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Bruton’s tyrosine kinase inhibitors (BTKis) have made substantial impacts on the
treatment of B-cell malignancies like chronic lymphocytic leukemia (CLL) and
small lymphocytic lymphoma (SLL). Therapeutic benefits aside, the clinical use of
BTKis comes with several side effects, of which hypertension (HTN) is quite
common and serious and of significant clinical concern. The present article will
discuss the mechanisms by which the use of BTKis causes hypertension and
outline strategies for managing the condition within the clinic. Studies indicate
that using BTKis interferes with BTK’s central role within the B-cell receptor (BCR)
signaling cascade and impactsmultiple downstream signaling pathways like PI3K/
Akt, MAPK, and NF-κB. These changes contribute to endothelial dysfunction,
increased oxidative stress, and vascular constriction, all of which are implicated in
the development of hypertension. Of special concern is that oxidative stress (OS)
is directly related to decreased endothelial nitric oxide (NO) production, a finding
that becomes particularly relevant during the initiation of BTKi therapy. Also, BTKis
affect vascular development and tone regulation by activating the Notch and
RhoA/ROCK pathways, leading to increased vasoconstriction and the
advancement of hypertension. In light of the possibility that BTKi-induced
hypertension might jeopardize treatment tolerability and patient outcomes,
this review proposes a multimodal management of the condition, including
careful monitoring of blood pressure, individualized antihypertensive
treatment, and possible modifications of the dosing of BTKis. Future
investigations should look into the specific molecular mechanisms
underpinning the development of hypertension due to BTKis as well as the
effects of various antihypertensive regimens on the improvement of the
cardiovascular profile of affected individuals.
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1 Introduction

1.1 Overview of Bruton’s tyrosine kinase
inhibitors (BTKis) in hematologic
malignancies and clinical application

The development and application of Bruton’s tyrosine kinase
inhibitors (BTKi) have significantly improved the treatment
landscape of the B-cell lymphomas (BCL). The drugs have
been very effective, particularly in the treatment of chronic
lymphocytic leukemia/small lymphocytic lymphoma (CLL/
SLL), mantle cell lymphoma (MCL), Waldenström’s
macroglobulinemia (WM), marginal zone lymphoma, and
diffuse large B-cell lymphoma (DLBCL) (Tam and Thompson,
2024; Hampel and Parikh, 2023).

First-generation Bruton’s tyrosine kinase (BTK) inhibitor
ibrutinib was the first of this class of drugs introduced as a
central therapeutic agent for chronic lymphocytic leukemia
(CLL), ushering in the era of kinase-targeting medications for
this disease (Burger and Chiorazzi, 2013). Approval of ibrutinib
was prompted by the outcomes of the pivotal 2014 phase 1b/
2 trial (PCYC 1102). The prosecution highlighted the drug’s
effectiveness among treatment-naive as well as relapsed/
refractory (R/R) CLL/SLL participants (Dangi-Garimella, 2014;
Byrd et al., 2020a). With a follow-up of 26 months, the
approximate 7-year progression-free survival rate (PFS) of
treatment-naive cases was 83%, and of R/R was 34%, and the
overall response rate (ORR) was 89% (Byrd et al., 2020a; Lipsky
and Lamanna, 2020). The second-generation BTKis,
acalabrutinib and zanubrutinib, launched in 2017 and 2019,
respectively, are a newer class of drugs with lower off-target
effects. Both of these drugs are used for CLL, SLL, and MCL (Hata
et al., 1998). The first- and second-generation of BTKis are both
covalent (irreversible) blockers of BTK. Ibrutinib continues to be
the most widely investigated and tracked drug in the clinic as the
first-choice treatment in CLL cases (Lipsky and Lamanna, 2020).
Aside from the expected inhibition of BTK, ibrutinib also inhibits
multiple off-target kinases such as epidermal growth factor
receptor (EGFR), ErbB2, interleukin-2-induced T-cell kinase
(ITK), and the tyrosine kinase expressed in hepatocellular
carcinoma (TEC), thus imparting a profile of toxicities (Jiang
et al., 2024). On the other hand, acalabrutinib and zanubrutinib
have lower off-target activity, therefore lessening side effects.
According to preclinical evidence, second-generation BTKis are
less likely to affect tyrosine kinases like EGFR and ITK (Chen
et al., 2022). Pirtobrutinib, a new non-covalent (reversible) BTKi,
represents the third generation of the BTK inhibitors. It has the
advantage of overcoming resistance mediated by the Cys-481
mutation since it does not bind to Cys-481 (Smith and Burger,
2021). Furthermore, pirtobrutinib is the first BTKi demonstrated
to have sustained efficacy among heavily pretreated R/R MCL
patients. Better tolerability, decreased toxicity, and lower
discontinuation rates are evident for pirtobrutinib over first-
and second-generation BTKis, although more clinical studies and
data are required to determine its long-term results and safety
(Mato et al., 2021). It should also be noted that if the tumor is not
dependent on the B-cell receptor (BCR) signal, the BTKi
treatment would be ineffectual (Wang et al., 2021).

1.2 Adverse effects of BTKis, with a focus on
hypertension

Bruton’s tyrosine kinase inhibitors (BTKis) have proven more
effective than traditional chemotherapy and immunotherapy in
treating a variety of hematologic malignancies, with a generally
favorable safety profile. However, accumulating data indicate the
presence of several adverse events, particularly cardiovascular
disorders. In one study, the median treatment duration for
acalabrutinib was 38.3 months (range: 0.3–55.9 months), while
for ibrutinib it was 35.5 months (range: 0.2–57.7 months).
Among the most common adverse events (AEs) of any severity,
occurring in at least 10% of patients in both groups, were diarrhea,
headache, cough, joint pain, bruising, atrial fibrillation,
hypertension, urinary tract infections, back pain, muscle cramps,
and dyspepsia (Byrd et al., 2021; Wiczer et al., 2017). A retrospective
cohort study focusing on chronic lymphocytic leukemia (CLL)
patients identified atrial fibrillation as the primary reason for
discontinuing ibrutinib. This condition is associated with a
heightened risk of both overall mortality and cardiovascular
deaths, including stroke and other cardiac complications.
Managing atrial fibrillation is particularly challenging, as the
concurrent use of anticoagulants with BTK inhibitors increases
the risk of bleeding (Chai et al., 2017). Long-term follow-up data
from a phase II clinical trial on acalabrutinib monotherapy in
previously untreated or relapsed/refractory CLL patients showed
that 6% and 11% of patients, respectively, discontinued treatment
due to adverse events, following median follow-up periods of 53 and
41 months (Byrd et al., 2020b). These adverse reactions are
attributed to the inhibition of BTK by BTK inhibitors and the
variable off-target effects on other kinases such as
interleukin–2–inducible T-cell kinase (ITK), tyrosine kinase
(TEC), and epidermal growth factor receptor (EGFR). The
toxicities observed are closely related to the binding patterns of
these drugs with their target kinases (Lipsky and Lamanna, 2020).

There is growing interest in understanding the long-term effects
of hypertension, particularly hypertension associated with cancer
treatment, on patient morbidity andmortality (GBD, 2017 Causes of
Death Collaborators, 2018). Hypertension is the most common
modifiable risk factor for cardiovascular disease and persists as a
significant issue following acute cancer treatment, affecting both
adult and pediatric cancer survivors (GBD, 2017 Causes of Death
Collaborators, 2018). The incidence of hypertension in cancer
survivors is 2.5 times higher than in the general population,
further increasing the cardiovascular disease risk and mortality
already elevated in these patients (Armenian et al., 2016). A
retrospective analysis of 562 patients treated with ibrutinib
revealed that 78% of patients developed new or worsened
hypertension, with half of these events occurring within
2 months of initiating ibrutinib therapy (Ahn and Brown, 2021).
Despite this, research and clinical data on hypertension induced by
BTK inhibitors (BTKis) remain limited. Much of the data on cancer
treatment-related hypertension stems from oncology trials primarily
focused on assessing anticancer drug efficacy and cancer prognosis,
with limited cardiovascular data collected. This clearly emphasizes
the need for larger, higher-quality studies focusing on specific
cardiovascular outcomes (Armenian et al., 2016; Gibson et al.,
2017). There is an urgent need for dedicated trials on blood
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pressure management in cancer patients and survivors, aiming to
study the incidence and mechanisms of hypertension following
BTKi treatment (Chow et al., 2014; Sturgeon et al., 2019).

1.3 Rationale for investigating BTKi-induced
hypertension

The potential mechanisms behind BTKi-induced hypertension
are multifactorial. Evidence suggests that BTK inhibition leads to an
imbalance between the oxidative and antioxidant systems, resulting
in endothelial dysfunction that reduces vascular tone and enhances
contraction (Gallo and Savoia, 2024). The PI3K/Akt, MAPK, and
NF-κB signaling pathways, which are located downstream of the
B-cell receptor (BCR) signaling pathway, interact intricately with
BTK, a pivotal kinase in this network (EB Gomez et al., 2023). After
BTKi administration, BTK inhibition may decrease activity in these
downstream pathways, including PI3K/Akt, MAPK, and NF-κB.
Another possibility is that, beyond inhibiting BTK, BTKis may
interact with other kinases sharing similar structural domains,
thereby blocking these pathways. These signaling pathways are
each crucial in regulating vascular blood pressure through
distinct mechanisms (T Zou et al., 2010; TM Seccia et al., 2020;
Slowinski et al., 2007). In addition, two other pathways, the Notch
and RhoA/ROCK signaling pathways, which regulate endothelial
proliferation and vascular tone, have shown potential links to the
BTK pathway and may contribute to the hypertension induced by
BTKis (Zhou et al., 2022; Fulton et al., 1999).

In conclusion, the pathophysiology of BTKi-induced
hypertension is driven by the complex interactions between
oxidative stress, endothelial dysfunction, and alterations in
signaling pathways. Further investigation is needed to uncover
the precise molecular mechanisms involved and to identify
possible therapeutic strategies to mitigate this adverse effect.
Gaining insights into these mechanisms will be crucial for
formulating targeted interventions to manage hypertension in
patients treated with BTKi, ultimately enhancing both
cardiovascular health and cancer outcomes.

2 BTK and the mechanism of action
of BTKis

2.1 Role of BTK in B-cell receptor
(BCR) signaling

The B-cell receptor (BCR) signaling pathway plays a vital role in
B-cell development and contributes to the pathogenesis of B-cell
tumors (Ahn and Brown, 2021). Bruton’s tyrosine kinase (BTK) is a
multi-domain protein containing SRC homology 2 (SH2) and
SH3 domains, an amino-terminal pleckstrin homology (PH)
domain, a proline-rich TEC homology (TH) domain, and a
catalytic domain. It serves as a fundamental component of the
B-cell receptor signaling complex (Tinworth et al., 2019). BTK
activation occurs in two steps: (1) Phosphorylation of BTK at the
Y551 site in the kinase domain by spleen tyrosine kinase (SYK) or
SRC family kinases; (2) Phosphorylation at Y551 results in
autophosphorylation at the Y223 site in the SH3 domain, which

fully activates BTK’s kinase activity and stabilizes its active
conformation (Pal et al., 2018). The phenotype of X-linked
agammaglobulinemia (XLA) patients and the finding that BTK
inhibition blocks downstream signaling underscores BTK’s
central role in the BCR signaling pathway (Honigberg et al.,
2010). As a critical protein in BCR signal transduction, BTK is
an attractive drug target for B-cell malignancies (such as chronic
lymphocytic leukemia and mantle cell lymphoma) and autoimmune
and inflammatory disorders (Mouhssine et al., 2024). In B-cell
malignancies, BCR signaling is sustained through ligand and
ligand-independent mechanisms, resulting in continuous BTK
activation (Tkachenko et al., 2023). This persistent activation
provides a survival and proliferative advantage to tumor clones
in B-cell malignancies (Maher et al., 2023).

2.2 Mechanism of BTK inhibition by
covalent/reversible binding to Cys-481 in
the ATP-binding domain

Based on their mechanisms of action and binding modes, BTK
inhibitors (BTKis) are divided into two types: (i) covalent/
irreversible inhibitors, such as the first-generation BTKi ibrutinib
and the second-generation BTKi acalabrutinib. These inhibitors are
characterized by a Michael receptor fragment that forms a
permanent covalent bond to the conserved Cys481 residue
located at the ATP-binding site. This interaction effectively
occupies the binding site, thereby preventing the phosphorylation
of downstream targets such as Akt and PLC-γ2 (Maher et al., 2023).
Consequently, BTK signaling is disrupted, leading to inhibition of
the BCR pathway both in vitro and in vivo (Mouhssine et al., 2024).
(ii) Non-covalent/reversible inhibitors, which bind to a specific
pocket in the SH3 domain through weak, reversible interactions
(such as hydrogen bonds or hydrophobic forces), causing the
enzyme to adopt an inactive conformation (Tinworth et al.,
2019). Recently, a novel class of hybrid BTK inhibitors has been
introduced. These inhibitors bind to BTK through a reversible
covalent interaction, forming a temporary covalent bond with the
Cys481 residue. This mechanism results in the transient inactivation
of the enzyme (Tasso et al., 2021). These inhibitors are distinguished
by their high potency and selectivity, extended and adjustable
residence times, and fewer off-target effects, merging the
advantages of both covalent and non-covalent inhibitors (Zhao
et al., 2021). Covalent BTK inhibitors, such as ibrutinib and
acalabrutinib, leverage the presence of the Cys481 residue in BTK
to achieve strong binding affinity, resulting in effective BTK
inhibition. However, the selectivity of these inhibitors is limited.
In addition to their intended effects, ibrutinib also induces off-target
inhibition of several non-target proteins, including EGFR, ErbB2,
ITK, and TEC (Ganatra et al., 2018; Kaur and Swami, 2017).
Although these off-target effects contribute to the antitumor
efficacy of BTK inhibitors, they are also associated with a range
of adverse events, including hypertension, atrial fibrillation, bleeding
complications, and impaired macrophage phagocytosis (Gabizon
and London, 2020; Borge et al., 2015). Additionally, resistance to
BTK inhibitors has been linked to mutations at the Cys481 residue,
which prevent the covalent binding of ibrutinib, acalabrutinib, and
zanubrutinib. As a result, these inhibitors only achieve temporary
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inhibition of the mutated BTK protein (Maher et al., 2023). The
advent of non-covalent BTK inhibitors, such as pirtobrutinib,
provides a theoretical means to overcome resistance driven by
these mutations. Additionally, targeting BTK using proteolysis-
targeting chimeras (PROTACs) emerges as a promising strategy
to address BTKi resistance in B-cell malignancies (Mouhssine
et al., 2024).

2.3 Downstream effects on BCR-
related pathways

BCR signaling is interconnected through a network of kinases
and phosphatases, which regulate and amplify its activation. In
general, BCR signaling is categorized into chronic activation BCR
and rigid BCR (Profitós-Pelejà et al., 2022). Chronic activation BCR
is an antigen-dependent process, primarily engaging pathways like

NF-κB and MAPK/ERK. In contrast, rigid BCR sustains B-cell
survival via a non-antigen process, primarily through the PI3K/
Akt pathway (Lam et al., 1997). When antigens bind to
immunoglobulins on the B-cell surface, BCR signaling is
initiated, leading to the coupling and autophosphorylation of
immunoreceptor tyrosine-based activation motifs (ITAMs) on the
cytoplasmic tails of CD79A (Igα) and CD79B (Igβ), a process
facilitated by the protein kinase LYN, a member of the Src family
kinases (Ahn and Brown, 2021). Phosphorylation triggers the
recruitment of various signaling complexes, such as SYK,
Bruton’s tyrosine kinase (BTK), phospholipase Cγ2 (PLCγ2), and
protein kinase C (PKC) (Woyach et al., 2012). BTK activation is
initiated when the Src homology 2 (SH2) domain of the adaptor
protein BLNK is recruited, making BLNK a key component of the
signaling complex associated with the activated CD79 complex
(Wang et al., 2015). Once bound, BTK is phosphorylated by
SYK. BLNK functions as a scaffold, enabling the binding of

FIGURE 1
BCR signaling pathway and mechanism of action of BTKi. B-cell receptors consist of transmembrane immunoglobulin (Igα/β) and CD19, which are
responsible for antigen recognition and activation of downstream signaling cascades. IP3-Ca2+-NFAT pathway: promotes Ca2+ release, activates NFAT
(nuclear factor-activated T cells), and regulates gene transcription. DAG-PKC pathway: activation of PKC (protein kinase C), further activation of NF-κB
and MAPK/ERK, regulation of inflammatory response and cell survival. PI3K-AKT-mTOR pathway: promotes B cell survival and metabolic regulation
through AKT and mTOR. BTKi inhibits BTK activity by covalently or non-covalently binding to Cys-481 (cysteine-481), blocking BCR signaling and
inhibiting B cell survival. Image created with BioRender.com (accessed on 9 May 2025).
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PLC-γ2, which is then phosphorylated by both SYK and BTK (Pal
et al., 2018). Additionally, LYN can directly phosphorylate PLC-γ2
(Kabak et al., 2002). Active PLC-γ2 hydrolyzes phosphatidylinositol
(PIP2), generating the second messengers diacylglycerol (DAG) and
inositol trisphosphate (IP3). IP3 stimulates calcium influx, which
activates PKC β (Engels et al., 2001). The calcium influx then
activates calmodulin-dependent phosphatase, leading to the
phosphorylation of NFAT (Rao et al., 1997). PKC β directly
phosphorylates various mitogen-activated protein transcription
factors, including ERK, JNK, and p38/MAPK, which activate the
mitogen-activated protein kinase (MAPK) pathway (Jacob et al.,
2002). NF-κB is indirectly activated through the CARD11-BCL-10-
MALT1 complex, leading to the phosphorylation of IκB, which
releases NF-κB and allows its translocation to the nucleus
(Stadanlick et al., 2008). Activation of BCR also results in the
recruitment of CD19, which is phosphorylated by LYN. This
phosphorylation facilitates the binding of the p85 subunit of
PI3K to CD19, thereby activating the p110 δ subunit in B cells.
PI3K then phosphorylates PIP2, generating phosphatidylinositol
3,4,5-trisphosphate (PIP3) (Burger, 2019). PIP3 is essential for
recruiting BTK and activating PLC-γ2, thereby linking PI3K
signaling to calcium flux and the subsequent activation of Akt
and mTOR (Patton and Woyach, 2024). (Figure 1).

3 BTK inhibition and blood pressure
regulation

3.1 Clinical observations and prevalence in
patients undergoing BTKi therapy

In clinical settings, some patients receiving BTKi treatment
experience varying levels of hypertension. A phase III open-label,
randomized controlled trial with a median follow-up of 44.4 months
showed that the incidence of hypertension in Waldenström’s
macroglobulinemia (WM) patients after treatment with ibrutinib
and zanubrutinib was 25.5% and 14.9%, respectively (Dimopoulos
et al., 2023). A study by Dickerson et al., which examined over
500 cancer patients who received ibrutinib treatment between
2009 and 2016, found that more than three-quarters of patients
developed new or aggravated hypertension within 30 months of
treatment (Dickerson et al., 2019). A statistical analysis of a long-
term follow-up study of up to 6 years in patients with chronic
lymphocytic leukemia (CLL) or small lymphocytic lymphoma
treated with ibrutinib found that 21% of patients developed
hypertension (Munir et al., 2019). In a randomized controlled
clinical trial with a median follow-up of 42.5 months, the
incidence of hypertension in 325 and 327 patients with relapsed/
refractory CLL and small lymphocytic lymphoma after treatment
with ibrutinib and zanubrutinib was 25.3% and 27.2%, respectively
(Brown et al., 2024). Moreover, in a clinical trial of 300 CLL patients
treated with ibrutinib, new-onset hypertension occurred in 68.5% of
patients (I Goh and Chew, 2018). Similar results were observed in an
open-label phase III clinical trial (Barr et al., 2018). Additionally,
clinical trials conducted by Tam C, Moslehi JJ, Ryan CE, and others
confirmed that hematologic cancer patients undergoing prolonged
BTKi therapy experience varying degrees of hypertension (Tam and
Thompson, 2024; Moslehi et al., 2024; Ryan et al., 2023). A pooled

analysis of 424 patients from three phase III trials of ibrutinib in
chronic lymphocytic leukemia (CLL) revealed that 18% of patients
developed hypertension, with 6% experiencing severe hypertension
after a period of treatment (Abdel-Qadir et al., 2017). A study with a
median follow-up of 41 months found that 59.2% of patients
developed new or worsened hypertension, with 35% showing an
increase in systolic blood pressure of ≥10 mmHg from baseline and
13.5% showing an increase of ≥20 mmHg. Among patients without
baseline hypertension, 62 (53.9%) developed new hypertension after
starting acalabrutinib treatment, with an average increase in systolic
blood pressure (SD) of 16.7 mmHg. The median time to reach the
maximum increase in systolic blood pressure was 15 months (Chen
et al., 2022). These findings indicate a high incidence of
hypertension following BTKi therapy, and the emergence of
malignant hypertension or hypertension-related complications
often results in the discontinuation of treatment. This emphasizes
the need for vigilant monitoring of hypertension during BTKi
therapy and calls for further research to reduce its occurrence or
prevent its onset (Table 1).

3.2 Impact on cardiovascular complications
and prognosis

Due to the confounding factors associated with elevated blood
pressure in cancer patients, particularly during times of heightened
stress, potential fear of negative news, and the critical focus on
managing life-threatening diseases, increased blood pressure may
not consistently be recognized in clinical care settings. However, it
has been noted that in patients undergoing BTKi treatment, the
progression of hypertension can lead to an unexpected increase in
the burden of cardiovascular events (Chen et al., 2022). Currently,
there is limited research and data on the relationship between BTKi-
induced hypertension and Major Adverse Cardiovascular Events
(MACE), as well as its long-term impact on cardiovascular
complications. In a clinical study with a median follow-up of
41 months, 41 patients (14.6%) experienced MACE after
treatment with acalabrutinib, with 18.2% of these events linked
to newly developed or worsened hypertension. In contrast, patients
who did not experience new or worsened hypertension after
acalabrutinib initiation had an MACE incidence of 11.2%. This
suggests that patients with newly developed or worsened
hypertension have a higher risk of MACE (18.2% vs 11.2% in
those without hypertension progression). However, the difference
was not statistically significant following multivariate analysis (Chen
et al., 2022).

A retrospective cohort study of lymphoma patients treated at
Ohio State University Cancer Center revealed that 93 patients
(16.5%) experienced MACE, with 84 of them (19.1%) having new
or worsened hypertension, and nine patients (8.2%) remaining
stable or without hypertension. Multivariate regression analysis
showed that new or worsened hypertension was associated with
an increased risk of MACE. Atrial fibrillation was the most common
cardiovascular complication during ibrutinib therapy, occurring in
73 patients (13%), followed by new-onset heart failure (3.7%),
cerebrovascular events (2.1%), myocardial infarction (1.4%), and
ventricular arrhythmias or sudden cardiac death (1.1%) (Dickerson
et al., 2019). In the first year of acalabrutinib treatment, the extent of
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early systolic blood pressure elevation was associated with the
subsequent risk of atrial fibrillation (AF). For every 5 mmHg
increase in systolic blood pressure, the risk of MACE increased
by 27% (0.27) (P < 0.001), and the risk of AF development increased
by 42%. Interestingly, in another study, baseline hypertension was
not associated with major MACE, which was defined as new-onset
coronary artery disease, congestive heart failure, atrial fibrillation,
stroke, or cardiovascular death. This finding contrasts with the
results of the previous two studies, possibly due to differences in
follow-up durations. The Chen ST and Dickerson studies had
follow-up periods of 41 months and 30 months, respectively,
whereas this study had a 5-year follow-up (I Goh and Chew, 2018).

Moreover, managing hypertension during BTKi treatment often
requires combination therapy. The most frequently used treatments
for hypertension were diuretics (22.4%), followed by angiotensin
blockers (18%), receptor blockers (15.4%), calcium channel blockers
(12.4%), and other treatments (3.6%; e.g., clonidine). In the
monotherapy group, there were no significant differences in
long-term systolic blood pressure (SBP) control across different
antihypertensive drug classes. In the combination therapy group
(≥2 drugs), there was a trend toward SBP reduction, but it did not
reach statistical significance. Among baseline monotherapy patients
(21.9%), no antihypertensive class significantly prevented the
progression of hypertension (Dickerson et al., 2019). When
BTKi-associated hypertension develops and remains uncontrolled
despite the use of multiple antihypertensive drugs, it is reasonable to
discuss with oncologists and patients the possibility of reducing
chemotherapy doses or implementing chemotherapy breaks. It may
also be prudent to contemplate reducing the dose or temporarily
discontinuing other medications that could exacerbate
hypertension, including nonsteroidal anti-inflammatory drugs
(NSAIDs), erythropoiesis-stimulating agents, and high-dose
corticosteroids (Cohen et al., 2019a). Managing hypertension can
reduce the long-term risk of subsequent MACE events, so aggressive

antihypertensive treatment should be initiated when hypertension
develops or worsens. However, additional prospective studies are
required to validate these findings.

4 Oxidative stress and BTKi-Induced
hypertension

4.1 Oxidative stress as a key contributor to
endothelial dysfunction and vascular tone

Oxidative stress (OS) occurs when the excessive production of
reactive oxygen species (ROS) surpasses the buffering capacity of the
antioxidant defense system, or when there is a deficiency in
antioxidant enzymes (Uttara et al., 2009). ROS are active
intermediates of molecular oxygen and act as important
intracellular second messengers. In vascular tissues, enzymes that
produce ROS include NADPH oxidase (NOX), xanthine oxidase,
and the mitochondrial respiratory chain, and their increased activity
can lead to higher ROS levels in the vasculature (Citrin et al., 2024).
ROS consist of free radicals (such as superoxide anion (·O2),
hydroxyl radical (·HO), and nitric oxide (·NO)) and non-radical
oxygen species (such as H2O2, HOCl, and ONOO−) (Watson et al.,
2008). Superoxide anion can directly react with NO, leading to the
generation of peroxynitrite, which has been shown to uncouple
endothelial nitric oxide synthase (eNOS), resulting in decreased NO
synthesis (Mollnau et al., 2002). Under normal physiological
conditions, there is a balance between the production of reactive
oxygen species (ROS) and the clearance of toxic compounds in the
endothelium through endogenous antioxidants (Gutteridge and
Mitchell, 1999). However, under certain pathological and
physiological conditions, such as hyperlipidemia, ischemia-
reperfusion injury, and shear stress damage, this balance between
ROS production and antioxidant defense mechanisms can be

TABLE 1 Incidence of hypertension during BTKi treatment.

BTKI Author Incidence of hypertension Type of study

Ibrutinib Dimopoulos MA 25.5% Phase III randomized controlled trial

Zanubrutinib Dimopoulos MA 14.9% Phase III randomized controlled trial

Ibrutinib TalhaMunir 21% RESONATE randomized controlled clinical trial

Ibrutinib Jennifer R Brown 25.3% ALPINE Phase III randomized controlled trial

Zanubrutinib Jennifer R Brown 27.2% ALPINE Phase III randomized controlled trial

Ibrutinib Gordon MJ 68.5% Retrospective Cohort Study

Acalabrutinib Dickerson T 24.4% Meta-Analysis

Acalabrutinib Dickerson T 20.5% Meta-Analysis

Ibrutinib Dickerson 75.0% Meta-Analysis

Acalabrutinib Sunnia T 48.9% Retrospective cohort study

Ibrutinib Laura Samples 39.8% Multicenter retrospective study

Ibrutinib Robert A Redd 40.0% Retrospective cohort study

Ibrutinib Srilakshmi Vallabhaneni 6.3% Retrospective cohort study

Acalabrutinib Jérôme Paillassa 32.0% Retrospective cohort study
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disrupted. This disruption leads to oxidative stress, which can
induce endothelial cell dysfunction through various pathways,
thereby exacerbating the progression of cardiovascular diseases
(Zhang et al., 2023).

The endothelium is a single-cell layer that lines the inner
surface of blood vessels. It plays a crucial role in maintaining
vascular homeostasis, regulating vascular tone and permeability,
and carrying out anti-inflammatory, antioxidant, anti-
proliferative, and anti-thrombotic functions (Gallo and
Savoia, 2024).

Endothelial dysfunction (ED) can contribute to a range of
diseases, such as atherosclerosis, diabetes, coronary artery disease,
hypertension, and hypercholesterolemia (Incalza et al., 2018). It is
characterized by an imbalance between vasodilators and
vasoconstrictors, which promotes conditions favorable to
thrombosis and an atherosclerotic phenotype. This dysfunction
manifests in various ways, including vasoconstriction, leukocyte
adhesion, platelet activation, vascular inflammation, impaired
coagulation, increased oxidative stress, and the development of
atherosclerosis and thrombosis (Dhananjayan et al., 2016; Verma
and Anderson, 2002).

Nitric oxide (NO), the primary vasodilator produced by
endothelial cells, is mainly synthesized by endothelial nitric
oxide synthase (eNOS) through the conversion of L-arginine to
L-citrulline (Holland et al., 1998). NO regulates vascular dilation
and constriction by interacting with smooth muscle cells (SMCs)
(Hsich et al., 2000). This process involves the activation of soluble
guanylate cyclase (sGC) and protein kinase G (PKG), leading to an
increase in cyclic guanosine monophosphate (cGMP) levels and
ultimately causing vasodilation (Imanishi et al., 2005).
Additionally, NO plays an essential role in inhibiting SMC
proliferation, inflammation, and platelet aggregation,
contributing to the overall maintenance of vascular function. A
reduction in NO bioavailability is a critical factor in endothelial
dysfunction in patients with cardiovascular disease (Imanishi et al.,
2005). Oxidative stress plays a significant role in regulating eNOS
activity and NO bioavailability. Elevated intracellular reactive
oxygen species (ROS) levels can reduce eNOS activity by
decreasing BH4 or L-arginine levels, leading to eNOS
uncoupling and producing superoxide rather than NO (Meza
et al., 2019). Furthermore, high ROS levels can chemically
inactivate bioactive NO by forming peroxynitrite, worsening
oxidative stress, and decreasing NO’s effectiveness as a
vasodilator through eNOS uncoupling (Li H. et al., 2019). The
decline in NO bioavailability marks the onset of endothelial
dysfunction. Additionally, ROS affects low-density lipoprotein
(LDL), and once oxidized, LDL can inactivate NO and its
production, leading to endothelial dysfunction (Griendling
et al., 2000). Excessive oxidative stress can also cause
mitochondrial dysfunction, enzyme deficiencies, and/or
uncoupling, further increasing oxidative stress and enhancing
inflammatory responses. Oxidative stress also promotes the
EndMT process and inhibits endothelial vasculogenesis (Zhang
et al., 2023). As such, oxidative stress plays a central role in
developing endothelial dysfunction.

4.2 BTK’s role in NADPH oxidase regulation
(potential link to NOX2 and ROS production)

The NADPH oxidase complex consists of transmembrane
components (gp91phox and p22phox), cytosolic components
(p47phox, p67phox, and p40phox), and Rac2 (Sumimoto, 2008).
The NOX enzyme family includes various members, such as NOX1,
NOX2, NOX3, NOX4, and NOX5 (Pagano et al., 1997). NOX2 is
primarily found in neutrophils and macrophages, which play a
major role in ROS production in immune cells. Excessive
activation of NOX has been identified as one of the most
important mechanisms of reactive oxygen species generation
(Violi et al., 2020). Although initially described in phagocytic
immune cells (like neutrophils), the NADPH oxidase system is
now known to be present in most types of vascular cells,
including endothelial cells and smooth muscle cells (Griendling
et al., 2000). By generating ROS, NADPH oxidase profoundly
influences endothelial cell function, vascular tone, and vascular
remodeling (Violi et al., 2020). Inhibitors of NOX may provide a
promising approach to treating vascular diseases related to oxidative
stress (Jaquet et al., 2009).

Currently, there is limited research directly linking BTK with
NADPH oxidase, though some studies suggest that BTK regulates
NADPH oxidase activity. The precise interaction between these two
remains unclear. Honda F and colleagues found that in the absence
of BTK, neutrophils produce excessive ROS after stimulation by
Toll-like receptors (TLR) or TNF receptors. ROS production is
closely tied to NADPH oxidase activation. Specifically, the literature
points out that neutrophils lacking BTK exhibit excessive NADPH
oxidase activity, leading to overactivation of the cells and initiating
apoptosis. BTK regulates NADPH oxidase activation by interacting
with Mal, a TLR adaptor molecule. In the absence of BTK, Mal is
incorrectly translocated to the cell membrane, where it activates
PI3K and enhances NADPH oxidase activity (Honda et al., 2012).
However, other studies have shown that BTK enhances neutrophil
oxidative bursts (ROS production) and degranulation by activating
the p40phox subunit of the NADPH oxidase complex and the small
GTPase RAC2, which is crucial for effectively disrupting fungal
hyphae. The study also suggests that BTK inhibitors (BTKis) can
selectively suppress neutrophil oxidative bursts, degranulation, and
the destruction of Aspergillus hyphae, leaving spore phagocytosis
and intracellular killing functions unaffected. These findings
indicate that BTK regulates NADPH oxidase activity, specifically
in neutrophil oxidative responses during antifungal activity (Desai
et al., 2024). Research on BTK’s role in acute kidney injury indicates
that BTKmediates an increase in renal ROS, contributing to elevated
biochemical markers of acute kidney injury, such as serum
creatinine/urea nitrogen levels, increased renal medullary
peroxidase activity, and histopathological damage to renal
tubules. However, BTKi treatment has been shown to reduce
oxidative stress in neutrophils, B cells, and kidney tissues, while
improving sepsis-induced renal dysfunction (Nadeem et al., 2021).
These findings appear to be contradictory, highlighting the need for
further research to explore the relationship between BTK, NADPH
oxidase, and oxidative stress.
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4.3 Impact on endothelial function and
blood vessel constriction

Considering BTK’s regulation of NADPH oxidase, the
significant role of NADPH oxidase in oxidative stress, and the
effects of oxidative stress on endothelial dysfunction and vascular
tone, it can be concluded that oxidative stress is one of the
mechanisms by which BTK inhibitors (BTKis) cause elevated
blood pressure. By inhibiting BTK, BTKis may lead to enhanced
NADPH oxidase activity, disrupting the balance between oxidative
and antioxidant systems within the body. This disruption results in
oxidative stress, which reduces NO bioavailability, leading to
endothelial dysfunction and vasoconstriction, ultimately
contributing to hypertension (Zhang et al., 2023; Griendling
et al., 2000; Honda et al., 2012). Therefore, although BTKis are
effective in treating certain immune diseases and B-cell tumors, they
may have adverse effects on vascular health by the mechanisms
outlined above, potentially leading to or worsening hypertension
(Samples et al., 2024; Morris G. et al., 2019)。

5 Key signaling pathways involved in
BTKi-associated hypertension

5.1 PI3K/Akt signaling pathway

5.1.1 PI3K/Akt pathway and the ET-1/NO system
PI3K is composed of a catalytic subunit (p110) and a regulatory

subunit (p85), and it is typically activated by cell surface receptors,
such as receptor tyrosine kinases (RTKs) (Morello et al., 2009). The
PI3K family plays a crucial role in regulating several fundamental
cellular functions, such as growth, proliferation, metabolism,
migration, and secretion (Manning and Toker, 2017).
Disruptions in PI3K signaling are associated with a wide range of
human diseases, including various cancers, immune system
disorders, neurological conditions, diabetes, abnormal tissue
growth, and cardiovascular diseases (Li J. et al., 1997). Akt, or
protein kinase B (PKB), is a serine/threonine kinase pivotal in
cellular signal transduction pathways. Akt is more extensively
activated downstream of receptor-mediated PI3K activation than
other effectors (Fruman et al., 2017). Upon PI3K activation, PIP3 is
generated and forms a signaling platform at the cell membrane.
PIP3 recruits Akt and PDK1, leading to Akt phosphorylation and
activation. Once activated, Akt regulates various biological
processes, such as cell survival, proliferation, and metabolism, by
phosphorylating downstream targets. This process is a pivotal
regulatory mechanism in numerous physiological processes (such
as immune responses and cell growth) and pathological conditions
(such as cancer and diabetes) (Vanhaesebroeck et al., 2012).

NO is produced by NOS through an NADPH-dependent
process (Engineer et al., 2019). The NOS family consists of three
isoforms: neuronal NOS (nNOS), inducible NOS (iNOS), and
endothelial NOS (eNOS) (Xu et al., 1999). nNOS is
predominantly expressed in the sarcoplasmic reticulum (SR) of
cardiomyocytes, while iNOS is mainly expressed in endothelial
cells (ECs), vascular smooth muscle cells (VSMCs),
cardiomyocytes, neurons, and fibroblasts (Pautz et al., 2010).
eNOS is primarily expressed in endothelial cells and

cardiomyocytes (Menshikova et al., 2000). NOS activity can be
phosphorylated and activated by the PI3K/Akt pathway (Farah
et al., 2018). Nitric oxide plays a pivotal role in maintaining
cardiovascular homeostasis, regulating vascular tone, and
inducing endothelial-dependent vasodilation (Godo and
Shimokawa, 2017). Additionally, endothelial-derived NO exhibits
antioxidant, antiproliferative, antithrombotic, and anti-
inflammatory effects (Vanhoutte et al., 2017).

ET-1 is formed from proendothelin-1 through the action of
endothelin-converting enzyme (ECE) (Aflyatumova et al., 2018). Its
effects are mainly mediated by ETA and ETB endothelin receptors,
which play significant roles in the kidney, lungs, coronary arteries,
and cerebral circulation. These receptors are involved in
vasoconstriction, pro-inflammatory effects, mitogenesis, cell
proliferation, free radical production, and platelet activation
(Böhm and Pernow, 2007; Mazzuca and Khalil, 2012). Under
normal physiological conditions, ET-1 and NO maintain a
delicate balance through complex interactions to support normal
vascular function. Furthermore, there exists a complex interplay
between the PI3K/AKT signaling pathway and the ET-1/NO system,
which will be further explored in the subsequent sections.

5.1.2 BTK inhibition’s effect on PI3K/Akt signaling
PI3K is an essential component of the BCR signaling pathway,

playing a critical role in B cell survival, proliferation, and
differentiation (Werner et al., 2010). The exact mechanism by
which BTKi induces hypertension is still unclear, but inhibition
of the PI3K/Akt pathway is a commonly discussed possibility
(Lipsky and Lamanna, 2020; Byrd et al., 2021). When the BCR
receptor binds to an antigen, phosphorylation of the Igα/Igβ
complex recruits the regulatory subunit p85 and the catalytic
subunit p110 of PI3K, activating its catalytic activity and
converting PIP2 to PIP3 (Lüscher et al., 1990). PIP3 acts as a
second messenger, triggering a variety of downstream signaling
pathways (Lüscher et al., 1990). BTK is a key kinase in the BCR
signaling pathway, and there is a strong relationship between PI3K
and BTK functions, with both being integral parts of the BCR
signaling network in B cells (Cantley and Songyang, 1994;
Fruman et al., 2000). Studies show that BTK interacts with
PIP5K (phosphatidylinositol-4-phosphate 5-kinase) to promote
the synthesis of PtdIns-4,5-P2, which is a substrate for PI3K and
essential for cell signaling (Saito et al., 2003). In the BCR signaling
pathway, activation of SYK and BTK mediates the tyrosine
phosphorylation of the B cell adapter protein (BCAP), leading to
the recruitment of PI3K (Okada et al., 2000). Additionally, BTK
binds to PIP3 generated by PI3K via its PH domain, which is
activated at the cell membrane and contributes to maintaining
normal B cell function (Lien et al., 2017). By inhibiting BTK,
BTKi disrupts the PI3K/Akt signaling pathway in B cells,
resulting in physiological effects. Research has demonstrated that
ibrutinib inhibits the PI3K-Akt pathway in the heart, thereby
increasing the risk of atrial fibrillation during treatment
(McMullen et al., 2014).

5.1.3 Disruption of ET-1 (Endothelin-1) and NO
(nitric oxide) balance

ET-1 is a potent vasoconstrictor released by endothelial cells,
while nitric oxide (NO) is the primary vasodilator produced by
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the endothelium, with opposing actions in the vasculature. ET-1
induces vasoconstriction by acting on vascular smooth muscle
cells, increasing vascular resistance, while NO relaxes vascular
smooth muscle, leading to vasodilation and a reduction in
resistance (Rosanò et al., 2013). As mentioned earlier, ET-1
interacts with two types of receptors, ETAR and ETBR
(Davenport and Battistini, 2002). ETAR is primarily located
on the surface of vascular smooth muscle cells, while ETBR is
mainly found on endothelial cells (Kuo et al., 2012). ET-1 binding
to ETAR on vascular smooth muscle cells causes vasoconstriction
and vasospasm, which worsens ischemia. In contrast, ET-1
binding to ETBR induces the production of NO and
prostaglandins, resulting in vasodilation and improved
ischemia (Böhm and Pernow, 2007). The interaction between
the PI3K/Akt signaling pathway and the ET-1/NO system is
intricate and complex. Endothelial ETB receptors mediate the
release of ET-1 from the vascular endothelium, and NO released
from the endothelium inhibits ET-1-induced vasoconstriction
mediated by ETA and/or ETB receptors while also suppressing
ET-1 formation and release (Rapoport, 2014). Li L and colleagues
found that ETAR siRNA specifically inhibits the expression of
ETAR, preventing ET-1 from binding to ETAR. In the absence of
ETAR, ET-1 binds more to ETBR, activating PI3K/Akt, which
leads to increased NO production. Their study showed that
ETAR siRNA primarily enhances NO production via the
PI3K/Akt pathway through eNOS activation. Additionally, NO
production regulates the sGC/cGMP/PKG signaling pathway,
modulating the activity of ET-1-related transcription factors
(Li L. et al., 2019). Under normal conditions, the balance
between ET-1 and NO is vital for maintaining vascular tone
and blood pressure stability. Disruptions in this balance (e.g.,
insufficient NO or excessive ET-1) can cause vasoconstriction
and increase vascular resistance, potentially leading to
hypertension and related diseases. Chronic ET-1/NO
imbalance also contributes to vascular remodeling and
structural changes linked to cardiovascular diseases such as
atherosclerosis (Slowinski et al., 2007). Akt, a central molecule
in the PI3K/Akt pathway, activates eNOS, leading to increased
NO production in endothelial cells (Higashi et al., 2009). Fulton
et al. demonstrated that Akt activates eNOS by phosphorylation,
independent of calcium influx, thereby increasing NO
production. The PI3K/Akt pathway can induce eNOS
phosphorylation and activation without requiring increased
intracellular calcium (Fulton et al., 1999).

5.1.4 Endothelial dysfunction and vasoconstriction
BTKi selectively targets BTK, inhibiting the normal

signaling through the BCR and PI3K/Akt pathways (Qin
et al., 2021). Although existing research has revealed the role
of BTKi in modulating the BCR and PI3K/Akt pathways, the
complex interactions between these pathways remain not fully
understood, particularly in terms of their specific mechanisms
in vascular function and blood pressure regulation. A potential
mechanism for BTKi-induced hypertension is that the
inhibition of BTK leads to a decrease in p-PI3K and p-Akt
levels, reducing eNOS activation and suppressing NO synthesis
(Farah et al., 2018; Xin et al., 2018). The reduction in NO
production activates a negative feedback mechanism that

increases ET-1 expression, further promoting
vasoconstriction and inflammatory responses (Slowinski
et al., 2007). The imbalance between NO and ET-1 results in
endothelial dysfunction, causing abnormal reductions in
vascular tone and vasospasm in smooth muscle cells (Gallo
and Savoia, 2024). Increased vasoconstriction and
inflammation contribute to elevated blood pressure,
eventually leading to the development and progression of
hypertension (Citrin et al., 2024; Hirase and Node, 2012).

5.2 MAPK signaling pathway

5.2.1 Role of MAPK in regulating vascular smooth
muscle cell (VSMC) proliferation

The MAPK signaling pathway is a crucial signaling cascade in
cells, involved in essential physiological processes such as cell
proliferation, differentiation, migration, survival, and stress
responses (Fang and Richardson, 2005). The primary role of the
MAPK pathway is to regulate cellular activities via a multistep
kinase cascade. The MAPK signaling pathway is generally
categorized into three primary subtypes: ERK, JNK, and
p38 MAPK (Dhillon et al., 2007). Among these, the ERK/MAPK
pathway plays a crucial role in regulating cell proliferation. This
signaling pathway is activated downstream of various growth factor
receptors, including the epidermal growth factor receptor (Dhillon
et al., 2007). A large body of literature has emphasized the
significant role of the MAPK signaling pathway in regulating
vascular smooth muscle cell (VSMC) proliferation. In response
to mechanical forces, protein kinase C and MAPKs are activated,
which leads to increased expression of c-Fos and c-Jun genes and
enhanced DNA-binding activity of the transcription factor AP-1,
thus regulating the growth and response of VSMCs (Li and Xu,
2000). Xi XP and colleagues demonstrated that the MAPK pathway
is not only crucial for VSMC growth induced by basic fibroblast
growth factor (bFGF), but also essential for VSMC migration
induced by platelet-derived growth factor (PDGF) (Xi et al.,
1999). P38 MAPK influences VSMC metabolic status by
promoting mitochondrial fragmentation. While mitochondrial
fragmentation may reduce ATP production, it stimulates VSMC
proliferation. P38 MAPK significantly regulates VSMC
proliferation and angiogenesis through PGC-1α-dependent
mitochondrial dynamics (Sahún-Español et al., 2022). SO2

inhibits the activation of the ERK/MAPK pathway through
upstream signaling by increasing cellular cAMP levels, activating
PKA, and promoting phosphorylation of c-Raf at Ser259, which
prevents c-Raf activation. This inhibition of c-Raf halts the
progression of the cell cycle and suppresses VSMC proliferation
(Liu et al., 2014). Ang II and PDGF rapidly elevate intracellular Ca2+

concentrations in VSMCs, activating PKC and MAPK. However,
Ang II is more likely to induce cell hypertrophy, while PDGF is
more likely to stimulate cell proliferation (Liao et al., 1996). MAPK
regulates VSMC growth and proliferation via diverse mechanisms.
VSMCs are integral to the vascular wall, maintaining vascular
structure and function (Li and Fukagawa, 2010). Their
hypertrophy, proliferation, and migration are critical events in
the development of atherosclerosis, thereby linking MAPK
signaling with vascular structure and function (Xu et al., 1997).
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5.2.2 BTKi-mediated MAPK activation and
hypertension

Currently, there are no direct studies investigating how BTKi
affects the MAPK signaling pathway. However, research has
indicated that BTKi can inhibit the MAPK pathway, reduce
CD93-mediated immune suppression, and enhance the antitumor
effect of T cells (Yu YQ et al., 2024). Additionally, MAPK pathway
activation plays a pivotal role in B cell proliferation and survival, the
development of BTKi resistance, and antitumor activity, suggesting
that BTKi may impact the MAPK signaling pathway (Wang et al.,
2021; Wang et al., 2022). Within the BCR signaling network, key
molecules in the MAPK pathway, including ERK, JNK, and p38/
MAPK, can be directly phosphorylated by PKCβ, thus activating the
MAPK signaling pathway (Jacob et al., 2002). The key substance that
activates PKCβ, IP3, is produced by the hydrolysis of PIP2 by PLC-
γ2, with PLC-γ2 activation closely linked to BTK (Pal et al., 2018;
Engels et al., 2001). By inhibiting BTK, BTKi prevents PLC-γ2
activation, thereby hindering MAPK pathway activation. Since
MAPK plays an essential role in VSMC proliferation, BTKi-
induced disruption of this pathway impairs VSMC proliferation,
causing vascular dysfunction, decreased vascular tone, and
ultimately contributing to elevated blood pressure (Bennett et al.,
2016; Lacolley et al., 2012).

5.3 NF-κB signaling pathway

5.3.1 The link between theNF-κb signaling pathway
and the immune system

The NF-κB signaling pathway operates through two main
routes: the classical and non-classical pathways (Mulero et al.,
2019). The classical pathway is activated by inflammatory
cytokines such as TNF-α and IL-1β, which rapidly trigger NF-κB
activation, primarily through the IKK complex (Vallabhapurapu
et al., 2008). The IKK complex phosphorylates IκB (NF-κB
inhibitor), causing its dissociation and the release of NF-κB
dimers (such as p65/RelA and p50), which then promote the
transcription of target genes (Taniguchi and Karin, 2018). The
activation of the non-classical NF-κB pathway occurs more
gradually, as it involves the de novo synthesis of NF-κB-inducing
kinase (NIK, or MAP3K14) (Sun, 2017). This pathway is triggered
by specific cytokines from the TNF family, including lymphotoxin
(LT), receptor activator of NF-κB ligand (RANKL, also referred to as
TNFSF11), CD40 ligand (CD40L), and B-cell activating factor
(BAFF, or TNFSF13B) (Bonizzi and Karin, 2004). NF-κB
regulates the expression of various genes that are integral to
innate immune responses. These genes include those that encode
for various cytokines (such as IL-1, IL-2, IL-6, IL-12, TNF-α, LTα,
LTβ, and GM-CSF), adhesion molecules (like intercellular adhesion
molecule, vascular cell adhesion molecule, and endothelial leukocyte
adhesion molecule), chemokines (including IL-8), acute-phase
proteins (e.g., SAA), and inducible enzymes (such as iNOS and
COX-2) (Ghosh et al., 1998; Caamaño and Hunter, 2002; May and
Ghosh, 1998). NF-κB plays a crucial role in modulating immune
responses, particularly in activating immune cell functions such as
differentiation, proliferation, and survival, and is essential for both
innate and adaptive immunity (Mulero et al., 2019). In the adaptive
immune response, T-cells and B-cells play crucial roles as key

components of the system (Golubovskaya and Wu, 2016). Upon
activation, both T- and B-cells undergo processes of proliferation
and differentiation, evolving into effector cells that perform various
immune functions. These include cytokine secretion and the
cytotoxic T-lymphocyte (CTL) response in T-cells, as well as the
production of antibodies by B-cells (O’Shea and Paul, 2010).
Additionally, some of the activated lymphocytes differentiate into
long-lived memory cells, which enable a swift and enhanced
immune response upon subsequent encounters with the same
pathogen (Krebs and Steinmetz, 2016). The non-classical NF-κB
signaling pathway is critical in B cell development, function, and
immune responses. It directly affects B cell survival, proliferation,
and class-switch recombination. It ensures the proper functioning of
B cells in antigen-specific immune responses by regulating germinal
center (GC) reactions, cytokine production, and immune response
progression (Gatto and Brink, 2010; De Silva et al., 2016). In
peripheral tissues, the non-classical NF-κB pathway significantly
affects T cell survival, differentiation, and the maintenance of
memory T cells (Boehm and Swann, 2013). A deficiency in the
non-classical NF-κB pathway disrupts T cell memory responses,
especially during the generation and maintenance of memory T cells
(Thapa and Farber, 2019). Mice deficient in NIK show significant
impairment in memory T cell responses and fail to mount effective
responses to viral reinfection (Rowe et al., 2013). NF-κB is essential
in immune responses through both classical and non-classical
pathways, working synergistically to ensure effective antigen
recognition, immune response, and the establishment of long-
term immune memory.

5.3.2 BTKi-mediated immunosuppression leads to
abnormal vascular function

BTK is involved in regulating several signaling pathways in
immune cells, particularly in B cells and myeloid cells. Beyond its
central role in BCR signaling, BTK is also closely linked to the
signaling of various receptors, such as BAFFR, CD40, Fc receptors,
and GPCRs (Neys et al., 2021). Research has demonstrated that
BAFFR activates the typical NF-κB signaling pathway through
crosstalk with the BCR signaling pathway, which involves SYK
and BTK (Shinners et al., 2007). CD40, a co-stimulatory
receptor, is integral to immune cell activation. BTK regulates
CD40 signaling via the non-classical NF-κB pathway and other
mechanisms, ultimately promoting B cell survival, differentiation,
and proliferation (Brunner et al., 2002; Schwartz et al., 2014). BTK is
also a crucial component of the FcR signaling pathway (Owens et al.,
2022). RANKL (Receptor Activator of NF-κB Ligand) regulates
osteoclast differentiation and development based on BTK-
mediated FcR signaling (Watterson et al., 2019; L Deng et al.,
2018). BTK regulates NF-κB signal transduction activity through
interactions of a variety of receptor signal transduction pathways
and plays a pivotal role in the survival, differentiation, proliferation,
and response of the immune cell. As a coordinator, BTK ensures the
immunity cell’s ability to respond to a variety of physiological and
pathological conditions. Effective NF-κB signal transduction
depends on the proper functioning of the pathway. The NF-κB
signal transduction pathway plays a pivotal role in the development,
differentiation, proliferation, and activation of the immune cell (Sun,
2017). By regulating the production of cytokines, the activation of
immune cells, and recognition of antigens, the NF-κB signal
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pathway ensures the immune function of combating external
pathogens and ensuring the establishment of immunotolerance in
order to avert autoimmune disease (Deng et al., 2018). Inhibiting the
activity of BTK by BTKi thus may cause the downregulation of NF-
κB signal pathways that could potentially bring about
immunosuppression (Song et al., 2024). Agents of
immunosuppression have been the subject of extensive studies as
a means of treatment after organ transplantation (Kadosawa and
Watabe, 2015). Although such agents have great benefits of lowering
organ rejection, they also have a detrimental impact on the vascular
endothelial cells by impairing endothelial-dependent relaxation as
well as smooth muscle cell responsiveness towards a variety of
vasoconstrictors like Ang II (Petrakopoulou et al., 2006; Mathew
et al., 2011). Studies indicate that cyclosporine A, a widely used
immunosuppressant, can induce endothelial injury, accompanied by
increased levels of ET-1 and PGI2 (Wilasrusmee et al., 2003). BTKi,
by blocking the BTK signaling pathway, may suppress immune
activity through NF-κB pathway inhibition, further impairing the
vascular endothelium and potentially contributing to elevated
blood pressure.

5.4 Notch signaling pathway

5.4.1 Notch’s role in vascular development and
hypertension

The Notch signaling pathway is a highly conserved molecular
cascade that regulates various cellular processes, including growth,
differentiation, and pattern formation (Aquila et al., 2019). In
mammals, the pathway is defined by four transmembrane
receptors (Notch 1-4), which interact with five typical
transmembrane ligands (Jagged 1, 2; Delta-like ligands 1, 3, and
4) (Aquila et al., 2019). The Notch signaling pathway can be
classified into classical and non-classical pathways. The classical
pathway primarily relies on ligand binding to the NOTCH receptor,
which triggers endocytosis and a series of cleavage events (S1, S2,
S3 cleavages), ultimately regulating gene transcription via NICD
(Guo et al., 2024). The non-classical pathway is more dynamic,
capable of activating Notch signaling in a ligand-independent
manner, bypassing the conventional endocytosis process. This
pathway interacts more extensively with extracellular and
intracellular signaling networks, expanding the biological
functions of Notch signaling (Zhou et al., 2022). There is
growing evidence that Notch receptors and downstream Notch
effectors play essential roles in both embryonic and postnatal
vascular development and the response of vascular smooth
muscle cells to growth factor stimulation and vascular wall injury
(Hasan et al., 2017). Notch signaling plays a critical role in
angiogenesis by interacting with its ligands and engaging in
crosstalk with other key pathways, such as the vascular
endothelial growth factor (VEGF) signaling pathway. This
interaction is essential for the regulation of blood vessel
formation (Siebel and Lendahl, 2017). Delta-like ligand 4 (DLL4)
is identified as a key Notch ligand that promotes angiogenesis (Akil
et al., 2021). Notch signaling coordinates the tip and stalk cell
phenotypes during angiogenesis in growing sprouts.
DLL4 expression in tip cells activates Notch1 in stalk cells. The
interaction between VEGF and Notch signaling is crucial for several

processes, including the formation of sprouts, the survival of
endothelial cells, and the establishment of cellular diversity
within the vasculature (Blanco and Gerhardt, 2013). Mutations in
Notch receptors and ligands in mice lead to abnormalities in
multiple tissues, including the vascular system, as seen in Alagille
syndrome (AGS) and autosomal dominant cerebral arteriopathy
with subcortical infarcts and leukoencephalopathy (CADASIL),
which are caused by mutations in the Notch ligand Jagged1 and
the Notch3 receptor, respectively (Joutel et al., 1996; Li L. et al.,
1997). These findings highlight the critical role of the Notch pathway
in vascular development.

The Notch signaling pathway is widely implicated in
pulmonary hypertension. Notch3 expression is associated with
the progression of pulmonary hypertension. Studies conducted at
various time points during hypoxia-induced (in mice) or
methylene blue-induced (in rats) pulmonary hypertension
models showed an increase in Notch3 expression in the lungs
as a function of time and disease severity. The research found that,
compared to animals in 21% oxygen, mice exposed to 6 weeks of
hypoxia had three times higher levels of Notch3 expression at
both the mRNA and protein (ICD) levels in their lungs, with
pulmonary artery pressures consistent with late-stage pulmonary
hypertension (Thistlethwaite et al., 2010). The use of the Notch
signaling inhibitor DAPT significantly reduced the thickness of
the pulmonary artery vessel wall and induced apoptosis in
vascular smooth muscle cells, as observed in the study. This
indicates that Notch signaling plays a significant role in
vascular remodeling in pulmonary arterial hypertension (PAH)
(Qiao et al., 2012). In patients with idiopathic pulmonary arterial
hypertension (IPAH) and the hypoxia/SU5416 (SUHx) rat model,
Notch1 expression was markedly increased, particularly in
pulmonary arterial endothelial cells. Notch1 expression
positively correlated with endothelial cell proliferation
markers, such as PCNA. When Notch1 signaling was inhibited
using γ-secretase inhibitors (DBZ), there was a significant
reduction in the proliferation and migration of pulmonary
artery endothelial cells (PAECs), along with suppression of
VEGF-induced endothelial cell responses, suggesting that
Notch1 is crucial for endothelial cell proliferation (Del Papa
et al., 2019). The Notch signaling pathway has been identified
as an important target in regulating pulmonary hypertension,
particularly in the processes of vascular remodeling, endothelial
cell proliferation, and apoptosis (Morris HE. et al., 2019).
Therefore, targeting Notch signaling may offer a promising
therapeutic approach for pulmonary hypertension, and further
clinical studies and treatment trials will be essential to validate
this hypothesis (Smith et al., 2015; Li et al., 2009).

5.4.2 How BTKis interfere with Notch signaling in
endothelial cells

Currently, no studies specifically examine how BTKi regulates
the Notch signaling pathway. However, recent literature has
reported that key molecules in the Notch signaling pathway
experience reduced activity after BTKi treatment. For example,
Wang W and colleagues indicated that the clinical efficacy of
ibrutinib is associated with a downregulation of Notch1 activity,
which becomes more pronounced over time (Wang et al., 2024).
Other studies have shown an interaction between BTK and Notch1,

Frontiers in Pharmacology frontiersin.org11

Xu et al. 10.3389/fphar.2025.1585061

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1585061


with BTKi inhibiting Notch signaling. Moreover, Notch1, a new
molecular partner in the BCR signaling pathway, offers potential for
improving targeted therapies. In vitro studies have shown that
ibrutinib significantly reduces Notch1/2 activation and induces
the dephosphorylation of eIF4E (a Notch1 target gene) (Del Papa
et al., 2019). In CLL patients, the Notch1 signaling pathway is
gradually inhibited after ibrutinib treatment but is restored during
disease relapse (Smith and Burger, 2021; Liu et al., 2022; Nakhoda
et al., 2023). These reports suggest crosstalk between the Notch and
BTK signaling pathways, meaning that inhibiting BTK signaling
with BTKi leads to a decrease in Notch pathway activity. However,
these pieces of evidence are derived from a limited number of clinical
studies, and relevant research remains scarce, resulting in
considerable uncertainty. Moreover, no molecular experiments
have yet demonstrated how BTK signaling regulates
Notch signaling.

5.5 RhoA/ROCK signaling pathway

5.5.1 RhoA/ROCK pathway in vascular tone
regulation

RhoA, a member of the Rho family, is regulated by guanosine
triphosphate (GTP) binding. It cycles between its active form,
GTP-bound, and its inactive form, GDP-bound (Li et al., 2022).
ROCK (Rho-associated coiled-coil containing kinase) is a
downstream effector of RhoA, acting as a Rho-GTPase-
activated serine/threonine kinase. It regulates LIM domain
kinases (Lin11, Is-1, and Mec-3), myosin light chain (MLC),
and MLC phosphatase, playing an essential role in promoting
actin cytoskeleton contraction (Somlyo et al., 2000; Kaneko et al.,
2002). The signaling pathway mediated by RhoA/ROCK, along
with its interactions with Ang II, oxidative stress, and NO, is
integral to the pathogenesis of cardiovascular diseases (Seccia
et al., 2020). Activation of the RhoA/ROCK pathway increases
calcium sensitivity and vascular tone, leading to alterations in
cardiovascular and renal structures (Calò and Pessina, 2007).
ROCK2 enhances myosin phosphorylation and vasoconstriction
through direct binding with BMAL1 (aryl hydrocarbon receptor
nuclear translocator-like) (Xie et al., 2015). By upregulating
RhoA protein and preventing its degradation, BMAL1 further
promotes ROCK-mediated stress fiber reorganization and the
formation of the actin cytoskeleton, intensifying vasoconstriction
(Ma et al., 2018). ROCK also phosphorylates and inhibits
phosphatase and tensin homolog (PTEN), which blocks the
pro-survival PI3K pathway (Street and Bryan, 2011).
Additionally, because the PI3K/Akt pathway promotes eNOS
expression, ROCK-mediated PTEN activation reduces
endothelial nitric oxide (NO) production and cell survival
(Street and Bryan, 2011). In addition to lowering eNOS
expression, the RhoA/ROCK signaling pathway also
diminishes eNOS activity by inhibiting the phosphorylation of
Ser1177 on eNOS. This results in a rapid decline in eNOS
function (Ming et al., 2002). Overall, the RhoA/ROCK
pathway not only contributes to endothelial dysfunction but
also plays a role in endothelial cell activation. For instance, it
enhances the expression of ICAM-1 and VCAM-1 on the
endothelial surface via the NF-κB signaling pathway, thereby

promoting leukocyte infiltration and vascular inflammation
(Ming et al., 2002). In addition to endothelial cells, the RhoA/
ROCK signaling pathway mediates vascular smooth muscle cell
dysfunction (VSMCs). For instance, a study by Guilluy et al.
demonstrated that Ang II promotes vascular smooth muscle cell
(VSMC) contraction, which contributes to increased blood
pressure. This process is mediated by the activation of RhoA
guanine nucleotide exchange factor ARHGEF1 by Ang II, leading
to the subsequent activation of RhoA (Guilluy et al., 2010).
Moreover, the association between the RhoA/ROCK pathway
and elevated blood pressure has been supported by indirect
evidence from pharmacological interventions. In animal
models of hypertension induced by soluble factors such as
Ang II or L-NAME (L-Nitro-Arginine Methyl Ester), ROCK
inhibitors successfully lowered blood pressure. It alleviated
hypertension-associated vascular inflammation and remodeling
(Shiga et al., 2005; Löhn et al., 2009).

The RhoA/ROCK signaling pathway is involved in the
regulation of actin cytoskeleton contraction, cell migration, and
vascular tone. Activation of this pathway plays a critical role in the
development of cardiovascular diseases through its interactions with
Ang II, oxidative stress, and NO. Specifically, RhoA/ROCK signaling
contributes to endothelial dysfunction and vascular remodeling by
increasing calcium sensitivity, enhancing vasoconstriction,
promoting stress fiber reorganization, and inhibiting endothelial
nitric oxide synthesis. Clinical studies and drug interventions in
animal models suggest inhibiting the RhoA/ROCK signaling
pathway could mitigate vascular inflammation, prevent
remodeling, and reduce high blood pressure. This makes it a
promising target for treating hypertension and related
cardiovascular diseases.

5.5.2 Potential BTKi-mediated dysregulation
contributing to hypertension

Although there is no direct evidence linking BTK to
regulating the RhoA/ROCK pathway, a potential interaction
exists between the two. They may cooperatively regulate
cellular functions through mutual modulation in specific
contexts, especially in immune cells and vascular functions.
Recent studies have demonstrated that RhoA is a crucial
participant in immune cell responses, influencing the
migration and activation of both innate and adaptive immune
cells (Kilian et al., 2021). The RhoA/ROCK pathway regulates
cytoskeletal rearrangement in B cell compartments (Saci and
Carpenter, 2005). In vitro studies of BCR dynamics suggest that
active RhoA limits BCR mobility by affecting the actin-severing
protein cofilin, thereby interfering with the capacity of TLR
ligands to enhance BCR signaling (Freeman et al., 2015). BTK
is a critical kinase in the BCR signaling pathway, playing a key
role in normal B cell development and proliferation (Mouhssine
et al., 2024). These pathways work together to maintain the
typical structure and function of B cells, and they can interact
with shared signaling pathways, such as the NF-κB pathway
(Smith and Burger, 2021; Xie et al., 2013).

BTK may affect RhoA activity by activating the NF-κB
pathway, which then promotes ROCK activation, leading to
increased vascular smooth muscle contraction and vascular
remodeling, thereby raising vascular tension. Additionally,
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BTKi, by inhibiting BTK activity, may cause an imbalance in the
regulation of both the immune and vascular systems, contributing
to hypertension. Specifically, BTKi treatment may lead to
abnormal activation of the RhoA/ROCK signaling pathway,
exacerbating smooth muscle cell contraction and consequently
elevating blood pressure. However, this is merely a hypothesis
based on some indirect evidence, and whether the RhoA/ROCK
signaling pathway is truly involved in BTKi-mediated
hypertension remains to be confirmed by further studies in the
future. (Figure 2).

6 Clinical implications and
management strategies

6.1 Monitoring blood pressure in patients
receiving BTKis

Monitoring blood pressure is an essential aspect of managing
BTKi treatment, especially for patients with a history of
cardiovascular disease or hypertension. Regular monitoring
enables clinicians to identify potential cardiovascular issues early

FIGURE 2
Proposed mechanisms of BTKi-induced hypertension. Bruton tyrosine kinase inhibitors (BTKis) may promote the development of hypertension
through a variety of interconnected signaling pathways. BTKi inhibition promotes the production of reactive oxygen species (ROS) through NADPH
oxidase (NOX) activation, resulting in decreased endothelial nitric oxide synthase (eNOS) activity and decreased nitric oxide (NO) utilization, which
triggers endothelial dysfunction. In addition, BTKI-mediated inhibition of PI3K/Akt pathway reduces eNOS activity and disrupts the balance between
endothelin-1 (ET-1) and NO, further aggravating endothelial dysfunction. Inhibition of downstream MAPK signaling and NF-κB activation leads to
impaired vascular smooth muscle proliferation and immunosuppression. BTKi treatment may also affect vascular homeostasis by affecting the Notch1/
Dll4 signaling axis, leading to vascular dysplasia and pulmonary hypertension. Finally, activation of the RhoA/ROCK pathway leads to enhanced smooth
muscle contraction and vascular remodeling by reducing eNOS activity and enhancing angiotensin II (AngII) signaling. These mechanisms work together
to eventually lead to endothelial dysfunction, vascular remodeling, and the development of hypertension. Image created with BioRender.com (accessed
on 9 May 2025).
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and make timely adjustments to the treatment regimen, ensuring
safety and therapeutic efficacy. In clinical practice, blood pressure
monitoring is generally classified into office blood pressure
measurements and out-of-office blood pressure monitoring.

Blood pressure measurements typically used for screening
hypertension and adjusting antihypertensive treatment are often
taken in a clinical setting and are commonly referred to as office
blood pressure measurements. Blood pressure can be measured
manually with an aneroid sphygmomanometer and a stethoscope
to listen for Korotkoff sounds or with an automatic blood pressure
monitor. Typically, medical assistants or nurses conduct these
measurements (Muntner et al., 2019a). The procedure requires
the patient to rest for 3–5 min before the measurement, which
should be performed in a quiet environment. The patient’s legs
should be flat on the floor, the back supported (as examination tables
are generally not ideal), and the arm positioned at heart level. The
cuff must be appropriately sized and placed on the bare arm,
ensuring the bladder is empty. Additionally, the patient should
refrain from consuming caffeine or smoking for at least 30 min
before the measurement (Kallioinen et al., 2017). At least two
additional measurements should be taken during the visit for
individuals with elevated office blood pressure readings, as
multiple readings often improve accuracy. Treatment decisions
are based on the average of three office measurements (Muntner
et al., 2019b; Whelton et al., 2017). Given the elevated risk of
vascular toxicity and thromboembolic events associated with
various chemotherapy and cancer therapies, it is recommended
that patients have their inter-arm blood pressure difference
checked at least once during treatment and afterward. If a
consistent difference of 10 mmHg or more is found in either
systolic or diastolic pressure between the arms, the arm with the
higher pressure should be used for subsequent measurements
(Muntner et al., 2019b).

Out-of-office blood pressure measurements address many of the
limitations associated with clinical blood pressure measurements
(Cohen and Cohen, 2016). Measuring blood pressure outside of the
clinical setting is particularly useful for identifying conditions such
as white coat hypertension (where office blood pressure is elevated
but out-of-office readings are normal) and masked hypertension
(where office blood pressure appears normal but out-of-office
readings are elevated) (Cohen et al., 2019b). Studies indicate that
both white coat and masked hypertension are more frequently
observed in patients undergoing cancer treatment than in the
general population (Cohen et al., 2019b; Bamias et al., 2011). The
increased prevalence of white coat hypertension is thought to be
related to the high anxiety and fear of prognosis associated with
cancer diagnosis. The higher prevalence of masked hypertension
may be partly due to the delayed onset of adverse effects from cancer
treatments. Measurements are typically taken every 30–60 min, day
and night. Ambulatory blood pressure monitoring is considered the
gold standard in blood pressure measurement, as it correlates more
strongly with cardiovascular outcomes than traditional clinical
blood pressure readings (Cohen and Cohen, 2016). Home blood
pressure monitoring usually requires the patient to take two
measurements twice daily for at least 3 days (ideally 5–7 days)
using a semi-automatic blood pressure monitor. While home
monitoring can sometimes be less accurate than clinical
measurements, these issues can be addressed with proper patient

education on measurement techniques (McManus et al., 2014).
Recent guidelines advise that all patients with an office blood
pressure reading of 120/70 mmHg undergo 24-h ambulatory
blood pressure monitoring. This approach helps more accurately
assess blood pressure patterns outside the clinic (Whelton et al.,
2017). Given the pharmacokinetics of most antihypertensive
medications, it is typically recommended that patients begin
home monitoring at least 3 days (ideally 5–7 days) after
changing their treatment regimen. For patients with severe or
symptomatic hypertension, earlier monitoring should be
considered (Cohen et al., 2019a).

6.2 Potential therapeutic interventions

There are currently no specific guidelines for managing
hypertension during BTKi therapy. According to the 2022 ESC
Cardio-Oncology Guidelines, ACE inhibitors (ACEI) or angiotensin
II receptor blockers (ARB) are recommended as first-line treatments to
reduce the risk of chemotherapy-related cardiovascular diseases
(CTRCD). For cancer patients with a systolic blood pressure
(SBP) ≥160 mmHg and diastolic blood pressure
(DBP) ≥100 mmHg, a combination of ACEI or ARB with a
dihydropyridine calcium channel blocker (CCB) is recommended, as
this combination provides faster blood pressure control compared to
monotherapy with ACEI/ARB. If severe hypertension is diagnosed
(SBP ≥180 mmHg or DBP ≥110 mmHg), a multidisciplinary team
(MDT) should assess the competing risks of cancer and cardiovascular
diseases (CVD). Any cancer treatment associated with hypertension
should be postponed or temporarily stopped until blood pressure is
controlled to below 160/100 mmHg. Once blood pressure is under
control, cancer treatment can be restarted, and consideration should be
given to dose reduction. For patients with drug-resistant hypertension
related to cancer treatment, options such as spironolactone, oral or
transdermal nitrates, and hydralazine should be considered. Beta-
blockers like carvedilol or nebivolol may be appropriate for those
exhibiting signs of high sympathetic nervous activity, stress, or pain.
Diuretics, especially spironolactone, can be beneficial for cancer patients
with hypertension and evidence of fluid retention. However, it is crucial
to closely monitor blood pressure, electrolytes, and renal function when
using these medications due to the potential for increased fluid
retention. The decision to initiate antihypertensive treatment and
select target therapies depends on the cancer condition and
prognosis (Lyon TL and Couch, 2022; B Williams et al., 2018).
Additionally, regular exercise, reducing alcohol intake, limiting
sodium consumption, improving dietary habits, and stress reduction
techniques along with improved sleep hygiene can enhance blood
pressure control and potentially help prevent the development of
hypertension (B Williams et al., 2018; T Unger et al., 2020; Whelton
RMC et al., 2017; Valenzuela et al., 2021).

Several clinical trials have explored the combination of BTKi
with antihypertensive medications. A study by Samples et al. found
that for hypertensive patients (whether they had pre-existing
hypertension or were newly diagnosed with hypertension after
treatment), no single antihypertensive drug significantly lowered
mean arterial pressure (MAP). In particular, calcium channel
blockers (CCBs) did not show significant effectiveness in
reducing MAP and might even slightly raise MAP. The
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combination of ACE inhibitors (ACEI) or angiotensin II receptor
blockers (ARBs) with hydrochlorothiazide (HCTZ) significantly
reduced MAP. These combinations also effectively maintained
normal blood pressure (with MAP below 120/80 mmHg).
Multidrug combination therapy played a critical role in
managing BTKi-induced hypertension. For patients with a
history of hypertension, the combination of beta-blockers (BBs)
and HCTZ proved more effective. In contrast, for those with newly
diagnosed hypertension, the combination of ACEI/ARBs and HCTZ
was more suitable (Samples et al., 2024). Mazyar Shadman and
colleagues discovered that in patients with pre-existing hypertension
(pre-HTN), the combination of HCTZ and beta-blockers (BB)
significantly reduced mean arterial pressure (MAP). In patients
with de novo hypertension (de novo HTN), the combination of
HCTZ with ACE inhibitors (ACEI) or angiotensin II receptor
blockers (ARB) also significantly lowered MAP. Furthermore, for
both groups of patients, the most substantial reduction in MAP
occurred when three or more antihypertensive medications were
used. Quadruple therapy showed a particularly significant effect (M
Shadman et al., 2022). Chen ST and colleagues found that although
some patients started antihypertensive medications during treatment,
no single medication was effective in preventing the worsening of
hypertension. Similar results were reported by Dickerson T and
colleagues (Dickerson et al., 2019). These findings suggest that
combination therapy could become an emerging trend in the
treatment of BTKi-induced hypertension (Figure 3).

6.3 Need for personalized approaches in
hematologic malignancies

There may be considerable differences in the presentation,
progression, drug resistance, and treatment response of diseases

among individual patients. As a result, developing a personalized
treatment plan based on the specific characteristics of each patient is
crucial to improving efficacy, reducing side effects, and enhancing
prognosis. Considering the varying risks of cardiovascular adverse
events in patients receiving BTKi therapy, hematologists should
evaluate each patient’s cardiovascular risk before and during
treatment and establish individualized preventive strategies. It is
critical to have a clear understanding of the patient’s medical history
before initiating BTKi treatment, including a history of arrhythmias,
hypertension, and a family history of sudden death (Cohen et al.,
2019a). Additional cardiovascular evaluations, such as blood
pressure measurements, electrocardiograms (ECGs),
echocardiography, and left ventricular ejection fraction
assessment, should be performed. The pre-treatment evaluation
will significantly impact the selection of antihypertensive drugs.
Patients who have recently experienced a myocardial infarction or
been diagnosed with heart failure are often prescribed ACE
inhibitors (ACEI)/angiotensin II receptor blockers (ARB) and
beta-blockers (BB), as these drugs are well-known for reducing
morbidity and mortality (Whelton et al., 2017; Collet et al., 2021).
Some clinicians may prescribe ACEI/ARB for all chronic kidney
disease patients, as studies suggest that patients with severe
proteinuria have a lower risk of progressing to end-stage renal
disease, particularly among diabetic patients and those with
excessive proteinuria (Sarafidis et al., 2007). For diabetic patients
and those with significant proteinuria, ACEI/ARB are considered
appropriate first-line options, while thiazide diuretics can adversely
affect glucose metabolism (Hall et al., 2020). Patients with a
tendency for orthostatic hypotension generally avoid diuretics.
For patients with atrial fibrillation, BBs or CCBs are commonly
used as part of a dual strategy for rate control (Samples et al., 2024).

Treatment and management measures for cardiovascular
complications during BTKi therapy differ based on the severity

FIGURE 3
Management strategies for complications during BTKis treatment. Image created with BioRender.com (accessed on 9 May 2025).
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of the condition. If atrial fibrillation is diagnosed in a patient
receiving BTKi treatment, urgent cardiology consultation and
management are recommended. For atrial fibrillation of
grade <4, BTKi should be temporarily discontinued, while for
grade 4 atrial fibrillation, BTKi should be permanently
discontinued. Suppose ibrutinib is discontinued due to grade 3 or
lower atrial fibrillation. In that case, therapy may be resumed once
the atrial fibrillation resolves, with the dose reduced to 280 mg per
day, or an alternative BTKi may be considered. The management of
atrial fibrillation involves rhythm control, anticoagulation therapy
(to prevent stroke), and the management of cardiovascular
comorbidities (Cohen et al., 2019a). In the case of grade 2 heart
failure (HF) during treatment, immediate treatment based on the
CTCAE criteria is required. Once the adverse event improves to
grade 1 or baseline, ibrutinib should be interrupted, and dosage
adjustments should be made according to guidelines before
restarting therapy. If grade 3 or 4 heart failure (severe or life-
threatening) occurs, ibrutinib should be discontinued (Aghel
et al., 2023). The management of hypertension has been
detailed earlier.

Patients who present with sudden palpitations, shortness of
breath, chest pain, edema, unexplained syncope, or elevated
blood pressure should be urgently referred to a cardiologist for
evaluation (Quartermaine et al., 2023).

By conducting a comprehensive cardiovascular risk assessment
and implementing tailored treatment and preventive measures,
cardiovascular adverse events linked to BTKi treatment can be
significantly reduced, ensuring improved safety and efficacy of
the therapy.

7 Future perspectives and research
directions

7.1 Gaps in understanding BTKi-induced
hypertension

The molecular mechanisms responsible for BTKi-induced
hypertension remain unclear. Although some clinical
observations suggest a connection between BTKi use and the
onset of hypertension, the specific pathophysiological processes
have not been fully understood (Jiang et al., 2024; Brem and
O’Brien, 2022). Hypertension may involve several biological
processes, including vasoconstriction, endothelial dysfunction,
and kidney damage, but these mechanisms’ exact manifestation
and role during BTKi treatment remain uncertain (Anyfanti et al.,
2020). The understanding of how BTKi influences these
physiological processes is still in its early stages, and the effects
on organ systems such as the vasculature, heart, and kidneys have
yet to be systematically explored.

Individual differences in genomics, metabolism, immune
responses, and other factors may contribute to significant
variations in blood pressure responses during BTKi treatment
(Chen et al., 2022; Mouhssine et al., 2024). Most current studies
overlook personalized factors such as genetic polymorphisms,
variations in drug-metabolizing enzymes, and underlying
cardiovascular diseases. Different individuals have varying
metabolic processes and tolerances to BTKi, and these factors

may play an essential role in the onset and progression of
hypertension. Therefore, the limited focus on pharmacogenomics,
immunogenetics, and cardiovascular individual differences has
restricted a deeper understanding of the mechanisms behind
BTKi-induced hypertension.

Although some clinical research has suggested a preliminary
connection between BTKi treatment and hypertension, our
understanding of its long-term effects remains inadequate (Tam
and Thompson, 2024; Bennett et al., 2023; Sestier et al., 2021).
Hypertension is often gradual, but most existing studies focus on
short-term observations, with insufficient long-term follow-up data
(Lipsky and Lamanna, 2020). The persistence of hypertension and
its long-term consequences on the cardiovascular system (such as
stroke, heart disease, kidney damage, etc.) have not been fully
explored. Consequently, the lack of large-scale, multicenter, long-
term data hinders a comprehensive evaluation of BTKi-induced
hypertension.

7.2 Potential targets for mitigating
cardiovascular risks in BTKi therapy

Oxidative stress plays a central role in cardiovascular diseases
and may also be a contributing factor to the cardiovascular issues
potentially induced by BTKi treatment. BTKi therapy might
aggravate cardiovascular damage by enhancing oxidative stress.
Antioxidants, such as N-acetylcysteine, vitamin C, and vitamin E,
may alleviate oxidative stress, improve vascular function, and reduce
the occurrence of hypertension (Gulcin, 2020; Baradaran et al., 2014;
Amponsah-Offeh et al., 2023). Therefore, modulating oxidative
stress levels could serve as an effective strategy to reduce
cardiovascular risks during BTKi treatment.

Endothelial cells are critical in the regulation of blood vessel
dilation and constriction (D Konukoglu, 2017). BTKi therapy may
impair endothelial cell function, leading to vasoconstriction and
elevated blood pressure. Research has demonstrated a strong
correlation between endothelial dysfunction and the development
of hypertension. Therefore, improving endothelial function,
particularly by promoting NO synthesis or protecting endothelial
cells from damage, may be a viable strategy for reducing
cardiovascular risk (Wu et al., 2021; KK Griendling et al., 2021).
Targeting endothelial-related signaling pathways, such as the NO/
cGMP pathway, could help prevent BTKi-induced hypertension
(Ataei Ataabadi et al., 2020).

Cardiovascular protective molecules such as brain natriuretic
peptide (BNP) and cystatin C have been demonstrated to play a
critical role in the progression of cardiovascular diseases (Z Cao and
Zhu, 2019; L Qin and Li, 2020). Enhancing the expression or
function of these molecules may help reduce cardiovascular
adverse events induced by BTKi therapy. Developing therapeutic
agents targeting these molecules could provide novel approaches for
lowering cardiovascular risks during BTKi treatment.

Beta-receptors and calcium channels regulate cardiac
contractility and smooth muscle contraction in blood vessels (L
Qin and Li, 2020; O’Donnell, 2020; Zhu et al., 2021). Beta-blockers
(such as metoprolol and amiodarone) and calcium channel blockers
(such as diltiazem) are frequently used to treat arrhythmias,
including atrial fibrillation (Denham et al., 2018; P Kirchhof and
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Goette, 2020). Research indicates that BTKi may increase the risk of
atrial fibrillation by affecting cardiac structure and
electrophysiology, particularly through atrial remodeling and
fibrosis (JA Gambril et al., 2024). Therefore, targeting beta-
receptors or calcium channels could effectively reduce the
incidence of atrial fibrillation and lower cardiovascular risks.

7.3 Need for clinical trials and
mechanistic studies

There is a notable gap in our understanding of the mechanisms
that lead to hypertension in patients undergoing BTKi therapy. A
significant portion of the research on BTKi is aimed at evaluating its
anticancer efficacy and cancer prognosis in oncology clinical trials,
where the hypertension data collected is limited, making in-depth
analysis difficult (Butel-Simoes et al., 2023). Few clinical trials
address pharmacological treatments for complications during
BTKi therapy, which limits the ability of clinicians to manage
these patients effectively. This underscores the urgent need for
larger, higher-quality trials focused on hypertension, particularly
antihypertensive treatment trials for cancer patients and
survivors. Such trials could provide clinical guidelines and
recommendations for screening and managing this unique
patient population.

Research on the specific mechanisms by which BTKi therapy
induces hypertension is currently insufficient. Our understanding of
the molecular, cellular, and genomic-level pathophysiological
processes involved in this side effect is still minimal. There is a
pressing need for more high-quality preclinical models and research
data to gain a deeper understanding of these mechanisms. These
studies will show how BTKi affects blood pressure and offer
theoretical guidance for more effective hypertension management
in clinical practice.

Understanding the mechanisms through which BTKi therapy
induces hypertension is of great importance. Hypertension is a
common cardiovascular side effect in clinical practice, and if left
unmanaged, it can lead to severe cardiovascular events, impacting
the overall survival quality and prognosis of patients (Yin et al., 2024;
Vallabhaneni et al., 2024). Gaining insight into these mechanisms
will help identify patients more likely to develop hypertension,
providing a foundation for personalized treatment and enabling
the development of more effective preventive and intervention
strategies. Additionally, detailed mechanistic research could offer
valuable guidance for the future development of BTKi-like drugs,
aiding in reducing cardiovascular side effects and improving the
safety and efficacy of these medications. Therefore, enhancing
research in this area is critical for managing hypertension in
BTKi therapy, advancing cancer treatment, and improving
patients’ quality of life.

8 Summary and conclusion

8.1 Summary of key findings

Bruton’s tyrosine kinase inhibitors (BTKis) have become pivotal
in the treatment of hematologic malignancies, particularly B-cell

lymphoma (BCL), chronic lymphocytic leukemia (CLL), small
lymphocytic lymphoma (SLL), mantle cell lymphoma (MCL),
and Waldenström macroglobulinemia (WM) (Jain et al., 2024;
Shah et al., 2025; Wang et al., 2023; Treon et al., 2024).
However, the clinical use of these inhibitors is frequently
complicated by adverse reactions, with hypertension being one of
the most notable side effects. The pathophysiological mechanisms
behind BTKi-induced hypertension are not yet fully understood and
require further investigation to optimize clinical treatment. This
review explores the mechanisms of BTKi-induced hypertension,
focusing on the key molecular pathways involved in this
adverse effect.

Numerous clinical trials have indicated that patients receiving
BTKi therapy, especially those treated with ibrutinib, have a high
incidence of hypertension (Caldeira et al., 2019). Studies show that
25%–68% of patients develop new or worsened hypertension during
treatment, and long-term follow-up research has confirmed that
BTKi-induced hypertension increases the risk of major adverse
cardiovascular events (MACE) associated with it (Dickerson
et al., 2019; Samples et al., 2024). Taking prompt and appropriate
actions when abnormal blood pressure is detected can significantly
improve outcomes.

Hypertension during BTKi therapy may arise from multiple
factors, including direct and indirect mechanisms. BTKi-induced
oxidative stress plays a significant role in the onset and progression
of hypertension by influencing various mechanisms that affect
vascular tone and endothelial function (Xu et al., 2021). BTKi
treatment has increased ROS levels, leading to the uncoupling of
eNOS, significantly decreasing NO bioavailability (Honda et al.,
2012). Decreasing the levels of NO inhibits vasodilation, augments
vasoconstriction, and elevates blood pressure (Busse et al., 2002).
The process involves NADPH oxidase, a mediator primarily
regulated by BTK. Treatment of BTKi augments the activity of
NADPH oxidase within immune cells, exacerbating oxidative stress
throughout the body and resulting in endothelial malfunction
(Honda et al., 2012). It not only impinges on the function of the
immune cells but also extensively influences the health of the vessels
and plays a role in the development of hypertension (Gallo and
Savoia, 2024).

Along with oxidative stress, inhibition of BTK by BTKi will
impair key pathways required for endothelial function, the most
significant of which includes the PI3K/Akt pathway. The PI3K/Akt
pathway plays a pivotal role in the activation of the production of
NO by eNOS (Carrillo-Sepúlveda et al., 2010). Through the
inhibition of the PI3K/Akt pathway, the activity of eNOS
decreases by the BTKi, creating an imbalance between ET-1 and
the production of NO, leading to endothelial dysfunction and the
promotion of vasoconstriction (Byrd et al., 2021; Slowinski et al.,
2007). The imbalance of vascular tone is a key contributor to the
development of hypertension among subjects receiving
treatment with BTKi.

The MAPK signaling pathway, a key pathway of cell
proliferation, survival, and responses to stresses, was also
modulated by the inhibition of the BTK (Yu YQ et al., 2024).
The MAPK pathway, with the central players ERK, JNK, and
p38 MAPK, regulates smooth muscle cell growth and migration.
(Doronzo et al., 2011). Derangement of the MAPK signaling cascade
impairs the function of vascular smooth muscle and contributes to
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endothelial malfunction as well as the development of hypertension
(Liu et al., 2014).

Additionally, NF-κB signal transduction, a key role of which
occurs under conditions of immune responses, contributes to the
induction of hypertension by BTKi (A Alu et al., 2022). NF-κB
activation supports the development and proliferation of immune
cells and plays a pivotal role in maintaining immunofunction (L
Deng et al., 2018). Under conditions of BTKi treatment, the
blockade of BTK results in the modulation of the NF-κB signal
transduction cascade, potentially leading to the induction of
immunosuppression, deterioration of vascular function, and
exacerbation of hypertension and enhancement of cardiovascular
risk (Ahn and Brown, 2021).

The PI3K/Akt, MAPK, and NF-κB pathways are downstream of
the BCR signal transduction pathway and are crucial for the
development and function of B cells (JA Burger and Wiestner,
2018; Burger, 2019). The key kinase of the BCR signal
transduction pathway, BTK, is reversibly or irreversibly occupied
by the binding of BTKi at the Cys481 residue and induces the
alteration of the downstream PI3K/Akt, MAPK, and NF-κB
pathways, potentially leading to the development of hypertension
(Gallo and Savoia, 2024). However, it is still unclear how these three
pathways are suppressed in clinical scenarios, which of these
pathways, or which combination, plays a dominant role in the
occurrence of hypertension, and whether there are interactions
between them. These uncertainties require further research to
uncover the underlying mechanisms.

The Notch signaling pathway is critical in determining cell fate,
tissue development, and differentiation. Disruption of Notch
signaling can disturb the balance of endothelial cell
proliferation, differentiation, and survival, leading to vascular
instability and remodeling (Dabral et al., 2016). In BTKi
treatment, inhibition of BTK may downregulate Notch,
disrupting vascular homeostasis, increasing vascular resistance,
and accelerating the development of hypertension in patients
undergoing BTKi therapy (Del Papa et al., 2019). Furthermore,
the RhoA/ROCK signaling pathway, which regulates smooth
muscle contraction and cell migration, may also play a role in
BTKi-induced hypertension. Activation of this pathway enhances
smooth muscle contraction and promotes vascular remodeling,
commonly seen in hypertensive patients (Löhn et al., 2009).
However, there is currently limited direct evidence linking these
two pathways to BTK, and the conclusions are largely uncertain.
Therefore, more studies are recommended to explore the
interactions between these pathways, which could provide
additional targets for treating BTKi-induced hypertension.

This paper discusses treatment strategies to reduce BTKi-
induced hypertension, with a particular emphasis on the role of
combination therapy. While monotherapy has shown limited
effectiveness in managing BTKi-induced hypertension,
combination therapies—such as ACEI/ARB with HCTZ—have
shown improved blood pressure control (M Shadman et al.,
2022). Nevertheless, more extensive clinical trials are required to
validate these approaches and refine treatment strategies.

In summary, the pathophysiology of BTKi-induced
hypertension is multifactorial, involving intricate interactions
between oxidative stress, endothelial dysfunction, and vascular
signaling disruptions. Future research should prioritize further

elucidating the molecular mechanisms behind BTKi-induced
hypertension and investigating targeted treatments for its
prevention and management. Personalized treatment approaches
based on individual risk profiles are critical for minimizing
cardiovascular risks and optimizing the efficacy and safety of
BTKi therapy in treating hematologic malignancies.

8.2 Clinical relevance and importance of
understanding hypertension in BTKi therapy

In section “3.2 Clinical Observations and Prevalence in Patients
Receiving BTKi Treatment,” we have discussed that, according to
numerous clinical studies, hypertension occurs at a specific
incidence rate in patients treated with BTKi, regardless of the
type of BTKi used. Hypertension is a significant risk factor for
cardiovascular diseases and is closely related to the occurrence of
cardiovascular complications such as stroke, myocardial infarction,
and heart failure (Chen et al., 2022). Hypertension induced by BTKi
therapy may increase the cardiovascular burden, particularly in
patients with pre-existing cardiovascular conditions, who may
face more severe cardiovascular events during BTKi treatment
(Gordon et al., 2023).

Hypertension not only affects a patient’s overall health but
also has the potential to impact the continuity and efficacy of
BTKi treatment (I Goh and Chew, 2018). In some instances,
severe hypertension may result in the interruption or adjustment
of BTKi doses, which could compromise treatment outcomes
(Sapkota et al., 2021). Thus, the timely identification and
management of BTKi-induced hypertension are critical to
ensuring both the safety and efficacy of therapy (L Ar TL and
C, 2022). Effective management strategies are essential for
patients experiencing hypertension during BTKi treatment.
Common antihypertensive medications include ACEI, ARB,
CCB, and beta-blockers (Samples et al., 2024). For high-risk
patients, combination therapy may be necessary to manage
blood pressure effectively. Furthermore, for those who require
treatment discontinuation due to hypertension, reassessing the
antihypertensive approach, adjusting medication doses, or
temporarily suspending treatment may be necessary (K Sofija
and F Michael, 2025).

Considering the patient’s underlying cardiovascular status, pre-
treatment blood pressure, type of cancer, and potential BTKi side
effects, blood pressure management should be tailored to the
individual (L Ar TL and C, 2022). Before initiating BTKi therapy,
assessing the patient’s cardiovascular risk (including a history of
hypertension, atherosclerosis, etc.) and monitoring blood pressure is
essential (Cohen et al., 2019a). Regular blood pressure monitoring
during treatment is vital to facilitate timely adjustments to the
treatment plan and prevent serious hypertension-related
complications (LE Butel-Simoes et al., 2023). Recognizing the
clinical significance of hypertension during BTKi treatment helps
improve patient prognosis and reduce cardiovascular complications
(Awan et al., 2022). Early hypertension detection and proper
management safeguard treatment safety while optimizing
anticancer efficacy. Therefore, cardiovascular risk assessment and
regular blood pressure monitoring should be considered essential
parts of BTKi therapy.
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9 Future directions

9.1 Recommendations for future research
and treatment strategies

Future research should further investigate the molecular
mechanisms of BTKi-induced hypertension, with a particular
emphasis on oxidative stress, endothelial dysfunction, and the
regulation of vascular contraction. Although current studies have
highlighted the correlation between BTKi and hypertension, the
precise pathophysiological processes are still unclear, especially
concerning the interaction and complexity of cellular signaling
pathways. Future work could involve more detailed cellular models
and animal studies to explore how BTKi affects blood pressure
regulation by modulating various signaling pathways (such as PI3K/
Akt, MAPK, NF-κB, Notch, and RhoA/ROCK), providing a theoretical
foundation for the development of targeted therapeutic strategies.

The clinical management of hypertension during BTKi
treatment should be further individualized, taking into account
the patient’s baseline cardiovascular status, cancer type, and drug
history. A comprehensive cardiovascular risk assessment should
guide the selection of appropriate antihypertensive medications and
the development of combination treatment strategies. Although
current antihypertensive drugs such as ACE inhibitors (ACEI),
angiotensin receptor blockers (ARB), and beta-blockers can
control BTKi-induced hypertension to some degree, the efficacy
and safety of these medications still need to be further validated
through large-scale clinical trials. Future clinical research should
focus on the effectiveness of various antihypertensive drug
combinations, particularly in high-risk patients, and investigate
novel cardiovascular protective therapies, such as antioxidants
and endothelial function protectors, to alleviate the
cardiovascular adverse effects of BTKi treatment.

Additionally, research in genomics and pharmacokinetics
should continue to reveal the differences in patient responses to
BTKi therapy, especially regarding individual variations in blood
pressure response. Integrated with genomic data, Large-scale, multi-
center clinical cohort studies could identify susceptibility genes for
BTKi-induced hypertension, contributing to more precise treatment
plans and improving safety and effectiveness.

In conclusion, as our knowledge of BTKi therapy advances,
future research should focus on uncovering the molecular
mechanisms and clinical features of BTKi-induced hypertension,
identifying new therapeutic targets and management strategies, and
facilitating more individualized and precise treatment of

hypertension. This approach will reduce cardiovascular risks
during BTKi therapy and optimize patient treatment outcomes.
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