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Brain metastasis in breast cancer (BCBM) significantly threatens the survival and
quality of life of patients, particularly thosewith triple-negative (TNBC) andHER2-
positive subtypes. It involves complex molecular mechanisms and diverse
signaling pathways. This review highlights recent research on the molecular
mechanisms and signaling pathways of BCBM. The process of BCBM includes
several key steps: local infiltration of cancer cells into the bloodstream and
subsequent spread to the brain. They must then overcome the blood-brain
barrier (BBB) to establish and grow in the brain. Multiple signaling pathways,
including PI3K/AKT, STAT3, NF-κB, Notch, and Wnt are involved in this process.
Overall, BCBM is a complex disease regulated bymultiple molecular mechanisms
and signaling pathways. To improve patient survival and quality of life, it is crucial
to deepen research into the mechanisms of BCBM and explore new treatment
targets and strategies. This will enhance our understanding of BCBM and lead to
more effective treatments.
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1 Introduction

Breast cancer (BC) is the second leading cause of cancer-related deaths in women, after
lung cancer (Sung et al., 2021). Brain tumors are a significant threat to human life, classified
as primary or metastatic, with brain metastases arising from the spread of malignant tumors
from other organs (Aldape et al., 2019). The formation of brain metastases is closely linked
to BC, and it is a major cause of death in these patients (Sperduto et al., 2020).
Approximately 25% of advanced BC patients develop brain metastases, drastically
reducing their quality of life and overall survival (OS) (Darlix et al., 2019). BC is
heterogeneous, classified into subtypes based on biomarkers like estrogen receptor (ER),
progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), Ki-67,
genomic markers (BRCA1, BRCA2, PIK3CA), and immune markers (tumor-infiltrating
lymphocytes, PD-L1) (Allison, 2021). HER2-positive BC and triple-negative breast cancer
(TNBC) are more prone to brain metastasis than the luminal subtype (Darlix et al., 2019).
The median time from diagnosis to brain metastasis is 28–36 months for HER2-positive BC
and TNBC, and 47–54 months for the luminal subtype. Once brain metastasis develops, the
median OS is about 1 year (Bailleux et al., 2021). Variations in brain metastasis occurrence
among BC subtypes complicate treatment strategy choices.
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Breast cancer brain metastasis (BCBM) (Wang et al., 2021)
involves several sequential steps. First, cancer cells locally infiltrate
breast tissue and enter the circulatory system. Next, they overcome
the blood-brain barrier (BBB) to access and colonize the brain. Key
signaling pathways such as PI3K/AKT, STAT3, and NF-κB regulate
cellular growth, invasion, and metastatic capacity throughout this
process. The BBB, comprising endothelial cells, pericytes, the
basement membrane, and astrocytes, restricts the entry of most
anticancer drugs substances and poses a major obstacle in treating
BCBM (Belykh et al., 2020), Understanding these steps and
associated signaling cascades is crucial for developing
targeted therapies.

2 The process of brain metastasis and
involved molecular mechanisms

2.1 Epithelial-mesenchymal transition (EMT)
promotes breast cancer metastasis

Primary BC cells initially initiate metastasis and invasion
through epithelial-mesenchymal transition (EMT), a pivotal step
in cancer progression (Celia-Terrassa and Kang, 2024). During
EMT, cells relinquish epithelial characteristics, including cell-cell
adhesion, and adopt a mesenchymal phenotype with elongated
morphology and enhanced motility (Dongre and Weinberg,
2019). A key event in EMT is the degradation of the basement
membrane by enzymes such as metalloproteinases (MMPs),
facilitating the invasion of cancer cells (Liao et al., 2024; Wang
and Wang, 2022). EMT is not universal among BC cells; it occurs in
a subset, indicating metastatic potential is limited to a select group
(Pastushenko and Blanpain, 2019). This heterogeneity suggests that
the primary tumor comprises cells at various stages of
differentiation, each potentially undergoing EMT at different
times (Bakir et al., 2020).

The orchestration of EMT involves numerous molecules and
signaling cascades (Liang et al., 2023). Transcription factors,
especially the Snail family, play a dominant role by
downregulating epithelial markers like E-cadherin and promoting
mesenchymal traits (Imodoye et al., 2021). The Twist family also
contributes to EMT regulation. ZEB1, another crucial transcription
factor, collaborates with Snail and Twist and forms an intricate
network governing the EMT process (Mohammadi Ghahhari et al.,
2022). Snail and Twist suppress E-cadherin expression, a hallmark
of EMT, a function also performed by ZEB1 and modulated by
pathways like STAT3 (Sadrkhanloo et al., 2022). These factors are
clinically linked to BC prognosis. Snail expression is associated with
increased recurrence and metastasis, whereas Twist1 correlates with
lower survival rates (Saitoh, 2023). ZEB1 overexpression in TNBC
and its interaction with the ER underscore its role in promoting
aggressive, invasive phenotypes (Mohammadi Ghahhari
et al., 2022).

2.2 Entering the circulation

Upon leaving the primary site, tumor cells engage with the
extracellular matrix (ECM) and neighboring cells, establishing the

tumor microenvironment (TME) (Deng et al., 2024; Zhang X. et al.,
2023; Xia Z. et al., 2023; Wang Y. et al., 2022; Li C. et al., 2023). The
ECM supports cellular adhesion and migration, housing signaling
molecules like cell adhesion proteins and growth factors, facilitating
cancer cell migration, invasion, and metastasis (Zhang et al., 2022;
Ma et al., 2024) (Wang X. et al., 2022; Soltani et al., 2021). Some
cancer cells infiltrate adjacent blood vessels by disrupting the
basement membrane and intercellular adhesion, becoming
circulating tumor cells (CTCs) (Na et al., 2020). The rise in CTC
numbers is a pivotal prognostic indicator linked with distant
metastasis survival rates (Pineiro et al., 2020).

Circulating tumor cells (CTCs) face significant challenges in the
bloodstream, including immune attacks and hemodynamic stresses,
which limit their survival (Na et al., 2020). To evade immune
surveillance, CTCs may express PD-L1, which binds to immune
cells and inhibits their function (Liu T. et al., 2023; Yilmaz et al.,
2023; Wang et al., 2024; Liu et al., 2022). Additionally, CTCs secrete
immune-suppressive factors such as TGF-β, impairing immune cell
activity (Sanches et al., 2021). They further evade detection by
downregulating MHC I molecules, which are essential for
presenting tumor antigens to CD8+ T cells (Yamamoto et al.,
2020; Xie et al., 2024). Hemodynamic forces also play a critical
role in CTC migration and survival. High blood flow velocities
expose CTCs to elevated shear stress, potentially leading to
mechanical destruction, while low velocities enhance interactions
with endothelial cells, promoting extravasation (Taftaf et al., 2021).
CTCs can form clusters or associate with platelets, creating CTC-
platelet aggregates that protect them from shear stress and natural
killer (NK) cell-mediated damage (Donato et al., 2020; Chang et al.,
2021; Chi et al., 2022). Platelets also provide CTCs with MHC I
molecules, shielding them from cytotoxic T cell attacks (Zhou L.
et al., 2023; Zhang J. et al., 2023). Despite these survival mechanisms,
tumor cells entering circulation face significant obstacles, and only a
subset of CTCs successfully establishes distant metastases.

2.3 Breaking through the blood-brain barrier

The brain, being highly vascularized, attracts a significant
number of circulating tumor cells (CTCs); however, only a small
subset successfully crosses the blood-brain barrier (BBB) to form
metastases. The blood-brain barrier is primarily composed of
endothelial cells, pericytes, the basement membrane, and
astrocytes. It plays a critical role in regulating the passage of
substances, ensuring central nervous system homeostasis by
selectively permitting the transport of essential nutrients while
blocking harmful molecules (Terstappen et al., 2021; Hajal et al.,
2021). The blood-brain barrier is essential for maintaining brain
function and acts as a robust barrier against cancer cell infiltration.
The pre-metastatic microenvironment promotes metastasis through
mechanisms such as fibronectin deposition, matrix
metalloproteinase expression, and interactions with cytokines and
extracellular vesicles (Zhang C. et al., 2024; Li et al., 2024; Yang et al.,
2024). Within the central nervous system, interactions between
CTCs and local cells create a conducive environment for
metastasis. After breaching the BBB, tumor cells trigger reactive
astrocytes to release plasminogen activators, initiating an anti-tumor
response. While these activators eliminate tumor cells in early
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metastasis, some cells evade destruction by producing anti-
plasminogen activators, such as serpins. In advanced stages,
reactive astrocytes contribute to a metastatic microenvironment,
supporting tumor progression (Ivanova et al., 2023; Wang
J. et al., 2023).

The BBB plays a crucial role in limiting cancer cell colonization
and metastasis in the brain. Interactions among CTCs, BBB
endothelial cells, secreted cytokines, and central nervous system
cells are critical determinants of brain metastasis success.

2.4 Colonization and growth in the brain

After breaching the BBB, cancer cells face the challenging task of
adapting to the brain microenvironment to establish metastases.
Most extravasated cancer cells undergo apoptosis or enter
dormancy, with a small fraction resilient to defensive
mechanisms, orchestrating vascular remodeling and angiogenesis
(Luo et al., 2021). In BC, CTCs activate the HIF-1α signaling cascade
to enhance oxygen sensing and cellular adaptation. Additionally,
CTCs upregulate anti-apoptotic Bcl-2 family proteins to counter
apoptotic signals. However, in brain metastatic lesions of BC, Bcl-2
expression decreases notably compared to primary tumors (Park
et al., 2020; Yong et al., 2022). In brain metastasis progression, BC
cells activate astrocytes, inducing morphological and functional
changes. Activated astrocytes produce chemokines that attract BC
cells into the brain parenchyma (Chang et al., 2020). Additionally,
astrocytes secrete TGF-β2, which modulates ANGPTL4 expression
through SMAD-mediated regulation, facilitating successful
colonization (Pedrosa et al., 2018). Growth and angiogenic
factors such as VEGF and PDGF promote the formation of new
vasculature, providing tumors with ample blood supply (Wang L.
et al., 2023). Inflammatory factors are pivotal in diseases progression
(Zhai et al., 2024; Xiao et al., 2019; Xiao et al., 2020; Zhang H. et al.,
2024; Zhao et al., 2022; Wang et al., 2025). Both CTCs and the brain
microenvironment release immune-suppressive factors such as
TGF-β and IL-10, inhibiting immune cell activity and impairing
their efficacy against tumor cells (Shi et al., 2022). Astrocytes
transmit inflammatory cytokines through gap junctions,
activating the STAT1 and NF-κB signaling pathways in
metastatic cells, promoting proliferation (Zheng et al., 2020).
Cancer cells must adapt to the brain’s unique environment to
establish brain metastases after crossing the BBB. Astrocytes,
growth factors, immune factors, and angiogenesis orchestration
play pivotal roles in the evolution of BCBM (Figure 1A).

3 Signaling pathways of BCBM

3.1 PI3K/AKT signaling pathway

The PI3K/AKT signaling pathway is activated in 43%–70% of
BC patients, enhancing BC cell metastatic potential through
increased cell proliferation, invasion, and radiation resistance.
The PI3K/AKT pathway plays a crucial role in regulating
physiological cell functions like proliferation and migration (Zhai
et al., 2023). It is also a major altered pathway in many malignancies.
Dysregulation of this pathway is associated with treatment

resistance, increased angiogenesis, and invasion. AKT, also
known as protein kinase B, has three isoforms: AKT1, AKT2,
and AKT3. Despite approximately 80% sequence homology, they
often have distinct, sometimes opposing physiological roles. For
example, AKT1 decreases cell migration and metastasis formation,
whereas AKT2 promotes them. AKT1 is mainly responsible for cell
proliferation and survival and also has anti-metastatic effects in BC
(Miricescu et al., 2020; Glaviano et al., 2023).

Joanna Kempska et al. used in vitro cell proliferation and
migration assays to evaluate the impact of AKT1 knockout
(AKT1_KO) and AKT inhibition with Ipatasertib on MDA-MB-
231BR cells. Their findings showed that Ipatasertib increased
radiosensitivity and reduced cell proliferation in these cells,
whereas AKT1 knockout enhanced cell migration, increased
clonogenic survival, and decreased radiosensitivity (Kempska
et al., 2023). Similarly, Alexandra N. Boix De Jesus et al.
demonstrated that Δ133p53β enhances the invasiveness and
migratory capabilities of BC cells by activating the AKT
pathway, facilitating their traversal of a simulated BBB and
increasing the likelihood of brain metastasis (Jesus et al., 2023).
Ming Ji et al. found that the PI3K inhibitor XH30 significantly
inhibited the proliferation of various brain cancer cells, reduced
phosphorylation levels of key proteins in the PI3K signaling
pathway, and induced G1 phase cell cycle arrest, while also
suppressing tumor growth in a mouse model of lung cancer
brain metastasis. Given the prevalence of lung and BC as
primary sources of brain metastases, XH30 shows promise as a
potential therapeutic for BCBM (Ji et al., 2022). Recent studies
highlight the potential efficacy of PI3K inhibitors in treating
BCBM, particularly Alpelisib, which is widely studied for its
effects on PIK3CA-mutated BC. In the SOLAR-1 trial, Alpelisib
combined with the aromatase inhibitor Fulvestrant demonstrated
prolonged progression-free survival compared to Fulvestrant
alone, especially in patients with PIK3CA mutations (Zhang
and Richmond, 2021). Additionally, GDC-0084, a dual PI3K/
mTOR inhibitor with significant brain penetration, has shown
potential efficacy in clinical trials for PIK3CA-mutated BCBM
(Chen et al., 2022).

3.2 STAT3 signaling pathway

STAT3, a crucial member of the signal transducer and activator
of transcription family, plays a pivotal role in transcriptional
regulation within cells. Activated by various extracellular signals
such as cytokines and growth factors (Zhang H. et al., 2023),
STAT3 translocates to the nucleus and influences the expression of
specific genes involved in cell growth, differentiation, apoptosis,
and immune responses. This process begins when cytokines like
IL-6 bind to their receptors, activating tyrosine kinases such as the
JAK family, which then phosphorylate STAT3. Phosphorylated
STAT3 forms dimers, migrates to the nucleus, binds to DNA, and
regulates target gene transcription (Xia T. et al., 2023; Chen et al.,
2024; Zhou JG. et al., 2023). In BC particularly during brain
metastasis, abnormal STAT3 activation is closely associated
with increased tumor invasiveness and metastatic potential.
STAT3 pathway activation enhances tumor cell survival and
anti-apoptotic capabilities, aiding adaptation to the hostile brain
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microenvironment and promoting metastatic lesion formation
(Liu et al., 2024).

Zeller et al. found that STAT3 inhibitors significantly reduce BC
cell proliferation and migration, especially in astrocyte-conditioned
medium simulating the brain environment. This finding
underscores the critical role of the STAT3 pathway in regulating
BC behavior during brain metastasis (Zeller et al., 2024). Wu et al.

revealed that circKIF4A modulates triple-negative breast cancer
(TNBC) progression, particularly brain metastasis, via the miR-
637/STAT3 axis. Inhibition of circKIF4A significantly suppressed
TNBC cell proliferation, migration, and invasion, while
STAT3 overexpression reversed these effects. A TNBC xenograft
model further confirmed that circKIF4A promotes brain metastasis
through this axis (Wu et al., 2024). Targeting the STAT3 pathway

FIGURE 1
Signaling Pathways in Breast Cancer Brain Metastasis. (A) The process of brain metastasis. (B) Molecular and signaling pathways.
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has shown promising anti-tumor and anti-metastatic effects in
TNBC. For instance, DOXA treatment inhibited
STAT3 activation, reducing cell migration and downregulating
MMP-2 and MMP-9, key mediators of tumor invasion (Kim
et al., 2023). Additionally, reactive astrocytes contribute to drug
resistance and brain metastasis in breast cancer (BC) by activating
the IL-6/STAT3 pathway. Tamoxifen, by reducing IL-6 expression
and STAT3 activation, may counteract brain metastasis by
modulating the brain microenvironment (Xu et al., 2020). These
findings indicate STAT3 plays a crucial role in BCBM. Thus,
targeting the STAT3 pathway has potential clinical value in
preventing or treating BCBM.

3.3 NF-κB signaling pathway

The NF-κB pathway plays a critical role in breast cancer (BC),
particularly in tumor invasiveness and metastasis. Upon
activation, NF-κB translocates to the nucleus, where it
initiates the transcription of genes involved in cell adhesion,
migration, and invasion, thereby promoting tumor progression
(Devanaboyina et al., 2022). In BCBM, NF-κB activation is a key
mechanism that facilitates immune evasion, enhances tumor cell
survival, and supports brain colonization (Sivamaruthi et al.,
2023). Studies have demonstrated that overexpression of
OR5B21 in BC cells induces epithelial-mesenchymal transition
(EMT) via the NF-κB pathway, enhancing invasive and
migratory capabilities, particularly in brain metastasis (Li
et al., 2021). Similarly, high expression of GBP5 in triple-
negative breast cancer (TNBC) correlates with NF-κB
activation, promoting invasion and migration, thereby
accelerating brain metastasis (Cheng et al., 2021).

Furthermore, FAK-mediated activation of the NF-κB pathway
enhances cancer cell interactions with the brain
microenvironment, increasing survival and growth in the
brain. Systemic inhibition of NF-κB has been shown to reduce
brain metastasis development, highlighting its potential as a
therapeutic target for BCBM (Lorusso et al., 2022).

The NF-κB pathway also contributes to therapy resistance in
BCBM. For instance, RNF126 enhances radiation resistance in
BC cells by activating NF-κB signaling, and its inhibition with
dihydroartemisinin (DHA) significantly increases tumor
sensitivity to radiation therapy (Liu W. et al., 2023).
Similarly, S100A9 activates the NF-κB pathway through its
receptor RAGE, contributing to radiation resistance. Elevated
blood levels of S100A9 may serve as a non-invasive biomarker
for assessing radiation therapy response, offering a personalized
treatment approach for BCBM (Monteiro et al., 2022). These
findings underscore the central role of NF-κB in BCBM and
suggest that targeting this pathway could provide a promising
therapeutic strategy. Moreover, recent studies highlight the
complex interplay among the PI3K/AKT, STAT3, and NF-κB
pathways in BCBM. PI3K/AKT, a key regulator of tumor
progression (Li Z. et al., 2023), interacts with STAT3 and
NF-κB to create a pro-metastatic niche. AKT activation
promotes STAT3 phosphorylation via mTORC1, enhancing
tumor survival and immune evasion (Mo et al., 2024; Marotta
et al., 2011).

3.4 Notch and Wnt signaling pathway

In BCBM, Notch signaling is increasingly recognized as a critical
regulator of tumor cell migration and colonization in the brain

TABLE 1 Key signaling pathways in breast cancer brain metastasis (BCBM).

Pathway Role in BCBM Representative evidence Therapeutic implications

PI3K/AKT Activated in 43%–70% of BC patients, enhancing
proliferation, invasion, and radioresistance;
Regulates cell survival and proliferation; AKT
isoforms (AKT1, AKT2, AKT3) can have distinct,
sometimes opposing, roles

Ipatasertib increases radiosensitivity/reduces
proliferation in MDA-MB-231BR; Δ133p53β
enhances AKT activation and BBB traversal; PI3K
inhibitor XH30 reduces tumor growth in a brain
metastasis model

PI3K inhibitors (e.g., Alpelisib, GDC-0084) show
efficacy in PIK3CA-mutated BC (SOLAR-1 trial),
clinical evaluation; Combination strategies
targeting multiple pathways (e.g., STAT3, NF-κB)
may overcome resistance

STAT3 Critical for transcriptional regulation of genes
involved in growth, survival, and metastasis;
Abnormal activation fosters tumor invasiveness
and adaptation to the brain microenvironment

STAT3 inhibitors significantly reduce proliferation
in astrocyte-conditioned medium; circKIF4A/miR-
637/STAT3 axis drives TNBC brain metastasis; SL-
145 (HSP90 inhibitor) decreases TNBC invasiveness
via STAT3 blockade

Targeting STAT3 (e.g., via IL-6/STAT3 blockade
with Tamoxifen) may counteract BCBM;
STAT3 inhibition can diminish metastatic lesion
formation and improve therapeutic response

NF-κB Regulates genes involved in EMT, immune
evasion, and survival; Contributes to metastatic
colonization in the brain

Overexpression of OR5B21 induces EMT through
NF-κB; GBP5 enhances NF-κB signaling,
promoting TNBC invasion; NF-κB inhibition
reduces BCBM development

NF-κB pathway modulation (e.g., via inhibitors)
can increase radiosensitivity; S100A9 levels may
predict radioresistance and serve as a biomarker;
Combined inhibition of NF-κB, PI3K/AKT, and
STAT3 may yield synergistic effects against
BCBM

Notch Promotes BC cell migration, BBB disruption, and
stemness; Astrocyte-secreted Notch ligands
sustain brain metastatic cells

Astrocyte-derived Notch ligands enhance tumor cell
survival; Notch activation correlates with elevated
tumor-initiating cell populations and therapy
resistance

Targeted Notch inhibition may reduce metastatic
lesions and improve sensitivity to radiation/
chemotherapy

Wnt/β-
catenin

Essential for BBB maintenance; aberrant
activation in BC fosters metastasis; Reinforces
cancer stemness, fueling therapy resistance

Endothelial Wnt/β-catenin signaling is crucial for
BBB integrity; Basal BC cells often exhibit active
Wnt signaling that promotes brain metastasis

Blocking Wnt signaling could impair metastatic
niche formation; Potential combination strategies
to target stemness and overcome treatment
resistance
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(Nam et al., 2008; Qiao et al., 2022). Studies have shown that Notch
pathway activation in BC cells enhances BBB disruption, facilitating
cancer cell extravasation into the brain parenchyma (Nam et al.,
2008). Astrocytes within the brain microenvironment can secrete
Notch ligands, further amplifying these signals in metastatic cells
(Xing et al., 2013). As a result, BCBM cells gain a selective advantage,
manifesting in more aggressive phenotypes and resistance to
conventional treatments. In BCBM, aberrant Notch activation
has been linked to increased tumor-initiating cell (TIC)
populations and therapeutic resistance (Giuli et al., 2019).
Besides, Notch signaling can promote the self-renewal of cancer
stem-like cells, facilitating their capacity to seed new metastatic
lesions in the brain (Giuli et al., 2019). Preclinical evidence suggests
that Notch inhibition can reduce the frequency of brain metastatic
lesions and sensitize tumor cells to therapies like radiation and
chemotherapy (Mollen et al., 2018).

Previous studies have demonstrated that endothelial Wnt/β-
catenin signaling plays an essential role in the formation and
maintenance of the BBB (Huang et al., 2024), as well as in brain
tumorigenesis (Smid et al., 2008). The active WNT/β-catenin
signaling contributes to basal breast tumors metastasizing to brain
(Fogarty et al., 2005). Thus, the activeWNT/β-catenin signaling by BC
cells metastasizing to brain could point to mimicry which, if proven,
supports the view that the seed grows better in the soil it resembles
(Smid et al., 2008). Besides, in BCBM, abnormal Wnt signaling
contributes to cancer stemness, enhancing tumor cell self-renewal
and resistance to therapy (Kilmister et al., 2022) (Figure 1B; Table 1).

4 Conclusion

Breast cancer brain metastasis (BCBM) is a severe and life-
threatening complication in breast cancer (BC) patients, involving a
multi-step process that includes local invasion, circulation, blood-brain
barrier (BBB) penetration, and brain colonization. This process is
regulated by key signaling pathways such as PI3K/AKT, STAT3, NF-
κB, Notch, and Wnt, which influence tumor cell survival, migration,
immune evasion, and therapeutic resistance. Understanding the
regulatory mechanisms of these pathways in BCBM can elucidate the
molecular basis of the disease and provide new therapeutic targets.
However, challenges such as the BBB and the complex TME complicate
treatment efforts. Current strategies combine systemic and local
therapies, with targeted therapies showing promise in some patients.
Nevertheless, resistance to treatment remains a significant hurdle,
highlighting the need for more effective therapeutic approaches.

Future research on BCBM is expected to focus on
multidimensional in vivo and in vitro studies, including
epigenetics, to uncover new treatment insights. Advances in
single-cell analysis will enhance our understanding of interactions
between cancer cells and the brain microenvironment, while

biomarker-based research will facilitate early detection and
personalized treatment strategies. Additionally, innovative drug
delivery systems and nanotherapies hold promise for overcoming
the challenges posed by the BBB and TME. In conclusion, BCBM
represents a critical complication in BC patients, and its treatment
faces numerous challenges. Ongoing research will deepen our
understanding of its mechanisms and lay the groundwork for
developing more effective therapies to improve patient outcomes.
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