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Introduction: Gliomas are the most common and aggressive primary brain
tumors, characterized by significant heterogeneity and poor prognosis.
Despite advancements in treatment, therapeutic resistance and tumor
recurrence remain major challenges. Identifying novel molecular biomarkers is
essential for improving prognosis and developing more effective therapies.

Methods: In this study, we developed a solute carrier family prognostic signature
(SLCFPS) for gliomas using univariate Cox regression andmachine learning algorithms
across five independent glioma cohorts. Prognostic performance was evaluated
through Kaplan-Meier survival analysis, concordance index (C-index), and receiver
operating characteristic (ROC) curve analysis. The immune landscape, immunotherapy
response, and drug sensitivity were further analyzed using bioinformatics tools such as
ESTIMATE, xCell, TIDE, and drug response correlation analysis.

Results: SLCFPS effectively stratified glioma patients into high- and low-risk
groups, with higher scores associated with poorer survival outcomes. The model
demonstrated superior predictive performance compared to existing glioma
prognostic models. Additionally, SLCFPS was linked to an immunosuppressive
tumor microenvironment and upregulated immune checkpoints, indicating
potential implications for immunotherapy response. Furthermore, SLCFPS
correlated with drug sensitivity, suggesting potential therapeutic options for
glioma treatment.

Discussion: Our findings highlight SLCFPS as a robust biomarker for glioma
prognosis and treatment response. By providing insights into tumor immunity,
this model may aid in the development of personalized therapeutic strategies.
Further validation in clinical settings is necessary to explore its full potential in
guiding glioma management.
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1 Introduction

Gliomas are the most common and aggressive primary tumors of the central nervous
system, exhibiting substantial heterogeneity in their molecular characteristics and clinical
outcomes (Schaff and Mellinghoff, 2023). Despite advances in surgical resection,
radiotherapy, and chemotherapy, the prognosis for glioblastoma (GBM), the most
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malignant subtype, remains poor, with a median overall survival of
approximately 15 months. The identification of reliable prognostic
biomarkers is crucial for improving risk stratification, guiding
therapeutic decisions, and ultimately enhancing patient outcomes.
In recent years, molecular classification has significantly contributed
to our understanding of glioma biology (Verdugo et al., 2022). Key
genetic alterations, including mutations in isocitrate dehydrogenase
(IDH1/2), 1p/19q co-deletion, and O6-methylguanine-DNA
methyltransferase (MGMT) promoter methylation, have been
incorporated into clinical practice to refine prognostic predictions
(Lan et al., 2024). Other biomarkers related to immunotherapy or
cancer metabolism may indicate treatment efficacy and hold
potential utility in certain gliomas (Liu et al., 2023a; Liu et al.,
2023b; Liu et al., 2023c). However, these markers alone fail to fully
capture the complexity of glioma progression, highlighting the need
for novel prognostic models that integrate multiple molecular and
clinical parameters.

The solute carrier (SLC) family constitutes one of the largest
groups of transmembrane transporters, encompassing over
400 members that facilitate the transport of nutrients, ions, and
metabolites across cellular membranes (Sun et al., 2024; Hu et al.,
2020). Increasing evidence has highlighted the involvement of SLC
proteins in cancer biology, where they contribute to tumor
progression, metabolic reprogramming, immune evasion, and
therapeutic resistance (Wu et al., 2021). For example, the
glutamine transporter SLC1A5 and SLC7A11 regulate glutamine
metabolism and redox balance, respectively, thereby supporting
tumor cell survival and resistance to oxidative stress (Yoo et al.,
2020; Wang et al., 2021). Additionally, SLC transporters have been
linked to immune regulation, affecting T cell function and tumor-
associated macrophage polarization. The itaconate transporter
SLC13A3 impairs tumor immunity by conferring ferroptosis
resistance (Lin et al., 2024). The creatine transporter
SLC6A8 promotes macrophage polarization from the M1 to
M2 phenotype by differentially modulating cytokine-driven
signaling pathways (Ji et al., 2019). In glioma, sodium/hydrogen
exchanger 1 (NHE1), encoded by the SLC9A1 gene has been studied
as a marker tumorigenesis and prognosis (Guan et al., 2018). The
NHE1 inhibitor HOE642 reduced glioma growth and invasion. This
effect was associated with an enhanced immunogenic tumor
microenvironment, characterized by increased CD8+ T-cell
accumulation, upregulated interferon-gamma expression, and
improved response to anti-PD-1 therapy (Guan et al., 2018).
Despite these findings, a comprehensive prognostic model based
on SLC family genes has yet to be established for glioma.
Understanding the prognostic significance of SLC transporters
could provide valuable insights into glioma biology and offer
novel therapeutic strategies for improving patient outcomes.

In this study, we developed a robust SLC family prognostic
signature (SLCFPS) for glioma using multi-cohort survival analysis
and machine learning-based modeling. We identified prognostic
SLC genes across five independent cohorts and constructed an
optimized predictive model, which was validated in multiple
datasets. Beyond prognosis, we explored the biological and
clinical relevance of SLCFPS, including its association with the
tumor immune microenvironment, immune checkpoint
expression, and tumor purity. Furthermore, we assessed its
potential as a biomarker for immunotherapy response and drug

sensitivity. Our findings highlight SLCFPS as a powerful prognostic
tool, offering insights into glioma immunity and treatment response,
with implications for personalized therapeutic strategies.

2 Materials and methods

2.1 Identification of prognostic SLC genes

Univariate Cox regression analysis was performed using the
“survival” package in R on five glioma cohorts to assess the
prognostic significance of solute carrier (SLC) family genes.
Genes with a p-value < 0.05 were considered statistically
significant. To identify common prognostic SLC genes across
cohorts, a Venn diagram intersection analysis was conducted
using the “VennDiagram” package, ultimately selecting
64 candidate SLC genes.

2.2 Machine learning-based model
construction

To develop an optimal prognostic model, a total of
10 different machine learning algorithmic combinations were
applied to the 64 selected genes, including CoxBoost, elastic net
(Enet), generalized boosted regression modeling (GBM), least
absolute shrinkage and selection operator (Lasso), partial least
squares regression for Cox (plsRCox), random survival forest
(RSF), Ridge regression, supervised principal components
(SuperPC), stepwise Cox, and survival support vector machine
(survival-SVM) (Xiao et al., 2024). Each model’s predictive
performance was assessed using the concordance index
(C-index) to determine accuracy and robustness. All of the
above methods were implemented using the “Mime1” package
(Liu et al., 2024).

2.3 Selection of the optimal predictivemodel

A comprehensive evaluation of 101 different machine learning
algorithm combinations was conducted across the five glioma
cohorts. The model achieving the highest average C-index was
selected as the final prognostic framework.

2.4 Performance validation of the
predictive model

The predictive accuracy of the final model—Stepwise Cox
regression (StepCox [forward]) combined with Elastic Net
regularization [Enet (α = 0.1)]—was assessed at 1-year, 3-year,
and 5-year survival time points. Stepwise Cox regression was
implemented using the “stepAIC” function from the “MASS”
package, while Elastic Net regularization was performed using the
“glmnet” package (with α = 0.1). Time-dependent receiver operating
characteristic (ROC) curve analysis was performed across all five
cohorts using the “timeROC” package, and area under the curve
(AUC) values were calculated to validate its prognostic utility.
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2.5 Survival analysis of SLCFPS

To determine the prognostic significance of the SLC family
prognostic signature (SLCFPS), patients from five independent
glioma cohorts (TCGA_GBMLGG, CGGA_325, CGGA_693,
Rembrandt, and Gravendeel) were stratified into high- and low-
risk groups based on their SLCFPS scores. The SLCFPS score is
calculated based on the expression levels of selected genes, with
weights assigned according to the coefficients derived from our
prognostic model. For risk stratification, the median value of the
SLCFPS scores was used as the cutoff point to divide patients into
high- and low-risk groups. Kaplan-Meier survival analysis was
performed using the “survival” package to compare overall
survival (OS) between the two groups, and statistical significance
was determined using the “survminer” package for the log-rank test.

2.6 Comparative analysis of predictive
performance

To compare the prognostic performance of SLCFPS against
conventional clinical and pathological features, the “survival”
package was used to calculate the concordance index (C-index)
for each prognostic factor across the five cohorts. The predictive
accuracy of SLCFPS was then compared to standard clinical
parameters, including age, tumor grade, and molecular markers,
using the “pec” package to assess its relative prognostic value.

2.7 Univariate Cox regression analysis

To evaluate whether SLCFPS serves as an independent
prognostic factor, univariate Cox proportional hazards regression
analysis was conducted in each cohort using the “survival” package.
Hazard ratios (HRs) with corresponding 95% confidence intervals
(CIs) and p-values were calculated using the coxph function in the
“survival” package to determine the statistical significance of
SLCFPS in predicting patient survival outcomes.

2.8 Validation of SLCFPS in other
cancer types

To investigate the generalizability of SLCFPS beyond glioma, its
prognostic value was assessed in six additional cancer types from
The Cancer Genome Atlas (TCGA), including cervical squamous
cell carcinoma and endocervical adenocarcinoma (CESC), kidney
renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), acute myeloid leukemia (LAML), pancreatic
adenocarcinoma (PAAD), and sarcoma (SARC). Patients were
stratified into high- and low-risk groups based on their SLCFPS
scores, and Kaplan-Meier survival analysis was performed using the
“survival” package to compare OS between the two groups, with
statistical significance determined by the “survminer” package via
the log-rank test.

To assess the predictive performance of SLCFPS in these cancer
types, time-dependent ROC curve analyses were conducted using
the “timeROC” package for each cohort. The prognostic accuracy of

the Stepwise Cox regression + Elastic Net [Enet (α = 0.1)] model was
evaluated using AUC values at different time points.

2.9 Comparison with other glioma
prognostic signatures

To evaluate the prognostic robustness of SLCFPS in comparison
with previously published glioma signatures, we retrieved multiple
glioma prognostic models from the literature. The hazard ratio (HR)
of SLCFPS was compared with these signatures across independent
glioma cohorts using the “cal_RS_pre.prog.sig” function from the
“Mime1” package, while the concordance index (C-index) was
compared using the “cal_cindex_pre.prog.sig” function in the
same package. Statistical significance was assessed using the
wilcox.test function in the “stats” package.

2.10 Enrichment pathway analysis

To investigate the biological pathways associated with SLCFPS,
Gene Set Variation Analysis (GSVA) was conducted using the
Hallmark gene sets. Samples were stratified into high and low
SLCFPS expression groups, and pathway enrichment scores were
compared between these groups. Additionally, Gene Ontology (GO)
enrichment analysis was performed to identify the top five
significantly enriched pathways in the high- and low-SLCFPS
groups, respectively. The enrichment analysis was conducted
using the “clusterProfiler” R package, and pathways with adjusted
p-values < 0.05 were considered statistically significant.

2.11 Immune landscape analysis

To explore the immune microenvironment characteristics of
high- and low-SLCFPS groups, immune scores were computed using
the “xCell” and “ESTIMATE” algorithms across five glioma cohorts,
with the “IOBR” package used to perform both the “xCell” and
“ESTIMATE” analyses (Zeng et al., 2021). Differences in immune
scores between high- and low-SLCFPS groups were assessed using
the wilcox.test function in the “stats” package. Additionally, tumor
purity was estimated using the “ESTIMATE” method, and its
correlation with SLCFPS scores was calculated using the cor
function in the “stats” package.

To further analyze the immune checkpoint landscape,
expression levels of key immune checkpoint molecules were
compared between high- and low-SLCFPS groups using the
wilcox.test function in the “stats” package. Statistical significance
was denoted as p < 0.05 (*), p < 0.01 (**), p < 0.001 (***).

2.12 Prediction of immunotherapy response

To assess the predictive value of SLCFPS for immunotherapy
response, the TIDE algorithm was applied to estimate the likelihood
of immune therapy response in high- and low-SLCFPS groups (Fu
et al., 2020). The percentage of predicted responders and non-
responders was compared across multiple glioma cohorts.
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FIGURE 1
Construction and testing of the SLC Family prognostic signature (SLCFPS) (A) C-index of 101 machine learning algorithm combinations across five
glioma cohorts. (B) Univariate Cox regression analysis was used on five glioma cohorts to identify SLC family genes, followed by Venn diagram
intersection analysis. (C) One-year survival AUC curves of the StepCox [forward] + Enet [alpha = 0.1] model across five glioma cohorts. (D) Three-year
survival AUC curves of the StepCox [forward] + Enet [alpha = 0.1] model across five glioma cohorts. (E) Five-year survival AUC curves of the StepCox
[forward] + Enet [alpha = 0.1] model across five glioma cohorts.
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Additionally, Kaplan-Meier survival analysis was conducted in the
PRJNA482620 immunotherapy cohort using the “survival” package
to evaluate whether SLCFPS expression was associated with patient
survival following immune checkpoint blockade therapy. Statistical
significance was assessed using the “survminer” package via the log-
rank test, and differences in TIDE scores were analyzed using the
wilcox.test function in the “stats” package.

2.13 Drug sensitivity analysis

To explore the relationship between SLCFPS and drug
sensitivity, drug response scores for multiple small-molecule
inhibitors and the corresponding expression data of cell lines
were obtained from the Genomics of Drug Sensitivity in Cancer
(GDSC) database using the “drugSensitivity” package (Yang et al.,
2013). These data were used as a training set, and the “oncoPredict”
R package was utilized to predict drug response scores for five
glioma cohorts (Maeser et al., 2021).The correlation between
SLCFPS scores and drug response scores was calculated using
Spearman’s correlation analysis, with the cor function from the
“stats” package, and a correlation coefficient threshold
of < −0.5 indicating a potential association with drug sensitivity.
Differences in drug response scores between high- and low-SLCFPS
groups were analyzed using the wilcox.test function from the
“stats” package.

3 Results

3.1 Development and validation of the SLC
family prognostic signature (SLCFPS)

To construct a robust prognostic model based on the SLC gene
family, we performed a multi-step computational analysis
integrating survival statistics and machine learning-based
predictive modeling across five independent glioma cohorts. First,
univariate Cox regression analysis was conducted on each cohort to
identify SLC genes significantly associated with patient prognosis
(p < 0.05). A total of 64 prognostic SLC genes were identified
through intersection analysis using a Venn diagram (Figure 1B).
Next, we employed a machine learning-based approach to develop
the optimal prognostic model. A total of 10 algorithms were tested in
different combinations to construct the predictive framework. To
ensure robustness, we further evaluated the concordance index
(C-index) across 101 machine learning algorithm combinations
in all five glioma cohorts (Figure 1A). The model achieving the
highest average C-index was selected as the final predictive model.
To assess the prognostic performance of the selected model, we
applied time-dependent receiver operating characteristic (ROC)
curve analysis at 1-year, 3-year, and 5-year survival time points
across all five glioma cohorts. The Stepwise Cox regression (StepCox
[forward]) combined with Elastic Net regularization [Enet (α = 0.1)]
demonstrated stable and high predictive accuracy, as shown by the
AUC values at each time point (Figures 1C–E). Together, these
findings indicate that the SLCFPS model effectively stratifies glioma
patients based on prognosis, providing a potential tool for risk
assessment and personalized treatment strategies.

3.2 Survival analysis and predictive
performance assessment of SLCFPS

To evaluate the prognostic significance of the SLCFPS, we
conducted survival analysis across five independent glioma
cohorts. Patients were stratified into high- and low-risk groups
based on SLCFPS scores, and Kaplan-Meier survival curves were
generated to compare overall survival (OS) among these groups. The
results demonstrated that in all five cohorts (TCGA_GBMLGG,
CGGA_325, CGGA_693, Rembrandt, and Gravendeel) patients in
the high-SLCFPS group exhibited significantly worse OS compared
to those in the low-SLCFPS group (Figures 2A–E), confirming the
robust prognostic value of the SLCFPS model. Next, to assess the
predictive power of SLCFPS in comparison to traditional clinical
and pathological features, we computed and compared the
concordance index (C-index) across the five cohorts. In the
TCGA_GBMLGG (Figure 2F), CGGA_325 (Figure 2G), CGGA_
693 (Figure 2H), and Gravendeel (Figure 2I) cohorts, SLCFPS
outperformed or was comparable to standard clinical parameters,
highlighting its superior prognostic capability. Furthermore,
univariate Cox regression analysis was performed to determine
the independent prognostic relevance of SLCFPS compared to
other clinical variables. Across all datasets, SLCFPS remained a
significant prognostic factor, with hazard ratios indicating a strong
correlation between higher SLCFPS scores and poorer survival
outcomes (Figures 2J–M). These findings underscore the clinical
relevance of SLCFPS as an independent and robust prognostic
biomarker for glioma patients.

3.3 Prognostic value of SLCFPS in other
cancer types

To assess the broader applicability of SLCFPS modal beyond
glioma, we evaluated its prognostic significance across six additional
cancer types using The Cancer Genome Atlas (TCGA) cohorts.
Patients in each cohort were stratified into high- and low-risk groups
based on their SLCFPS scores, and Kaplan-Meier survival analysis
was performed to compare overall survival (OS) between the two
groups. The results demonstrated that a higher SLCFPS score was
significantly associated with poorer OS in multiple cancer types,
including cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC) (Figure 3A), kidney renal clear cell
carcinoma (KIRC) (Figure 3C), kidney renal papillary cell
carcinoma (KIRP) (Figure 3E), acute myeloid leukemia (LAML)
(Figure 3G), pancreatic adenocarcinoma (PAAD) (Figure 3I), and
sarcoma (SARC) (Figure 3K). In each cohort, the log-rank test
confirmed a statistically significant survival difference between the
high- and low-risk groups (p < 0.05). To further evaluate the
predictive performance of SLCFPS in these cancers, we
conducted time-dependent receiver operating characteristic
(ROC) analyses. The Stepwise Cox regression (StepCox[forward])
+ Elastic Net (Enet[α = 0.1]) model exhibited robust predictive
power in each cohort, as indicated by the area under the curve
(AUC) values across different time points (Figures 3B, D, F, H, J, L).
These findings suggest that SLCFPS has generalizable prognostic
utility across multiple malignancies, reinforcing its potential as a
valuable biomarker for cancer prognosis.
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FIGURE 2
Survival analysis and predictive performance assessment of SLCFPS. (A) Overall survival (OS) of high and low SLCFPS groups in the TCGA_GBMLGG
cohort. (B)OS of high and low SLCFPS groups in the CGGA_325 cohort. (C)OS of high and low SLCFPS groups in the CGGA_693 cohort. (D)OS of high and
lowSLCFPS groups in theRembrandt cohort. (E)OSof high and low SLCFPS groups in theGravendeel cohort. (F)Comparison of theC-index between clinical
pathological features and SLCFPS in the TCGA_GBMLGG cohort. (G) Comparison of the C-index between clinical pathological features and SLCFPS in
the CGGA_325 cohort. (H) Comparison of the C-index between clinical pathological features and SLCFPS in the CGGA_693 cohort. (I) Comparison of the
C-index between clinical pathological features and SLCFPS in theGravendeel cohort. (J)Univariate analysis of clinical pathological features and SLCFPS in the
TCGA_GBMLGG cohort. (K) Univariate analysis of clinical pathological features and SLCFPS in the CGGA_325 cohort. (L) Univariate analysis of clinical
pathological features and SLCFPS in the CGGA_693 cohort. (M) Univariate analysis of clinical pathological features and SLCFPS in the Gravendeel cohort.
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FIGURE 3
The predictive characteristics of SLCFPS in cohorts of other cancers. (A) OS of high and low SLCFPS groups in the TCGA_CESC cohort. (B) Time-
dependent ROC curves of the StepCox [forward] + Enet [alpha = 0.1] model in the TCGA_CESC cohort. (C) OS of high and low SLCFPS groups in the
TCGA_KIRC cohort. (D) Time-dependent ROC curves of the StepCox [forward] + Enet [alpha = 0.1] model in the TCGA_KIRC cohort. (E)OS of high and
low SLCFPS groups in the TCGA_KIRP cohort. (F) Time-dependent ROC curves of the StepCox [forward] + Enet [alpha = 0.1] model in the TCGA_
KIRP cohort. (G)OS of high and low SLCFPS groups in the TCGA_LAML cohort. (H) Time-dependent ROC curves of the StepCox [forward] + Enet [alpha =
0.1] model in the TCGA_LAML cohort. (I)OS of high and low SLCFPS groups in the TCGA_PAAD cohort. (J) Time-dependent ROC curves of the StepCox
[forward] + Enet [alpha = 0.1] model in the TCGA_PAAD cohort. (K) OS of high and low SLCFPS groups in the TCGA_SARC cohort. (L) Time-dependent
ROC curves of the StepCox [forward] + Enet [alpha = 0.1] model in the TCGA_SARC cohort.
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FIGURE 4
Comparison of SLCFPSwith other published glioma signatures. (A)Comparison of the hazard ratio (HR) between SCLFPS and other published glioma
signatures. (B) Comparison of the C-index between SCLFPS and other published glioma signatures.
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3.4 Comparison of SLCFPS with other
glioma prognostic signatures

To determine the predictive robustness of SLCFPS, we
systematically compared its prognostic performance against
previously published glioma prognostic signatures. Hazard ratio
(HR) comparisons demonstrated that SLCFPS exhibited a higher
HR than most established glioma signatures, indicating its strong
association with patient survival outcomes (Figure 4A).
Additionally, we assessed the C-index of SLCFPS relative to other
glioma prognostic models. SLCFPS consistently outperformed the
majority of existing signatures across glioma cohorts, demonstrating
superior prognostic accuracy (Figure 4B). These findings support
SLCFPS as a robust and reliable prognostic biomarker for glioma.

3.5 Enrichment pathway analysis of the
high- and low- SLCFPS groups

To explore the potential biological mechanisms underlying
SLCFPS-associated tumor phenotypes, we performed Gene Set
Variation Analysis (GSVA) to compare pathway activity between
high and low SLCFPS groups. Hallmark gene set enrichment analysis
revealed significant differences in pathway activation between the two
groups (Figure 5A), suggesting distinct molecular characteristics.
Further Gene Ontology (GO) enrichment analysis identified the
top five enriched biological pathways in each group. The high
SLCFPS group exhibited significant enrichment in pathways

related to tumor progression, immune modulation, and metabolic
reprogramming (Figure 5B), while the low SLCFPS group was
predominantly enriched in pathways associated with neuronal
function and cellular homeostasis (Figure 5C). These findings
suggest that SLCFPS may influence glioma progression by
modulating key oncogenic and metabolic pathways.

3.6 Immune landscape of the high and low
SLCFPS groups

To investigate the association between SLCFPS and the tumor
immune microenvironment, we analyzed immune scores across five
glioma cohorts using multiple computational methods. SLCFPS-
derived immune scores exhibited strong correlations with those
obtained using the xCell method across all cohorts (Figure 6A),
supporting the reliability of our immune profiling approach. Next,
we compared immune infiltration levels between high and low
SLCFPS groups using the ESTIMATE algorithm. Significantly
higher immune scores were observed in the high SLCFPS group
across all cohorts, including TCGA_GBMLGG (Figure 6B), CGGA_
325 (Figure 6C), CGGA_693 (Figure 6D), Rembrandt (Figure 6E),
and Gravendeel (Figure 6F), indicating that high SLCFPS expression
is associated with increased immune infiltration. Furthermore,
tumor purity analysis demonstrated a strong negative correlation
between SLCFPS scores and tumor purity as estimated by the
ESTIMATE method across the five glioma cohorts (Figure 6G),
suggesting that higher SLCFPS expression is linked to a more

FIGURE 5
Enrichment pathway analysis of the high and low SLCFPS groups. (A) GSVA analysis was conducted to evaluate the scores of each sample in the
Hallmark gene sets. Samples were categorized into high-expression and low-expression groups based on SLCFPS, and the differences in Hallmark gene
set scores between the two groups were compared. (B) The top five Gene Ontology (GO)-enriched pathways in the high SLCFPS group were identified.
(C) The top five GO-enriched pathways in the low SLCFPS group were identified.
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immune-enriched tumor microenvironment. Finally, we analyzed
the expression levels of immune checkpoint molecules between the
high and low SLCFPS groups. Key immune checkpoints, including
PD-1, PD-L1, and CTLA-4, were significantly upregulated in the
high SLCFPS group (Figure 6H), highlighting the potential relevance
of SLCFPS in immunotherapy responsiveness.

3.7 Predictive value of SLCFPS for
immunotherapy

To evaluate the potential of SLCFPS as a predictive biomarker
for immunotherapy response, we utilized the Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm to estimate the

FIGURE 6
Immune landscape of the high and low SLCFPS groups. (A) Correlation and comparison of immune scores calculated using the SLCFPS and xCell
methods across five glioma cohorts. (B) Comparison of immune scores between high and low SLCFPS expression groups in the TCGA_GBMLGG cohort,
analyzed using the ESTIMATE method. (C) Comparison of immune scores between high and low SLCFPS expression groups in the CGGA_325 cohort,
analyzed using the ESTIMATE method. (D) Comparison of immune scores between high and low SLCFPS expression groups in the CGGA_
693 cohort, analyzed using the ESTIMATEmethod. (E)Comparison of immune scores between high and low SLCFPS expression groups in the Rembrandt
cohort, analyzed using the ESTIMATE method. (F) Comparison of immune scores between high and low SLCFPS expression groups in the Gravendeel
cohort, analyzed using the ESTIMATE method. (G) Comparison of tumor purity correlation calculated using the SLCFPS and ESTIMATE methods across
five glioma cohorts. (H) Boxplot of the relative expression levels of immune checkpoints in the high and low SLCFPS expression groups. *p < 0.05, **p <
0.01, ***p < 0.001.
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FIGURE 7
Predictive value of SLCFPS for immunotherapy (A) Percentage of immune therapy response predicted by Tumour Immune Dysfunction and
Exclusion (TIDE) in the high and low SLCFPS groups within the TCGA_GBMLGG cohort. (B) Boxplot of TIDE scores between the high and low SLCFPS
expression groups in the TCGA_GBMLGG cohort. (C) Percentage of immune therapy response predicted by TIDE in the high and low SLCFPS groups
within the CGGA_325 cohort. (D) Boxplot of TIDE scores between the high and low SLCFPS expression groups in the CGGA_325 cohort. (E)
Percentage of immune therapy response predicted by TIDE in the high and low SLCFPS groups within the CGGA_693 cohort. (F) Boxplot of TIDE scores
between the high and low SLCFPS expression groups in the CGGA_693 cohort. (G) Percentage of immune therapy response predicted by TIDE in the high
and low SLCFPS groups within the Rembrandt cohort. (H) Boxplot of TIDE scores between the high and low SLCFPS expression groups in the Rembrandt

(Continued )
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likelihood of response to immune checkpoint blockade across five
glioma cohorts. A significantly higher proportion of patients in the
low SLCFPS group were predicted to respond to immunotherapy
compared to those in the high SLCFPS group across all cohorts,
including TCGA_GBMLGG (Figure 7A), CGGA_325 (Figure 7C),
CGGA_693 (Figure 7E), Rembrandt (Figure 7G), and Gravendeel
(Figure 7I). Moreover, TIDE scores were significantly lower in the
low SLCFPS group compared to the high SLCFPS group across these
cohorts (Figures 7B, D, F, H, J), suggesting that patients with low
SLCFPS expression may exhibit greater sensitivity to immune
checkpoint inhibitors.

To further validate this observation, we examined a publicly
available immunotherapy-treated cohort (PRJNA482620). Survival
analysis demonstrated that patients who responded to
immunotherapy exhibited significantly longer overall survival
(OS) compared to non-responders (Figure 7K). Additionally,
patients with low SLCFPS expression had a significantly better
OS compared to those with high SLCFPS expression (Figure 7L),
consistent with our findings from the TIDE analysis. Notably, a
higher proportion of patients in the low SLCFPS group were
classified as immunotherapy responders (Figure 7M), further
supporting the potential clinical utility of SLCFPS as a predictor
of immunotherapy efficacy.

3.8 Effectiveness of SLCFPS in predicting
drug sensitivity

Given the critical need for personalized treatment strategies
in glioma, identifying biomarkers that can predict drug
sensitivity is essential for optimizing therapeutic outcomes.
Since SLCFPS has shown prognostic potential in glioma, we
sought to determine whether it could also serve as a predictive
marker for drug response. To investigate the potential utility of
SLCFPS in predicting drug sensitivity, we analyzed the
correlation between SLCFPS scores and drug response scores
across five independent glioma cohorts. Four small-molecule
compounds (XL888, Delanzomib, Temsirolimus, and
Ixazomib-citrate) exhibited a negative correlation (correlation
coefficient < −0.5) with SLCFPS across all cohorts, suggesting
that patients with lower SLCFPS expression may exhibit greater
sensitivity to these drugs. Specifically, a strong negative
correlation was observed between SLCFPS scores and
XL888 drug response scores across all five cohorts
(Figure 8A), and drug sensitivity analysis revealed that
**patients in the low SLCFPS group had significantly lower
XL888 response scores compared to those in the high SLCFPS
group (Figure 8B), indicating enhanced drug sensitivity in the
low-risk group. Similar trends were observed for Delanzomib
(Figures 8C, D), Temsirolimus (Figures 8E, F), and Ixazomib-
citrate (Figures 8G, H), further supporting the potential role of

SLCFPS in predicting patient-specific drug responses. These
findings highlight SLCFPS as a promising biomarker for
guiding personalized treatment strategies, particularly in
identifying glioma patients who may benefit from specific
small-molecule inhibitors.

4 Discussion

In this study, we developed and validated SLCFPS for glioma by
integrating multi-cohort survival analysis and machine learning-
based predictive modeling. Our results demonstrate that SLCFPS is a
robust prognostic biomarker, effectively stratifying glioma patients
into high- and low-risk groups with significant differences in overall
survival. Furthermore, SLCFPS exhibited superior predictive
performance compared to previously published glioma prognostic
models. Beyond its prognostic utility, SLCFPS was strongly
associated with tumor immunity, immunotherapy response, and
drug sensitivity, underscoring its potential role in guiding
personalized treatment strategies.

Gliomas exhibit significant molecular and clinical heterogeneity,
current bio-markers alone fail to capture the full complexity of
glioma progression (Mathur et al., 2024). By leveraging machine
learning and survival analysis across multiple cohorts, we identified
a prognostic model based on SLC family genes that outperforms
existing glioma signatures. The superior predictive power of SLCFPS
is attributed to the critical roles of SLC proteins in tumor
metabolism, nutrient transport, and cellular homeostasis. Many
SLC family members have been implicated in glioma biology,
regulating processes such as glucose and amino acid metabolism,
oxidative stress response, and resistance to apoptosis. Given that
metabolic reprogramming is a hallmark of glioma (Kadiyala et al.,
2021), the integration of SLC genes into a prognostic model provides
a biologically relevant approach to risk stratification.

The tumor immune microenvironment plays a crucial role in
glioma progression and therapeutic resistance (Jayaram and Phillips,
2024). Our study revealed that high SLCFPS expression correlates
with an immunosuppressive tumor microenvironment,
characterized by increased immune infiltration and upregulation
of immune checkpoint molecules such as PD-1, PD-L1, and CTLA-
4. These findings suggest that patients with high SLCFPS scores may
exhibit immune evasion mechanisms, potentially leading to
resistance to conventional immunotherapies. Further immune
landscape analysis demonstrated that high SLCFPS expression
was associated with higher immune scores across multiple glioma
cohorts, as assessed by the ESTIMATE and xCell algorithms.
Interestingly, while high immune scores often indicate an active
immune response, gliomas are known to exhibit a paradoxical
immune-suppressive phenotype, wherein infiltrating immune
cells fail to mount an effective anti-tumor response. This suggests
that SLCFPS may serve as a biomarker for gliomas with immune

FIGURE 7 (Continued)

cohort. (I) Percentage of immune therapy response predicted by TIDE in the high and low SLCFPS groups within the Gravendeel cohort. (J) Boxplot
of TIDE scores between the high and low SLCFPS expression groups in the Gravendeel cohort. (K) Survival analysis of OS in relation to immune therapy
response in the PRJNA482620 cohort. (L) Survival analysis of OS in high and low SLCFPS expression groups in the PRJNA482620 cohort. (M) Percentage
of immune therapy response in high and low SLCFPS expression groups in the PRJNA482620 cohort.
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FIGURE 8
Effectiveness of SLCFPS in predictingdrug sensitivity. (A)Comparisonof the correlationbetweenXL888drug response scores andSLCFPS scores across five
glioma cohorts. (B)Comparison of XL888 drug response scores between high and low SLCFPS expression groups across five glioma cohorts. (C)Comparison of
the correlation between DELANZOMIB drug response scores and SLCFPS scores across five glioma cohorts. (D) Comparison of DELANZOMIB drug response
scores between high and low SLCFPS expression groups across five glioma cohorts. (E) Comparison of the correlation between TEMSIROLIMUS drug
response scores and SLCFPS scores across five glioma cohorts. (F) Comparison of TEMSIROLIMUS drug response scores between high and low SLCFPS
expression groups across five glioma cohorts. (G)Comparison of the correlation between IXAZOMIB-CITRATE drug response scores and SLCFPS scores across
five glioma cohorts. (H)Comparison of IXAZOMIB-CITRATE drug response scores between high and low SLCFPS expression groups across five glioma cohorts.
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dysfunction, guiding the selection of appropriate
immunotherapeutic strategies.

With the increasing clinical focus on immune checkpoint
blockade therapies, reliable biomarkers are needed to predict
patient response. Our analysis using the TIDE algorithm revealed
that patients with low SLCFPS expression were more likely to
respond to immune checkpoint inhibitors (ICIs). Additionally, in
the PRJNA482620 immunotherapy-treated cohort, patients with
low SLCFPS expression exhibited significantly longer overall
survival, further supporting the predictive value of SLCFPS for
immunotherapy outcomes. These findings suggest that SLCFPS
could be used to identify glioma patients who are more likely to
benefit from immune checkpoint blockade therapies, thereby
optimizing treatment selection.

In addition to its prognostic and immunological relevance,
SLCFPS was significantly correlated with drug sensitivity to
multiple small-molecule inhibitors. Patients with low SLCFPS
expression demonstrated greater sensitivity to compounds such
as XL888, Delanzomib, Temsirolimus, and Ixazomib-citrate,
suggesting that SLCFPS may serve as a predictive biomarker for
targeted therapies. These drugs are known to target key oncogenic
pathways, including HSP90 inhibition (XL888) (Mansfield et al.,
2024), proteasome inhibition (Delanzomib, Ixazomib-citrate)
(Kegyes et al., 2023), and mTOR inhibition (Temsirolimus)
(Gupta et al., 2024).The observed correlation between SLCFPS
and drug sensitivity highlights its potential utility in personalized
therapy selection. Future studies should explore the mechanistic
basis of these drug interactions, as well as the feasibility of
incorporating SLCFPS into clinical decision-making for
glioma treatment.

Despite the promising findings, this study has several limitations.
First, our analysis is retrospective and relies on publicly available datasets,
whichmay introduce selection bias and data heterogeneity. The inherent
differences in sequencing platforms, patient population characteristics,
and data preprocessingmethods across datasets could potentially impact
the generalizability of our findings. Second, although SLCFPS was
validated across multiple independent cohorts, prospective clinical
validation in larger, well-controlled clinical studies is necessary before
its routine application in clinical practice. Third, while our study provides
strong bioinformatic and statistical evidence, the biological mechanisms
linking SLC proteins to glioma progression and therapy resistance
remain incompletely understood. Functional experiments are needed
to elucidate the roles of individual SLC genes in glioma pathogenesis and
their interactions with the tumor microenvironment. Finally, although
we demonstrated an association between SLCFPS and immunotherapy
response, the predictive value of SLCFPS in guiding immunotherapy and
drug selection should be validated in prospective clinical trials. Future
studies should also investigate whether integrating SLCFPS with other
molecular biomarkers can further enhance its prognostic and
predictive accuracy.

5 Conclusion

In this study, we developed and validated SLCFPS as a novel
prognostic biomarker for glioma, demonstrating its strong

predictive value for patient survival. SLCFPS effectively stratifies
patients into high- and low-risk groups and outperforms existing
biomarkers. It also correlates with immune microenvironment
changes, such as increased immune infiltration and immune
checkpoint molecule upregulation, suggesting its potential role in
identifying immune-suppressive glioma subtypes and predicting
immunotherapy responsiveness. Additionally, SLCFPS was linked
to drug sensitivity, highlighting its relevance for personalized
treatment. While further validation is needed, SLCFPS shows
promise for improving prognosis, therapy selection, and patient
outcomes in glioma.
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