation of pro-proliferation signals
(Koeberle et al., 2012; Hofmanová et al., 2021). The metabolic
imbalance of oxidative stress-inflammation-hormones in BPH
provides a potential molecular basis for targeted interventions, such
as anti-oxidation, anti-inflammation and hormonal regulation.

Further metabolomics enrichment studies have shown that BPH
involves dysregulation of multiple metabolic pathways, including the
tricarboxylic acid cycle, glycerophospholipid metabolism, porphyrin
metabolism, uric acid cycle, and amino acid metabolism (Yu et al.,
2021; Wang S. et al., 2024). Metabolomic analysis (Figures 5, 6)
revealed glycerophospholipid, alanine-aspartate-glutamate, arginine
biosynthesis, glutathione, TCA cycle, and porphyrin metabolism as
critical endogenous regulatory pathways in BPH, demonstrating
significant crosstalk. The TCA cycle, a central pathway in cellular
energy metabolism (Martínez-Reyes and Chandel, 2020), undergoes
metabolic reprogramming in hyperplastic prostatic tissues to meet the
energy demands of rapidly proliferating cells. Citrate and α-
ketoglutarate (α-KG), key TCA cycle intermediates, play pivotal
roles in regulating cellular energy metabolism. Notably, citrate—a
significant component of prostatic fluid—is markedly elevated in
hyperplastic prostates due to glandular epithelial hyperplasia and
ductal dilation (Cooper and Farid, 1963; Kanazawa et al., 1964).
Beyond its canonical role in oxidative decarboxylation via isocitrate
dehydrogenase (IDH1) and succinate dehydrogenase (SDHB), α-KG
modulates redox homeostasis and biosynthetic processes by
influencing diverse metabolic pathways. Specifically, α-KG regulates
cell proliferation, apoptosis, and differentiation through metabolic
reprogramming and hormonal signalling, directly implicating it in
BPH pathogenesis (Kang et al., 2020; Xu C. et al., 2022). Dysregulation
of the TCA cycle further exacerbates intracellular oxidative stress,
accelerating BPH progression (Wang et al., 2022; Mailloux et al.,
2007). Glycerophospholipids, the most abundant in biological
systems, are structural components of cell membranes and
mediators of cellular signalling and protein recognition (Wang Y.
et al., 2024). Aberrant glycerophospholipid metabolism significantly
contributes to BPH pathophysiology (Geng et al., 2014), with
dysregulated levels of phosphatidylethanolamine (PE) and
phosphatidylcholine (PC) closely linked to disease initiation and
progression (Fan et al., 2024). Patients with BPH and histologically
confirmed chronic inflammation exhibit distinct metabolic profiles,
underscoring the critical role of glycerophospholipid metabolism in
inflammation-driven prostatic hyperplasia (Li J. et al., 2024).
Phospholipase A2 (PLA2), a key enzyme in glycerophospholipid
catabolism, hydrolyzes glycerophospholipids to release bioactive
mediators such as arachidonic acid, thereby modulating
inflammatory responses and cellular proliferation in BPH (Hayashi
et al., 2022; Turnaev et al., 2022). Additional contributors to prostatic
disease progression include ALDH2 and CDS1, which are implicated
in glycerophospholipid-related pathways (Seok et al., 2013; Ward
et al., 2021; Cui et al., 2023). Porphyrin metabolism is functionally
linked to BPH through heme oxygenase-1 (HO-1), which is
overexpressed in hyperplastic prostates. HO-1 catalyzes heme
degradation into biliverdin, a process potentially involved in the
pathogenesis of both BPH and prostate cancer (Maines and
Abrahamsson, 1996). Similarly, UGT2B, a porphyrin metabolism-
associated enzyme, influences BPH progression via androgen

metabolism regulation (Zhan et al., 2022). Uric acid and amino
acid cycling further participate in prostatic disease mechanisms
(Morris, 2002; Afify et al., 2020). Importantly, α-ketoglutarate (α-
KG) and glutamate serve as pivotal metabolites within the
interconnected pathways of alanine-aspartate-glutamate
metabolism, arginine biosynthesis, glutathione metabolism, and the
tricarboxylic acid (TCA) cycle, thereby functioning as central nodes
that integrate these metabolic processes (Ren et al., 2023).

The integrated metabolomic and network pharmacological
findings (Figure 7) demonstrate that targets including
ALDH2 and PLA2 participate in glycerophospholipid metabolism
by regulating metabolites such as PC and PE; targets including
IDH1 and SDHB are involved in the TCA cycle through metabolites
like citrate and 2-oxoglutarate; targets including ALDH2 and
NOS3 modulate uric acid cycling and amino acid metabolism via
metabolites including 2-oxoglutarate, glutamate, and 5-oxoproline.
Serum biochemical analyses revealed that the BPH group exhibited
hormonal dysregulation (e.g., reduced T/E2 ratio), elevated
transforming growth factor levels, and endogenous metabolic
perturbations. These results are consistent with the target
enrichment profiles of network pharmacology and previously
reported pathological mechanisms in BPH (Li J. et al., 2024; Li
et al., 2019; Jing, 2021). Consistent with this, the results of sub-
network mining of PPI interaction of network pharmacological
targets showed that the sub-networks mainly included the
overlapping integrated targets as HMOX1, UGT2B7, GCLC and
GSTM1 (sub-network 1, Figure 8A2), ALDH2 and GSTP1 (sub-
network 2, Figure 8A3), and PLA2G2A, PLA2G5, GSR, NOS3,
SDHB (subnetwork 3, Figure 8A4). The results of enrichment
analysis showed that the core targets, such as UGT2B/GST
families (chemoresistance/detoxification), mitochondrial
regulators (IDH1/SDHB/SDHD; TCA cycle/metabolic-epigenetic
crosstalk), PLA2G2A/PLA2G5 (lipid-inflammatory signaling via
arachidonic acid metabolism), ALDH2 (aldehyde detoxification/
redox balance), HMOX1 (heme degradation/oxidative stress
resolution), and NOS3 (NO-mediated vascular homeostasis)
converge on a multidimensional network spanning glutathione/
phospholipid metabolism (GO), chemical carcinogenesis (KEGG),
and drug resistance pathways. These targets synergistically regulate
detoxification-oxidative stress-lipid signaling axes, linking
mitochondrial dysfunction, inflammation, and metabolic
syndrome comorbidities. Reverse screening was performed using
the Yaozh Database-Natural Product AI Engine Platform and its
proprietary algorithms, through which 49 potential ligand-target
interaction compounds were identified from 11 clinically druggable
targets derived from integrated metabolomics and network
pharmacology analysis. According to the results (Table 1; Figures
9, 10), in addition to SHDB, GSR, and PLA2G5, the predicted
validity levels for targets such as ALDH2, CDS1, ODC1, IDH1,
NOS3, UGT2B7, and HMOX-1 are relatively high. Moreover,
during the ligand-target docking process, the ligand
conformations exhibit close superposition, and there are
prominent features of ligand affinity with clustered target residues.

BPH is a common urinary system disease in males, characterized
pathologically by an enlarged prostate gland that compresses the
urethra, leading to symptoms such as frequent urination, urgent
urination, difficult urination, and urinary retention (Li S. et al.,
2024). Contemporary medical treatment primarily involves the use
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of 5-α reductase inhibitors, α-blockers, and M-receptor antagonists
for symptomatic relief; however, most of these treatments have
limited efficacy and may cause varying degrees of toxic and side
effects (Strand et al., 2017; Sun et al., 2023; Lei and Ling, 2017). BPH
aligns with the descriptions of “Jīng Lóng” and “Lóng Bì” in TCM,
where constitutional weakness and deficiency of the liver and kidney
are common internal pathogenic factors for BPH (Mao et al., 2021).
The Foot-Jueyin Liver Meridian can course through the urinary and
reproductive systems, maintaining normal physiological functions.
Deficiency of the liver and kidney and abnormal spleen and stomach
transportation leads to a lack of qi and blood in the liver, further
causing the accumulation of damp-heat or phlegm-dampness,
resulting in qi stagnation and blood stasis or meridian
obstruction. Clinically, this manifests as weakness and soreness of
the knees, stagnation pain, and urodynamic disorders related to the
kidney and bladder meridians, among other kidney and liver
meridian pathologies (He et al., 2023). In this study, BPH
exhibited metabolic disorders such as those in the TCA cycle,
glycerophospholipid metabolism, uric acid and amino acid cycles.
It is consistent with understanding abnormal qi and blood
production in the liver as described in TCM for BPH. Further
integrative metabolomics-network pharmacology analysis revealed
that these differential metabolic pathways can directly regulate BPH
through metabolite or metabolite-reaction-enzyme-gene networks
or intervene in the progression of BPH by regulating inflammation,
oxidative stress, fibrosis, and other pathways.

Based on clinical practice, this study linked the metabolic
phenotypes, molecular targets, signalling pathways, and potential
therapeutic compounds of diseases. This research idea of
combining modern precision medicine with the holistic view of
traditional Chinese medicine is a concrete embodiment of the
research paradigm of biological systems medicine. Compared with
the traditional animal experimental model, the content of this study is
closer to the clinical real world. Through the integrated analysis of
metabolomics and network pharmacology on the research system, the
macro-regulation at the system biology level and the accurate
positioning of molecular targets are realised. On this basis, the
target-based reverse screening of compounds was combined with
ligand-target interaction fitting to obtain potential therapeutic
compounds with clear structure-activity relationships. This reverse
research paradigm from clinical phenotypia-molecular mechanism-
therapeutic drugs significantly improves the clinical translation
potential of candidate drugs. Thus, the results of this study provide
valuable insights into targeted therapy and drug development for BPH,
have the potential to improve patient outcomes through personalised
treatment strategies, and provide an innovative platform for the
development of evidence-based TCM treatment options for BPH
and other complex diseases (Li et al., 2023; Zhang, 2023). In this
study, only the molecular docking technology was used to verify the
affinity of the selected compounds with the corresponding targets and
the position of amino acid residues. The animal model of BPH should
be used to verify the targets and potential compounds that were
obtained in the future. Furthermore, this study identified aberrant
levels of lipid constituents, specifically phosphatidylethanolamine
and phosphatidylcholine, in the disease state. Consequently, it is
imperative to employ more precise lipid metabolomics techniques
to elucidate the alterations and associated regulatory mechanisms
of PE/PC.

5 Conclusion

This study successfully integrated clinical metabolomics and
network pharmacology to identify key therapeutic targets and
potential compounds for treating kidney insufficiency and blood
stasis-type BPH. The findings revealed a hormonal imbalance and
elevated levels of inflammatory and fibrotic markers in BPH patients.
These were associated with significant alterations in metabolic
pathways such as glycerophospholipid metabolism, the TCA cycle,
glutathione metabolism, and porphyrin metabolism. The combined
approach led to identifying 178 potential BPH targets and constructing
compound-reaction-enzyme-gene networks, which were further
refined to 23 core targets. Reverse screening and target-component
validation confirmed the high predictive reliability of seven core
targets, including ALDH2, CDS1, ODC1, IDH1, NOS3, UGT2B7,
and HMOX-1, as evidenced by the tight ligand conformation overlap
and prominent ligand affinity-driven target residue clustering. These
results offer valuable insights for developing targeted therapies and
advancing drug discovery for BPH, potentially improving patient
outcomes through personalised treatment strategies.
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