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Research background: Globally, alcohol usage is the third-leading risk factor for
diseases, and alcohol-induced alcoholic liver disease (ALD) has become a global
public health problem. ALD is characterized by oxidative stress and immune
damage in the liver caused by excessive alcohol consumption. Furthermore,
alcohol and its metabolites disrupt the health of the intestinal tract and cause
secondary liver damage through the gut-liver axis.

Existing problems: The underlying mechanisms of ALD are complex. Currently,
there are no safe and effective drugs for the prevention and treatment of ALD;
some food plants used as medicines (FPUM) have demonstrated promising
effects in combating this condition.

Solutions: In this review, we analyze the pathogenesis of ALD and explore the
mechanisms of action of certain FPUM in preventing and treating ALD. Different
mechanisms include activation of alcohol metabolism-related enzymes,
maintenance of mitochondrial stability, reduction of oxidative stress damage
caused by alcohol intake, regulation of cytokine levels, andmodulation of the gut
microbiota. The review also explores potential future research directions and
summarizes insights for developing novel therapeutic agents and components.

Future prospects: Future research on FPUM for the treatment of ALD could
explore promising avenues such as multi-herb combinations, multi-component
formulations, and side effect reduction strategies, demonstrating that the
development of herbal medicine still holds boundless potential.
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1 Introduction

With economic development and improvement in quality of life of humans, the
proportion of people drinking alcohol and suffering from alcohol-related diseases has
significantly increased. A recent report from the World Health Organization showed that
2.6 million people die every year as a result of alcohol consumption, accounting for 4.7% of
all deaths (WHO, 2024). Alcohol consumption can cause damage to the liver,
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gastrointestinal tract, nervous system, cardiovascular system, and
immune system, and chronic heavy alcohol consumption is a major
risk factor for diseases such as fatty liver, alcoholic liver disease
(ALD), cirrhosis, and liver cancer (Lieber, 1973; Massey et al., 2015;
Natarajan et al., 2015; Kirpich et al., 2016).

ALD is a widespread liver abnormality caused by chronic or
heavy alcohol consumption, characterized by liver damage,
inflammation, fibrosis, cirrhosis, and cancer (Seitz et al., 2018).
ALD often coexists with liver disease caused by viral hepatitis and
non-alcoholic fatty liver disease (NAFLD). Hence, patients with
ALD are more likely to develop cirrhosis than those with other liver
diseases (Devarbhavi et al., 2023). Excessive alcohol consumption
leads to abnormal accumulation of fat in the liver, and 20%–35% of
such patients develop progressive liver disease, progressing from
simple steatosis to hepatitis and even cirrhosis and hepatocellular
carcinoma (HCC) (Poynard et al., 2003). In the past, the primary
preventive measure for ALD has been complete abstinence from
alcohol, and its treatment is based on glucocorticosteroids. Still,
approximately 40% of patients do not respond to
glucocorticosteroids (Lucey et al., 2009), whereas those who
respond and use these drugs are prone to adverse reactions.
Furthermore, the use of glucocorticosteroids in patients with
active infection, gastrointestinal bleeding, chronic hepatitis B
virus infection, or hepatic and renal syndrome is contraindicated
(Depew et al., 1980; Singh et al., 2017). For patients with alcohol
addiction, a step-by-step approach may be necessary; appropriate
prevention and treatment at the early stage of drinking, and the use
of food plants used as medicines (FPUM) to prevent ALD is an
effective approach.

In traditional Chinese medicine (TCM) theory, drugs and food
could have the same origin or nature, referred to as the
medicine–food homology (MFH). The origin of MFH is first
reflected in the allusion to “Shennong’s tasting of a hundred
herbs,” during which there was no clear boundary between
medicines and foods. In TCM, the concept of using medicine
and food together has existed for thousands of years, and it has
been widely used in various treatment and healthcare approaches of
TCM (Xiang et al., 2024). As early as the Yellow Emperor’s Classic of
Internal Medicine, the Thousand Golden Medicinal Formulas, and
other Chinese medical textbooks, the idea that medicine and food
can be used in conjunction with one another to improve human
health has been embodied in FPUM. An organic combination of
food therapy, medicinal diet, and health maintenance in TCM has
been widely researched and applied in preventing insomnia (Ma
et al., 2024), ALD (Qu et al., 2022), aging (Gao et al., 2017), and
inflammation and oxidative stresses (Zhu et al., 2022; Xiong et al.,
2025), which play a vital role in liver protection. FPUM
demonstrates unique advantages due to their long-term
consumption history ensuring both safety and pharmacological
activity. The complexity of natural matrices allows multi-
component synergism to mitigate toxicity risks associated with
single compounds, whereas lipophilic constituents combined with
plant matrix-derived bioavailability enhancers optimize
pharmacokinetic profiles. Compared to synthetic drugs, their
multi-target modulatory properties show superior adaptability for
chronic disease management, with holistic effects from coexisting
nutritional-functional components like polysaccharides and
phenolics, circumventing drug resistance issues. Furthermore,

botanical resources offer sustainable production advantages,
where cost-effective cultivation and traditional application
wisdom provide reliable translation pathways for modern drug
development, particularly demonstrating irreplaceable value in
environmental compatibility and social acceptability.

MFH encompass both botanical and zoological sources. In this
review, we will comprehensively examine the research progress in
FPUM for the prevention and treatment of ALD. Numerous studies
have validated their hepatoprotective functions, with the core
philosophy of alleviating alcohol-induced liver damage rooted in
the TCM theory. This review first elucidates the pathogenesis of
ALD, including alcohol metabolic pathways and pathogenic factors,
followed by systematic analysis of the mechanisms of promising
botanical drugs (Panax ginseng C.A. Mey., Hovenia dulcis Thunnb.,
Pueraria montana (Lour.) Merr., and Hippophae rhamnoides L.
(family Elaeagnaceae)) in ALD management. These botanicals
demonstrate multidimensional therapeutic effects: activating
alcohol metabolism-associated enzymes, maintaining
mitochondrial homeostasis, mitigating oxidative stress injury
from alcohol consumption, and regulating cytokine networks and
gut microbial ecology.

2 Pathophysiology of ALD

2.1 ALD modeling

Validation of successful ALD model establishment necessitates
multidimensional pathophysiological evaluation encompassing
histopathological alterations, biochemical abnormalities, and
molecular biomarker fluctuations, as evidenced by hepatic
steatosis (steatotic vacuoles occupying ≥30% area via hematoxylin
and eosin (H&E) and Oil Red O staining), inflammatory infiltration
(neutrophil/lymphocyte aggregates) with hepatocyte ballooning
degeneration, and advanced stages of fibrotic septa caused by
excessive collagen deposition (Masson’s trichrome/Sirius red
staining); ethanol-induced serum alanine transaminase/aspartate
aminotransferase (ALT/AST) elevation and dyslipidemia
(triglyceride/total cholesterol↑, TG/TC); and hepatic oxidative
stress imbalance (reactive oxygen species/malondialdehyde↑,
ROS/MDA), glutathione/superoxide dismutase/catalase↓, GSH/
SOD/CAT), and ≥3-fold upregulation of proinflammatory
cytokines (tumor necrosis factor-α (TNF-α)/interleukin-6 (IL-6)/
interleukin-1β (IL-1β)) in serum/liver tissue. Models must
demonstrate statistically significant deviations across all
parameters with histopathological progression aligning with ALD
staging criteria (steatosis → steatohepatitis → fibrosis), validated
through standardized ethanol exposure protocols (Lieber-DeCarli
chronic model: 4–8 weeks ethanol-liquid diet; Gao binge model:
cyclic ethanol gavage) (Seitz et al., 2018; Hong et al., 2024).

2.2 Alcohol metabolism

Alcohol is oxidatively metabolized to acetaldehyde and acetic
acid, primarily in the hepatocytes (Zima, 1993), and the oxidative
conversion of alcohol involves three main metabolic processes
(Figure 1) (Lieber et al., 1975; Guo and Ren, 2010; Cederbaum,
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2012), Ethanol is mainly metabolized by the enzyme alcohol
dehydrogenase (ADH) in the liver cells to produce acetaldehyde.
Alternatively, ethanol is oxidized to acetaldehyde via the
endoplasmic reticulum (ER) microsomal ethanol oxidation
system (MEOS) through cytochrome P450 2E1 (CYP2E1), which
is a major inducible oxidoreductase. The rest is oxidized by CAT
using hydrogen peroxide (H2O2) into acetaldehyde and water
(Oshino et al., 1973; Thurman et al., 1975; Quertemont, 2004).
Excessive alcohol consumption decreases ADH activity and
increases CYP2E1 activity in microsomes (Yang et al., 2012),
leading to MEOS overactivity and the production of large
quantities of acetaldehyde and ROS (Lu and Cederbaum, 2008;
2018; Paquot, 2019). The generated ROS disrupt the homeostatic
environment within the liver, leading to a variety of hepatic
responses, such as oxidative stress and inflammatory injury
(Nieto et al., 2003; Dukić et al., 2023). Mechanistically,
CYP2E1 induction facilitates mitochondrial shuttling of reduced
nicotinamide adenine dinucleotide (NADH), amplifying ROS
overproduction and recruiting immune cells that exacerbate
hepatic inflammation and fibrotic progression (Hyun et al., 2021;
Michalak et al., 2021).

2.3 Pathogenesis of ALD

The pathogenesis of ALD involves several complex links. During
the oxidative metabolism of alcohol, harmful effects of alcohol
metabolites, effects of endotoxins, inflammatory mediators, and
cytokines, oxidative stress, autophagy, disorders of lipid
metabolism, various cell death patterns, and gut microbiota
dysbiosis, among others are all important causative factors
(Neuman et al., 2015; Seitz et al., 2018; Slevin et al., 2020; Dukić
et al., 2023; Kharbanda et al., 2023; Seitz et al., 2023; Wu X.
et al., 2023).

2.3.1 Harmful effects of alcohol metabolites
Acetaldehyde, a highly toxic ethanol metabolite, promotes

hepatic injury through multiple mechanisms: it elevates
transforming growth factor β (TGF-β) levels, thereby activating
hepatic stellate cells (HSCs) and driving fibrogenesis (Jarnagin et al.,
1994; Setshedi et al., 2010; Ceni et al., 2014). Through covalent
binding with proteins, acetaldehyde forms acetaldehyde-protein
adducts (APAs) that compromise protease activity, deplete GSH,
and induce lipid peroxidation, ultimately triggering hepatocyte
apoptosis. The metabolic cascade continues as acetaldehyde
dehydrogenase (ALDH) oxidizes acetaldehyde to acetate, which
enters the tricarboxylic acid cycle for the final conversion to
carbon dioxide and water (Han et al., 2022; Wu X. et al., 2023).
Genetic polymorphisms in ALDH2 exacerbate acetaldehyde
accumulation, significantly increasing HCC risk (Gao et al., 2019;
Wang Q. et al., 2021; Wu Y. C. et al., 2023). The above-mentioned
changes collectively can lead to alcohol-induced hepatic damage.

2.3.2 Disorders of lipid metabolism due to ethanol
metabolism

Alcoholic fatty liver (AFL) represents a critical transitional
phase in ALD progression. Ethanol disrupts hepatic lipid
homeostasis through tripartite metabolic dysregulation:
suppression of mitochondrial fatty acid β-oxidation via reduced
nicotinamide adenine dinucleotide/NADH (NAD+/NADH) ratios
(Masia et al., 2018), transcriptional activation of sterol regulatory
element-binding protein 1c (SREBP1c) to potentiate lipogenesis,
and inhibition of peroxisome proliferator-activated receptor-alpha
(PPARα)-mediated lipid catabolic pathways (Hu M. et al., 2022).
These concerted disturbances overwhelm physiological regulatory
mechanisms of the hepatic fatty acid pool—composed of glycerol
and free fatty acids—culminating in pathological lipid
accumulation and steatosis (Zhou et al., 1998), a hallmark of
AFL pathogenesis.

FIGURE 1
Metabolic processes involved in the oxidative conversion of alcohol.
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2.3.3 Alcohol-induced oxidative stress
Alcohol-induced hepatic oxidative stress originates from

mitochondrial ROS overproduction, which destabilizes
mitochondrial DNA (mtDNA) (García-Ruiz and Fernández-
Checa, 2018; Yang et al., 2019; LeFort et al., 2024).and impairs
antioxidative defenses by suppressing SOD, CAT, and glutathione
peroxidase (GSH-Px) activity (García-Ruiz and Fernández-Checa,
2018). Ethanol concurrently depletes GSH through adduct
formation with acetaldehyde and excessive ROS neutralization.
Depleted antioxidant reserves permit hydroxyl radicals to trigger
lipid peroxidation (evidenced by elevated MDA levels) and DNA
damage, promoting apoptosis/fibrosis (Dukić et al., 2023). ROS
activate nuclear factor-κB (NF-κB), driving release of
proinflammatory cytokines (IL-1, IL-6, TNF-α), which
exacerbates oxidative injury, whereas hepatic hypoxia and
inflammatory cell-derived ROS amplify this self-perpetuating
cycle. Acute alcohol intake generates ROS through activation of
the CYP2E1 pathway, and treatment targeting acute alcohol intake
induces mitochondrial autophagy mediated by the putative kinase1/
Parkin/microtubule-associated protein light chain 3 (PINK1/
Parkin/LC3) pathway that removes damaged mitochondria,
which in turn inhibits oxidative stress and hepatocyte injury
(Samuvel et al., 2022). However, chronic alcohol intake inhibits
autophagy, increases mTOR activity, and inhibits the hexokinase 2
(HK2)-PINK1/Parkin pathway, exacerbating mitochondrial
dysfunction and hepatocyte senescence (Salete-Granado
et al., 2023).

2.3.4 Alcohol metabolism-induced cytokine
production

Ethanol intake induces the production of multiple inflammatory
cytokines and chemokines (Ambade et al., 2019). Clinical studies
demonstrate significantly elevated levels of IL-1β, C–C motif
chemokine ligand 2 (CCL2), monocyte chemoattractant protein 1
(MCP-1), and macrophage migration inhibitory factor in the liver
and blood of patients with ALD (Bernhagen et al., 2007; Ambade
et al., 2019; Ma et al., 2020). Ethanol-derived ROS stimulate hepatic
Kupffer cells to generate proinflammatory cytokines, activating
immune cells and triggering chemokine-mediated inflammatory
cascade (Brenner et al., 2013). Lipopolysaccharide (LPS), an
endotoxin from gut-derived Gram-negative bacteria, serves as a
critical pathogenic mediator in alcoholic steatohepatitis. LPS
activates Toll-like receptor 4/cluster of differentiation 14 (TLR4/
CD14) via myeloid differentiation primary response 88 (MyD88)-
dependent or independent mitogen-activated protein kinases
(MAPK) signaling pathways, inducing downstream targets
including activating protein-1 (AP-1) and NF-κB (Chang et al.,
1997; Bode et al., 2012; Płóciennikowska et al., 2015). This process
promotes inflammasome activation, upregulates inflammatory
cytokines (TNF-α, IL-1β, IL-6), and triggers ER stress-mediated
hepatocyte death (Lebeaupin et al., 2015). TLR4-driven
M1 polarization of Kupffer cells amplifies proinflammatory
cytokine/chemokine release, while ROS synergistically exacerbate
hepatic steatosis and apoptosis, collectively accelerating ALD
progression and fibrogenesis (Yang et al., 2019).

The complement system exhibits dual regulatory roles in ALD
pathogenesis: the classical pathway (CP) aggravates inflammation
through C1q-mediated apoptotic hepatocyte recognition and

cytokine release (Cohen et al., 2010), whereas the alternative
pathway (AP) exerts hepatoprotective effects via C3 signaling
modulation. Ethanol exposure enhances C3 hydrolysis, and
complement receptor 2 (CR2)-Crry-mediated inhibition of
C3 activation ameliorates hepatic steatosis (Zhong et al., 2019).
C3-deficient mice show resistance to ethanol-induced liver injury
(Pritchard et al., 2007). Clinically, elevated plasma C4b, C5, and
sC5b9 levels in patients with alcohol-associated hepatitis (AH)
correlate with 90-day mortality, with complement factor I (CFI)
and sC5b9 serving as prognostic biomarkers (Fan et al., 2021).

2.3.5 Alcohol metabolism-mediated cell death and
pro-survival pathways

ALD progression involves dysregulation of multiple
programmed cell death (PCD) pathways—apoptosis, necroptosis,
pyroptosis, and ferroptosis—which collectively drive hepatocyte
injury and inflammation through distinct molecular mechanisms.

Apoptosis in ALD is activated via extrinsic pathways (Fas
ligand/death receptor 5/microRNA-21 signaling) and intrinsic
pathways. M2-polarized Kupffer cells mitigate inflammation and
liver damage by releasing IL-10 to promote apoptosis of
proinflammatory M1 Kupffer cells (Wan et al., 2014), suggesting
therapeutic potential in modulating apoptotic pathways.
Necroptosis is mediated through the receptor interacting protein
kinase 1/RIP3/mixed lineage kinase domain like pseudokinase
(RIP1/RIP3/MLKL) axis (Wang et al., 2018), with ethanol
upregulating RIP3 expression (Zhang D. et al., 2018) to trigger
damage-associated molecular pattern (DAMP) release and
hepatocyte membrane rupture (Zhou Y. et al., 2022),
exacerbating sterile inflammation. Pyroptosis is activated in ALD
via both canonical (NOD-like receptor thermal protein domain
associated protein 3 (NLRP3)-caspase-1/Gasdermin D (GSDMD)-
IL-1β/IL-18) (Liu et al., 2024) and non-canonical (LPS-caspase-4/5/
11-GSDMD) pathways (Yu et al., 2021; Brahadeeswaran et al.,
2023). Pharmacological inhibition of IL-1β/IL-1R1 signaling
attenuates hepatic inflammation and steatosis (Petrasek et al.,
2012). Ferroptosis is linked to lipid peroxidation and iron
dyshomeostasis in ALD. Ethanol induces iron overload, ROS
accumulation, and glutathione peroxidase 4 (GPX4) inactivation
while disrupting iron metabolism via SIRT1 suppression or lipin-1
upregulation (Stockwell et al., 2017; Cheng et al., 2018; Zhou et al.,
2019; Zhou et al., 2020; Wu et al., 2021), aggravating dysfunction of
the hepatic-gut/adipose axis. Targeting ferroptosis regulators
(GPX4 reactivation and iron chelation) may offer novel
therapeutic strategies for ALD.

2.3.6 Autophagy and membrane transport induced
by alcohol metabolism

In ALD pathogenesis, dysregulated autophagy and membrane
trafficking systems critically modulate hepatocyte injury and repair.
Acute ethanol exposure activates hepatocyte autophagy to clear
damaged organelles (Ding W. X. et al., 2010), whereas chronic
ethanol intake suppresses Rab7-mediated lysosomal function and
reduces dynamin two activity (Schroeder et al., 2015; Rasineni et al.,
2017), impairing lipophagy and promoting lipid accumulation.
Ethanol concurrently activates mTORC1 to inhibit the nuclear
translocation of transcription factor EB (TFEB), downregulating
lysosomal biogenesis genes, and compromising autophagic flux
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(Chao et al., 2018a; Chao et al., 2018b). This autophagic impairment
dynamically interacts with PCD pathways. Excessive autophagy
activation promotes apoptosis via shared regulators like Beclin-1
and Bcl-2 (Fernández Á et al., 2018; Allaire et al., 2019; Li P. et al.,
2020), whereas MLKL-mediated necroptosis and dysregulated
endosomal trafficking enhance the production of extracellular
vesicles (EVs) (Yoon et al., 2017). Chronic ethanol exposure
elevates circulating EVs carrying proinflammatory mediators
(miR-192, miR-30a, heat shock protein 90 (HSP90)) (Momen-
Heravi et al., 2015; Saha et al., 2018), which propagate injury via
HMGB1-dependent NLRP3 inflammasome activation in
hepatocytes, triggering pyroptosis (Wang G. et al., 2021).

2.3.7 Alcohol-induced liver regeneration
The Hippo/YAP signaling pathway regulates periportal

hepatocyte gene expression during liver regeneration. In
severe AH, YAP upregulation and ESRP2 downregulation
induce aberrant HNF4α splicing, driving hepatocyte fetal
reprogramming and ductular reactions (Bhate et al., 2015;
Argemi et al., 2019; Bou Saleh et al., 2021; Wu X. et al., 2023;
Isotani et al., 2025). Hepatic endothelial cells (ECs)—including
periportal ECs, liver sinusoidal ECs (LSECs), and central venous
ECs—orchestrate regeneration through angiocrine factors like
Wnt2 and Wnt9b. However, AH induces region-specific EC
alterations (Ding et al., 2010; Hu et al., 2022): periportal ECs
diminish while central venous ECs expand, with WNT signaling
shifting from regenerative Wnt5a to profibrotic dysregulation of

the Wnt/FZD family (Kim et al., 2021). Wnt signaling exhibits
stage-dependent modulation—moderate AH shows Wnt5a
upregulation supporting regeneration, whereas severe AH
exhibits Wnt/FZD receptor abnormalities mirroring HCC
signatures (Bengochea et al., 2008; Kim et al., 2008). Central
venous EC-derived Wnt9b synergizes with macrophages to
activate Wnt pathways; this axis becomes dysregulated in
advanced AH, impairing regeneration and promoting
fibrogenesis.

LSECs and hepatic stellate cells (HSCs) drive pathological
processes through dynamic interactions in ALD progression.
Chronic ethanol exposure drives capillarization and
defenestration of LSECs, reducing pathogen clearance and
facilitating inflammatory infiltration (Xie et al., 2012). Impaired
vascular endothelial growth factor (VEGF) signaling in LSECs
diminishes nitric oxide synthase activity, disrupting quiescent
HSC maintenance (Deleve et al., 2008). Activated HSCs express
α-smooth muscle actin and secrete collagen I/III, regulated by
Kupffer cell-derived TGF-β, TNF-α, and IL-1 (Bourebaba and
Marycz, 2021); neutrophil-generated ROS and lipid peroxides;
and complement C5a-induced chemotaxis (Martin et al., 2018;
Xu et al., 2022). Ethanol downregulates miR-133 and miR-29b1,
alleviating suppression of microRNA-mediated collagen synthesis
(Coll et al., 2015; Zhao et al., 2019), while LSEC dysfunction further
activates HSCs, exacerbating fibrosis and regenerative failure. This
vicious cycle of LSEC impairment and HSC hyperactivation
constitutes the core fibrotic mechanism in ALD (Figure 2).

FIGURE 2
Schematic diagram of hepatocyte interaction in ALD.
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2.3.8 Organ-organ interactions in alcohol
metabolism

The pathogenesis of ALD involves intricate multi-organ
crosstalk, with dysregulation of the gut-liver axis and adipose-
liver axis playing pivotal roles. Chronic ethanol intake induces
gut microbiota dysbiosis, characterized by reduced fungal
diversity and Candida overgrowth (Thomas, 2017), alongside
increased abundance of Gram-negative bacteria (e.g.,
Proteobacteria), leading to elevated production of pathogen-
associated molecular patterns (PAMPs), including LPS.
Ethanol and its metabolites disrupt intestinal tight junction
proteins (e.g., occludin, claudin-3), enhancing intestinal
permeability (Rao, 2009; Mir et al., 2016), and enabling LPS
translocation via the portal circulation to activate Kupffer cell
TLR4 signaling, thereby triggering proinflammatory cytokine
(TNF-α, IL-1β) release and hepatocyte injury. Additionally,
ethanol-altered gut microbial metabolism reduces the levels of
short-chain fatty acids (SCFAs), impairing their anti-
inflammatory effects and exacerbating gut barrier dysfunction
(Schwenger et al., 2019).

In the adipose-liver axis, ethanol stimulates adipose tissue
lipolysis, releasing excess nonesterified fatty acids (NEFAs) into
the liver to promote hepatic lipid accumulation and oxidative stress
(Patel et al., 2022). Concurrently, adipocyte apoptosis releases
complement C1q, activating complement cascades and generating
proinflammatory mediators (Kema et al., 2015) that exacerbate
hepatic inflammation and fibrosis via systemic circulation.
Adipokines, such as leptin and chemerin, further potentiate
fibrogenesis by modulating HSC activation and immune cell
infiltration (Parker et al., 2018). Collectively, ALD progression is
driven by synergistic multi-organ interactions, highlighting
therapeutic potential in targeting inter-organ signaling networks,
including gut microbiota modulation, SCFA supplementation, and
adipose-lipolysis inhibition.

3 Current and emerging therapeutic
strategies for ALD

Conventional ALD management has long relied on abstinence,
nutritional support, and pharmacological interventions like
corticosteroids (Mathurin et al., 2011; Fialla et al., 2015).
Alcohol cessation remains the cornerstone of therapy,
effectively halting steatosis progression and delaying cirrhosis
(Singh et al., 2017). Clinicians must vigilantly manage alcohol
withdrawal syndrome, with benzodiazepines (e.g.,
chlordiazepoxide) combined with vitamin B1 supplementation
recommended for mitigation (Day et al., 2004; Mayo-Smith
et al., 2004). Malnutrition, prevalent in patients with ALD
(Mendenhall et al., 1995), necessitates high-protein dietary
regimens per the American Gastroenterological Association
guidelines to reduce infections and improve survival (Plauth
et al., 2006). Corticosteroids yield short-term clinical benefits in
60% of patients but lack efficacy in non-responders (Singal et al.,
2011). Emerging therapies target inflammatory pathway
inhibition, hepatic regeneration, and gut-liver axis restoration
(Jophlin et al., 2024). Pentoxifylline, a TNF-α inhibitor,
demonstrates limited efficacy in severe AH by suppressing

inflammation, though long-term utility remains constrained
(Singal and Shah, 2016). Chronic alcohol consumption disrupts
intestinal barrier integrity, inducing gut dysbiosis and bile acid
dysmetabolism (Albillos et al., 2020; Shim and Jeong, 2020).
Ethanol-mediated tight junction protein degradation (e.g.,
occludin, claudin) increases intestinal permeability, enabling
bacterial endotoxin translocation via the portal vein to activate
the TLR4/NF-κB signaling in hepatic cells, thereby driving
inflammatory cascade and fibrogenesis (Jiang and Schnabl,
2020). Alcohol-induced gut microbiota shifts—marked by
reduced beneficial taxa and pathogenic overgrowth—exacerbate
immune dysregulation through enterohepatic crosstalk. Probiotics
like Lactobacillus rhamnosus ameliorate alcohol-induced liver
injury by restoring microbial balance and intestinal barrier
function (Table 1) (Vatsalya et al., 2023). Fecal microbiota
transplantation (FMT), an innovative approach, transfers
healthy donor microbiota to recipients, effectively reducing
alcohol craving, mitigating gut leakiness, and attenuating
hepatic inflammation and injury (Bajaj et al., 2021).

Current research focuses on three core strategies: mitigating
hepatocyte injury, suppressing inflammation, and modulating the
gut-liver axis. Antioxidants like N-acetylcysteine show limited
clinical efficacy, whereas mitochondrial-targeted agents, such as
S-adenosylmethionine, restore glutathione levels and attenuate
steatosis in preclinical models, warranting further clinical
validation (Lauterburg and Velez, 1988; Moreno et al., 2010;
Nguyen-Khac et al., 2011). Although the apoptosis signal
regulating kinase-1 (ASK-1) inhibitor selonsertib combined with
prednisolone failed to outperform steroids alone in a Phase II trial,
the IL-22 agonist F-652 elevated hepatic regenerative markers and
improved liver function in patients (Kong et al., 2013; Arab et al.,
2020). Anti-inflammatory approaches remain challenging:
corticosteroids offer transient benefits along with infection risks,
while anti-TNF agents (infliximab, etanercept) increase mortality
(Naveau et al., 2004). The TLR4 antagonist HA35 demonstrates
preclinical efficacy in blocking TLR4 signaling but awaits clinical
translation (Saikia et al., 2017). The gut-liver axis modulation by
probiotics or antibiotics (e.g., amoxicillin) yields inconsistent
outcomes, whereas FMT significantly improves 90-day survival in
patients with severe AH while restoring microbial homeostasis in
open-label trials (Philips et al., 2017; Philips et al., 2023). Phage
therapy targeting cytolysin-producing Enterococcus faecalis reduces
hepatocyte death, offering a novel approach for precision
microbiome editing (Duan et al., 2019). Future strategies demand
multi-target, multimodal interventions integrating single-cell omics
to decode personalized immune microenvironment, alongside
therapies targeting PCD pathways, autophagy-lysosomal function,
and microbial metabolites to overcome therapeutic bottlenecks
(Ming et al., 2024).

With an urgent need for safer and more effective ALD
treatments, FPUM emerges as a historically validated therapeutic
avenue. Accumulating evidence highlights the anti-inflammatory
and antioxidant properties of FPUM, with bioactive metabolites
modulating oxidative stress, gut microbiota, and immune response.
Further exploration of FPUM’s multi-target
mechanisms—particularly its regulatory effects on PCD
pathways, autophagy flux, and microbial metabolites—holds
transformative potential for advancing ALD therapeutic.
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4 Mechanism of protective effect of
FPUM against ALD

FPUM extracts have occupied a place in traditional medicine
for thousands of years. The lack of adequate theoretical
explanations in the early days has not prevented their wide
application in the treatment of various diseases. Along with the
rapid changes in biochemical and pharmacological technologies,
researchers have conducted comprehensive and in-depth studies
on the extraction, analysis, and mechanisms of action of natural
plant extracts. Given the lack of effective treatments for ALD, the
use of FPUM extracts for the treatment of this disease has gradually
attracted attention from all walks of life. Numerous in vitro and in
vivo studies have demonstrated that many natural medicines and
plant extracts not only exhibit excellent antioxidant and anti-
inflammatory effects but also can regulate lipid metabolism, and
these properties bring new hope for the treatment of ALD, as
shown in Table 2.

With evidence of their effectiveness and safety, FPUM have
brought new hope for the treatment of ALD. First, they can speed
up the breakdown and removal of alcohol from the body and
reduce buildup of harmful substances by activating enzymes such
as ADH and ALDH. Second, they can preserve the structural and
functional stability of mitochondria, guarantee the energy supply
and regular metabolism of liver cells, lessen the oxidative stress
damage induced by alcohol consumption, and shield the cells from
attack by free radicals. Third, FPUM can reduce the inflammatory
response of the liver by controlling the proinflammatory and anti-
inflammatory cytokines. Fourth, FPUM can control the
composition of the intestinal flora, enhance intestinal
microecology, and stabilize the intestinal-liver axis, all of which
can reduce liver damage and aid in disease prevention, treatment,
and recovery (Figure 3).

4.1 Mechanism of action of ginseng in the
treatment of ALD

Panax ginseng C.A. Mey. is a traditional Chinese medicine
widely used worldwide, and has a sweet and slightly bitter taste.
It exhibits various activities beneficial for the human body such as
tonifying the body’s vital energy, tonifying the spleen and lungs,
generating fluids and nourishing the blood, and calming the spirit
and benefiting the intellect. Therefore, research on its active
metabolites and pharmacological mechanisms has attracted much
attention. Panax ginseng C.A. Mey., Panax quinquefolius L., and
Panax notoginseng (Burk) F.H. Chen (commonly abbreviated as P.
ginseng, P. quinquefolius, and P. notoginseng), are most widely used
among all species. They all contain ginsenosides as the major
bioactive substances, with more than 150 monomer active
metabolites (Mohanan et al., 2018; Ye et al., 2023). Few studies
have shown that some ginsenosides have a wide range of therapeutic
potential, such as antidiabetic, antitumor, and inhibition of NAFLD
(Deng et al., 2017; Wei et al., 2018); moreover, ginsenosides
attenuate damage caused by ALD (Pan et al., 2022; Yang et al.,
2023). Because research on ginseng has been carried out by many
mature studies, the primary bioactive metabolites ginsenosides have
mature standardized products, and the clinical oral dosage is
approximately 150–225 mg/d [Take Dandong Medical Creation’s
Ginseng Stem and Leaf Total Saponin Tablets as an example, the
implementation of the standard WS-10001-(HD-1221)-2002, the
National Pharmaceutical License H21023720]. The daily dosage of
approximately 30–100 mg/d is recommended for adult healthcare.

Ginsenoside Rb1 (GRb1) significantly reduces alcohol-induced
lipid deposition by inhibiting hepatocyte steatosis. In terms of
oxidative stress regulation, GRb1 attenuates mitochondrial
dysfunction by reversing alcohol-induced ROS accumulation,
partially restoring GSH levels, and decreasing MDA levels. In

TABLE 1 Targeted-gut microbiota therapies of ALD.

Type of
intervention

Treatment Main effects References

Probiotics Patients with ALC received Lactobacillus casei
Shirota

Restore neutrophil phagocytic capacity; reduce sTNFR1, sTNFR2, IL10,
TLR4

Stadlbauer et al.
(2008)

Reduce the intestinal permeability, hepatic steatosis and liver injury Bull-Otterson et al.
(2013)

Increase Clostridum coccoides and Eubacterium cylindroides Koga et al. (2013)

Patients with ALC received Escherichia coli
Nissle

Increase in Lactobacillus and Bifidobacterium sp.; Reduce Proteus
hausei and Citrobacter sp., Morganella sp. and endotoxemia;
improvement of liver functions

Lata et al. (2007)

Patients with ALC received probiotic VSL#3 Reduce MDA and 4-HNE, improved TNF-α, IL-6, IL-10, and liver
function

Loguercio et al.
(2005)

Patients with AH received Bifidobacterium
bifidum and Lactobacillus plantarum

Reduce AST, GGT and ALT activity, lactate dehydrogenase, and total
bilirubin

Kirpich et al. (2008)

Patients with AH received Lactobacillus subtilis
and Streptococcus faecium

Reduce serum LPS level and TNF-α Han et al. (2015b)

Prebiotics Patients with ALC received Rifaximin Increase platelet count; reduce endotoxin, IL-1, IL-6,TNF-α Kalambokis et al.
(2012)

Patients with ALD received pectin Restore the goblet cells’ function and increases Bacteroides growth and
prevented liver lesions

Ferrere et al. (2017)

ALC, alcoholic liver cirrhosis; HCV, hepatitis virus C.
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addition, GRb1 significantly reduces the expression of the
proinflammatory factors TNF-α and IL-1β by inhibiting
neutrophil infiltration into the liver parenchyma and down-
regulating the NF-κB pathway. Mechanistically, the antioxidant
effect of GRb1 was associated with the regulation of intracellular
GSH metabolism and inhibition of ROS generation, and its anti-
inflammatory effect was realized by blocking nuclear translocation
of NF-κB and downstream inflammatory mediator release. Taken
together, GRb1 exerts its therapeutic effects against ALD by
synergistically regulating lipid metabolism disorders, oxidative
stress, and inflammatory response (NF-κB/TNF-α) interaction
(Lai et al., 2021; Guo et al., 2023).

Ginsenoside Rk2 (GRk2) significantly reduces serum AST/ALT
levels, attenuates hepatic steatosis, and reduces lipid droplet
accumulation in chronic-binge ethanol-fed mice by a mechanism
related to the modulation of SREBP-1/AMP-activated protein
kinase (AMPK) signaling through downregulation of fatty acid
synthase (FASN), stearoyl-CoA desaturase1 (SCD1), and SREBP-
1 expression, and upregulation of phosphorylated AMPK, which
inhibit hepatic steatosis. GRk2 exerts antioxidant activity by
upregulating the nuclear factor erythroid 2-related factor (Nrf2)/
heme oxygenase-1 (HO-1) signaling pathway, thereby restoring
GSH content and decreasing MDA level, and eventually
inhibiting ethanol-induced oxidative stress injury. The anti-

TABLE 2 Research progress in FPUM for ALD treatment.

Active metabolite Source Target References

Ginsenosides Panax ginseng Inhibits oxidative stress and suppresses fat accumulation Han et al. (2015a)

Ginsenoside Rk2 P. notoginseng Reduces hepatic steatosis and hepatic oxidative stress, inhibits
hepatitis, restores damaged intestinal barrier

Zou et al. (2023)

Ginsenoside Rb1 P. quinquefolium L. Alleviates hepatic steatosis, reduces lipid accumulation, and
mitigates inflammatory damage of ALD

Lai et al. (2021)

Ginsenoside Rc P. ginseng Alleviates damage and oxidative stress of hepatocytes in ALD and
regulates oxidative stress, inflammation, and lipid accumulation

Pan et al. (2022)

Ginsenoside Rk3 P. ginseng CA Meyer Alleviates oxidative stress and inhibits the expression of apoptotic
proteins in the liver

Qu et al. (2019)

Salvianolic acid A Salvia miltiorrhiza
Bunge

Restores the activities of major ethanol-metabolizing enzymes and
oxidative stress function in the liver

Shi et al. (2018a), Shi et al. (2018b)

Salvianolic acid B Radix Salvia
miltiorrhiza

Reduces hepatitis and fat accumulation Zhang et al. (2017)

Puerarin Pueraria montana
var. lobata

Inhibits hepatic lipid accumulation and inflammatory response Hu et al. (2023)

Puerariae lobatae Radix
flavonoids and puerarin

Puerariae lobatae
Radix

Modulates lipid metabolism and alleviates steatosis Liu et al. (2021)

Glabridin Glycyrrhiza uralensis
Fisch

Alleviates alcoholic liver injury through the p38 MAPK/Nrf2/NF-
κB pathway

Wang et al. (2023a)

Glycyrrhizic acid Glycyrrhiza glabra L. Regulates oxidative stress and lipid metabolism Huo et al. (2018)

Isoliquiritigenin Glycyrrhiza uralensis
Fisch

Regulates miR-23a-3p/PGC-1α-mediated lipid metabolism in vivo
and in vitro

Zhang et al. (2020)

Curcumin Curcuma longa Reverses damage to antioxidant system, antioxidant and anti-
inflammatory, regulates lipid deposition in hepatocytes,
alleviates ALD

Nanji et al. (2003), Rong et al. (2012), Lu et al.
(2015), Subramaniyan et al. (2023)

Echinacea purpurea
polysaccharide

Echinacea purpurea Increases the abundances of Muribaculaceae, Lactobacillus, and
Bacteroides, and decreases the abundances of Escherichia coli,
Shigella, and Enterococcus

Jiang et al. (2022)

Berberine Coptis chinensis Increases the abundances of Terrisporobacter and Helicobacter, and
decreases the abundances of Pseudoflavonifractor, Alistipes,
Ruminiclostridium, and Lachnoclostridium

Hsiang et al. (2005), Li et al. (2020b)

Dihydromyricetin Hovenia dulcis Reduces proinflammatory cytokine levels and increases lipid
phagocytosis activity, thereby enhancing lipid scavenging and
inhibiting oxidative stress and cellular damage. Alleviates alcohol-
induced elevated levels of inflammatory cytokines, regulates
p62 and autophagy crosstalk via the Keap-1/Nrf2 pathway, and
attenuates hepatic steatosis and inflammatory responses. Improves
hepatic bioenergetics, metabolic signaling, and mitochondrial
viability

Qiu et al. (2017), Silva et al. (2021),
Janilkarn-Urena et al. (2023), Wang et al.
(2023b)

Magnolol Magnolia officinalis Activates the PI3K/Nrf2/PPARγ signaling pathway and inhibits
NLRP3 inflammasomes

Liu et al. (2019)
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inflammatory mechanism of GRk2 involves inhibition of
NLRP3 inflammatory vesicle activation in the liver by targeting
NLRP3, decreasing the levels of the proinflammatory factors IL-1β
and TNF-α, and reducing macrophage infiltration via inhibition of
the TLR4/NF-κB pathway. Meanwhile, GRk2 upregulates
regenerating islet-derived (REG)-3 lectins (REG3β/γ) and mucin
protein gene (MUC2) expression by restoring the function of
intestinal NLRP6 inflammatory vesicles and expression of zonula
occludens-1 (ZO-1), claudin-2 (a mediator of the leaky gut barrier),
and tight junction proteins (ZO-1, claudin-4), and reducing the
leakage of intestinal LPS into the liver (3.74-fold decrease in
intrahepatic LPS levels), further alleviating enterogenic
inflammation (Zou et al., 2023). In addition, GRk2 increases fecal
taurine content, activates the NLRP6/IL-18 signaling axis, regulates
intestinal flora metabolism, and maintains intestinal barrier
integrity. This study demonstrates for the first time that
GRk2 synergistically regulates the dual targets of NLRP3/
NLRP6 through the “liver-intestinal axis,” providing a new
strategy for the treatment of ALD (Zou et al., 2023).

Ginsenoside Rk3 (GRk3) inhibits the expression of CYP2E1, a
key enzyme in ethanol metabolism, through the inhibition of
CYP2E1 expression, significantly elevates SOD and GSH activities
and reduces MDA levels in the liver tissues, thereby attenuating
oxidative stress injury. GRk3 effectively alleviates ethanol-induced
inflammatory response by inhibiting the NF-κB signaling pathway
and downregulating the mRNA and protein expression of TNF-α,

IL-6, and IL-1β. In addition, GRk3 inhibits the pro-apoptotic
protein BCL-2-associated X (Bax) protein and the apoptosis-
inducing factors caspase-3, caspase-8, caspase-9, and poly ADP-
ribose polymerase (PARP) by upregulating the expression of the
anti-apoptotic protein B-cell lymphoma-2 (Bcl-2), and therefore,
significantly reduces hepatocyte apoptosis. The study confirmed that
Rk3 intervention significantly reduced serum ALT and AST levels
and improved hepatic histopathological features, indicating that it
protects liver function through multi-target synergistic effects (Qu
et al., 2019).

Meanwhile, P. notoginseng saponins and Korean Red Ginseng
extract (RGE) have been reported to ameliorate alcohol-induced liver
injury by modulating specific signaling pathways; for example, P.
notoginseng saponins exert protective effects by decreasing hepatic
steatosis and oxidative stress, whereas RGE and its ginseng saponins
alleviate alcohol-induced hepatic injury by activating the AMPK/
SIRT1 pathway that attenuates alcohol-induced hepatotoxicity and
steatosis (Han J. Y. et al., 2015). Another mechanistic study showed
that ginsenoside Rg1 attenuates alcohol-induced liver injury by
inhibiting excessive inflammation and hepatocyte apoptosis
mediated by the NF-κB pathway (Li et al., 2018). In addition, root
and leaf extracts of P. notoginseng showed protective effects against
ALD, and the mechanism of action is closely related to ginsenoside
(Ding et al., 2015).

In conclusion, ginsenoside and its saponin metabolites show
multi-target effects in ALD treatment, and future studies need to

FIGURE 3
The working principle of FPUM in the treatment of ALD.
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further elucidate their effects on the hepatic-intestinal axis
inflammatory signaling pathways (e.g., NLRP3/NLRP6) and
metabolism regulation to promote the translation of clinical
applications.

4.2 Mechanism of action of Hovenia dulcis
Thunnb. In the treatment of ALD

Hovenia dulcis Thunnb. (HDT) is a plant belonging to the family
Rhamnaceae; the seeds and fruits of HDT have the effect of
“detoxification of alcohol poisoning” as recorded in the
“Compendium of Materia Medica” (Liang and Olsen, 2014). Its
seeds are also used as a diuretic, which also has a certain effect on
alcoholism (Morales et al., 2017). Modern studies have further
revealed that its bioactive metabolites are effective against ALD
and act through multi-target mechanisms. A total of 44 metabolites
have been isolated from HDT, among which flavonoids such as
dihydromyricetin (DHM) and quercetin (QR), triterpenoidal
saponins, and alkaloids are the primary metabolites (Sferrazza
et al., 2021; He et al., 2024). DHM, QR, and naringenin have
been shown to exhibit antioxidant and anti-inflammatory
properties, and are also considered as potential drugs for the
treatment of ALD (Qiu et al., 2019). The actual clinical oral
dosage of HDT is approximately 4.5–9 g/d [for example, Jiangxi
Kangzhikang’s HDT herbal tablets], and the market is dominated by
pueraria and HDT being used as daily dosage for liver protection
and healthcare products.

DHM significantly enhances lipophagy as evidenced by the
increased co-localization of p62/SQSTM-1, microtubule-
associated protein 1 light chain 3 beta (LC3B) and perilipin 1
(PLIN-1) proteins, which promote lipid droplet (LD) degradation
and free fatty acid neutralization, reducing intrahepatic lipid
accumulation. DHM promotes autophagic flow by enhancing
LC3-II lipidation and Beclin 1 expression, removing damaged
mitochondria and lipid droplets, and ameliorating hepatic
steatosis (Qiu et al., 2017; Zhang J. et al., 2018; Chen et al., 2021;
Janilkarn-Urena et al., 2023). Meanwhile, DHM significantly
inhibits alcohol-induced CYP2E1 overexpression to improve
ethanol-induced mitochondrial dysfunction by restoring the
function of mitochondrial oxidative phosphorylation, enhancing
β-oxidation, and decreasing the generation of oxidative
metabolites such as ROS and MDA, while restoring hepatic GSH
levels (Skotnicová et al., 2020). DHM inhibits NF-κB nuclear
translocation, significantly downregulates the expression of the
proinflammatory factors TNF-α, IL-6, and IL-17, and alleviates
alcohol-induced inflammatory response. DHM promotes
p62 protein binding to Keap1 through upregulation of
p62 protein, thereby triggering the autophagic degradation of
Keap1; it further relieves the inhibitory effect of Keap1 on
Nrf2 and induces the activation of downstream antioxidant genes
(HO-1) by the nuclear translocation of Nrf2 to form a positive
feedback loop of p62/Keap1/Nrf2 (Qiu et al., 2017). In addition,
DHM modulates lipid metabolic pathways and reduces the risk of
lipotoxicity by lowering serum low-density lipoprotein (LDL/
VLDL) and free cholesterol levels, while increasing cholesteryl
esters and TG stores in the body. The mechanism may involve
inhibition of cholesteryl ester transfer protein (CETP) and activation

of lecithin-cholesterol acyltransferase (LCAT), which promotes
reverse lipid transport (Janilkarn-Urena et al., 2023). Chronic
alcohol intake inhibits AMPK phosphorylation (Thr172) and
Sirt-1/PGC-1α expression, leading to inactivation of PGC-1α by
hyperacetylation, which in turn impairs mitochondrial function and
reduces adenosine triphosphate production. DHM activates AMPK
by elevating hepatic NAD + levels (43% increase in
phosphorylation), restores the expression of Sirt-1 (37%) and
mitochondrial Sirt-3 (31%), and promotes deacetylation of PGC-
1α, thereby restoring its transcriptional co-activation function (Silva
et al., 2021). In summary, DHM synergistically ameliorates alcoholic
liver injury by regulating antioxidant, autophagic, and anti-
inflammatory pathways, activating lipophagy, improving
mitochondrial function, and inhibiting inflammatory signaling
pathways, which provides a potential precision therapeutic
strategy for ALD.

QR significantly reduces ethanol-induced ALT, AST and
gamma-glutamyltransferase levels, decreases hepatic TG and TC
accumulation, enhances the expression of the antioxidant genes
HO-1 and GPx, and improves mitochondrial function to inhibit
hepatic lipid droplet deposition. QR enhances the activity of hepatic
autophagy through AMPK activation and promotes co-localization
of LC3-II with the lipid droplet-associated protein PLIN-2, thereby
accelerating lipophagy degradation. By activating AMPK, QR
enhances autophagy activity of hepatocytes and promotes co-
localization of LC3-II with the lipid droplet-associated protein
PLIN-2, which accelerate lipophagy degradation and significantly
alleviate alcohol-induced hepatic steatosis. QR ameliorates ethanol-
induced hepatic steatosis through the modulation of the purinergic
2 × 7 receptor (P2X7R)-mediated PI3K/Keap1/Nrf2 oxidative stress
signaling pathway (Zhao et al., 2021), inhibits ROS production and
enhances antioxidant enzyme activities, effectively attenuates
ethanol metabolism-induced significant upregulation of the
mRNA expression of PI3K, Keap1, and Nrf2, enhances the
activities of antioxidant enzymes (SOD, GSH, CAT), and reduces
the content of lipid peroxidation products (MDA). In terms of
inflammation regulation, QR significantly reduces the expression of
the proinflammatory factors TNF-α, IL-6, and NF-κB (Markowska
et al., 2024), and inhibits the Kupffer cell TLR4-mediated
inflammatory cascade. QR metabolites may indirectly improve
the hepatic inflammatory microenvironment by modulating the
composition of the intestinal flora and decreasing endotoxin
translocation (Yan et al., 2021). Studies have also shown that QR
promotes lipophagy through the endoplasmic reticulum stress-
sensing protein IRE1α/XBP1s (transmembrane kinase/
endoribonuclease 1α/X-box binding protein 1) pathway,
accelerating lipodroplet catabolism and VLDL assembly to
further reduce the hepatocyte lipid load (Zhu et al., 2018). In
terms of intestinal flora regulation, QR increases the abundance
of beneficial bacteria such as Akkermansia, reduces LPS
translocation, and inhibits the TLR4/NF-κB signaling pathway,
thereby improving intestinal barrier function and reducing
systemic inflammation (Porras et al., 2017; Shi et al., 2022). In
addition, QR combined with dasatinib cleared senescent
hepatocytes, reduces senescence-associated secretory phenotype
(SASP)-associated release, and slows down the process of liver
fibrosis (Palmer et al., 2019). These results suggest that QR
ameliorates oxidative damage and inflammation in ALD through
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multi-target regulation of oxidative stress and lipid metabolism
disorders, providing a molecular mechanism for the
treatment of ALD.

Naringenin accelerates the conversion of ethanol to acetic acid
and reduces the accumulation of the toxic metabolite acetaldehyde
by upregulating the activities of ADH and ALDH, while inhibiting
the expression of CYP2E1 and decreasing the production of ROS
during ethanol metabolism (Jayaraman and Namasivayam, 2011).
Naringenin upregulates the expression of GSH synthase and
antioxidant enzymes (SOD, CAT, and GSH-Px) through the
activation of the Nrf2 signaling pathway, restores the GSH/GSSG
balance (Gopinath and Sudhandiran, 2012), and reduces MDA (a
lipid peroxidation product) levels (Jayaraman et al., 2012),
effectively scavenging free radicals and inhibiting lipid
peroxidation. In addition, naringenin reduces the expression of
the inflammatory factors TNF-α, IL-6, cyclooxygenase-2 (COX-
2), and inducible nitric oxide synthase (iNOS) by inhibiting the
NF-κB pathway, thereby reducing the hepatic inflammatory
response. In terms of lipid metabolism, naringenin reduces
hepatic inflammation by downregulating the expression of 3-
hydroxy-3-methylglutaryl CoA reductase (HMGCR), acyl-
coenzyme A: cholesterol acyltransferase (ACAT), and microsomal
triglyceride transfer protein (MTP), inhibiting VLDL assembly,
reducing intracellular cholesteryl ester and TG accumulation in
hepatocytes, and ameliorating alcohol-induced steatosis (Nahmias
et al., 2008). The above mechanisms act synergistically, resulting in
therapeutic potential of naringenin in ALD through cell necrosis,
improvement of liver function indices (TC and TG levels), and
histopathological features.

Alcohol promotes SREBP-1c-mediated adipogenesis by
inhibiting the AMPK and PPAR-α signaling. DHM, apigenin,
and QR activate AMPK, inhibit acetyl coenzyme A carboxylase
and fatty acid synthase activities, and reduce triglyceride synthesis.
Chronic alcohol exposure induces hepatocyte apoptosis and
ferroptosis. DHM, β-sitosterol, and naringenin reduce apoptosis
by inhibiting the aspartate-specific cysteine protein hydrolase-3
(CASP3) pathway (Zhao et al., 2018; Chen et al., 2020);
naringenin decreases ferritin expression in the liver (Jayaraman
et al., 2012), and QR reduces intracellular destabilized iron pools by
maintaining the level of free iron-mediated ·OH production and
attenuates alcohol-induced liver injury (Li et al., 2014; Li et al., 2016).
Alcohol disrupts intestinal tight junction proteins (ZO-1) and leads
to dysbiosis of the intestinal flora. Lutein increases the abundances
of Bifidobacterium, Subdoligranulum, and Faecalibacterium
prausnitzii (Zhao et al., 2023). Although HDT showed significant
hepatoprotective effects in vitro and in animal experiments, its
clinical translation still faces challenges, the mechanism of multi-
component synergism is still unclear, and the future studies need to
determine the key pharmacodynamic substances through the
spectral correlation technique.

4.3 Mechanism of action of Pueraria in the
treatment of ALD

Pueraria montana (Lour.) Merr. is the root of the legume
Pueraria, and has a sweet and pungent flavor; it is a classic
FPUM and has beneficial effects in the human body, including

relieving fever, generating fluids and quenching thirst, penetrating
rashes and removing vexation, elevating yang, stopping diarrhea, as
well as relieving alcoholism. Modern pharmacology has shown that
Pueraria can reduce lipid deposition, vasodilate blood vessels,
inhibit inflammation, and relieve hangover (Fang et al., 2022),
which is largely consistent with its traditional uses. Puerarin is
the main bioactive metabolite isolated from Pueraria and widely
used for the treatment of cardiovascular diseases, diabetes, and liver
diseases (Zhang, 2019). Clinical detoxification often involves
supplementation with Pueraria-based products and conventional
drugs for the treatment of ALD, and Pueraria products are mostly
used for the prevention and relief of symptoms of intoxication and
treatment of mild alcoholism. However, there is no study showing
use of single-flavored Pueraria product for the treatment of ALD.
This may be related to the fact that Pueraria has a slow onset of
action when taken in small doses, while large doses may cause
adverse reactions. Puerarin has the characteristic of “small dose,
narrow treatment,” according to the 2015 edition of the
Pharmacopoeia of the People’s Republic of China, the daily
dosage of Pueraria should not be higher than 15 g, and Pueraria
has no allergic reaction in small doses, but large doses of Pueraria
added to other formulas will cause allergic reactions in few
individuals. Therefore, patients who experience frequent allergies
should not mix Pueraria with other TCM to treat alcoholic
intoxication. The clinical oral dosage of Pueraria is
approximately 9–12 g/d [Take Pueraria Powder from Anhui
Kanghe TCM, for example, approval number YUN
ypbz-0210–2014].

Puerarin reduces ROS production by inhibiting the
overactivation of CYP2E1 and CYP3A in hepatic MEOS, while
elevating the activities of endogenous antioxidant enzymes, such as
SOD, GSH-Px, and CAT, to alleviate oxidative stress damage (Zhao
et al., 2010; Chen et al., 2013; Zhao et al., 2016; Yan et al., 2021).
Puerarin significantly reduces the expression of the
proinflammatory factors TNF-α, IL-1β, and IL-6 by inhibiting
intestinal endotoxin leakage and Kupffer cell activation, and
downregulating the TLR2/4 and NF-κB signaling pathways, thus
reducing the inflammatory response (Peng et al., 2013; Greatorex
et al., 2023). Regarding the regulation of lipid metabolism, the
glycoside enhances autophagy activity through activation of the
AMPK/mTOR pathway, promotes lipophagy, and reduces hepatic
accumulation of TG and TC, while inhibiting the expression of
SREBP-1c to reduce lipid synthesis (Noh et al., 2011; Zhou et al.,
2014). Meanwhile, its modulation of glycogen synthase kinase-3β
(GSK-3β) phosphorylation blocks the NF-κB-mediated
inflammatory cascade response and inhibits COX-2 and 5-
lipoxygenase (5-LOX) activities to reduce leukotriene B4 (LTB4)
production (Li et al., 2013; Tian et al., 2021). In addition, puerarin
inhibits TGF-β1-mediated hepatic stellate cell activation and
collagen deposition, reduces extracellular matrix (ECM)
production, and upregulates matrix metalloproteinase (MMP-1/
MMP-2) expression to reverse fibrosis (Guo et al., 2013; Lee
et al., 2023), through the modulation/reversal of the TGF-β1/
Smad pathway (Xu et al., 2013). In summary, the therapeutic
mechanism of puerarin in ALD is mainly through the multi-
pathway regulation of oxidative stress, inflammatory response,
lipid metabolism, and cell death, and through the multi-targeted
regulation of oxidative-antioxidant homeostasis and organelle
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homeostasis to produce protective effects against acute alcoholic
liver injury.

4.4 Mechanism of action of sea buckthorn in
the treatment of ALD

Sea buckthorn (Hippophae rhamnoides L., family Elaeagnaceae)
is a plant containing various metabolites, including flavonoids,
carotenoids, sterols, tocopherols, and lipids, which produce a
variety of effects such as antimicrobial, anti-inflammatory,
regulating blood pressure, antioxidant, and anticancer effects, and
it is a valuable medicinal and dual-use plant (Gong et al., 2015). Sea
buckthorn extract has shown protective effect against acrylamide-
associated brain damage (Turan et al., 2021); it can be used to treat
myocardial ischemia, and has been widely used for its antioxidant,
anti-inflammatory, antimicrobial, wound healing and other
dermatological properties (Pundir et al., 2021). It can also
improve fat deposition, hepatic steatosis, insulin resistance, and
inflammation in dietary-induced obesity (Kwon et al., 2017). The
clinical oral dosage of sea buckthorn is 30–45 g/d [Sea buckthorn
granules from Gansu Lan Pharmaceutical, for example, State Drug
License Z62020982], while the recommended dosage of sea
buckthorn syrup as a healthcare product is 20–30 mL/d [Sea
buckthorn syrup drink from Jiangxi Renhang, for example,
Approval Certificate No. SC10636098210527].

H. rhamnoides fermentation liquid (HRFL) alleviates alcohol-
induced oxidative stress by scavenging free radicals, enhancing SOD
activity, and lowering MDA levels; it also inhibits the expression of
the proinflammatory factors TNF-α and IL-6, and attenuates hepatic
inflammatory responses. In the regulation of lipid metabolism,
HRFL significantly downregulates serum LDL-C and TG,
upregulates HDL-C, and reduces hepatic lipid deposition (Ran
et al., 2021), while H. rhamnoides flavonoids extract (HRFE) also
improves hepatocellular steatosis by lowering the levels of serum
ALT, AST, TC, and TG. In terms of intestinal microecological
regulation, HRFL enhances intestinal barrier integrity by
increasing the production of SCFAs such as butyric acid and
acetic acid, and modulates the intestinal flora; it inhibits the
proliferation of ALD-associated genera Alistipes and
Ruminiclostridium and upregulates the abundance of the
beneficial bacterium Lactobacillus to reduce the endotoxin
leakage. The combination of HRFE and H. rhamnoides
polysaccharide (HRP) has shown to restore the α-diversity of the
intestinal flora and reverse alcohol-induced changes in the
Firmicutes/Bacteroidetes ratio (F/B), with HRP specifically
inhibiting the proliferation of the proinflammatory genera
Clostridiales and Luminiclostridium in Firmicutes and increasing
the abundance of S24-7 in Bacteroidetes. Moreover, it reduces the
portal vein entry of LPS into the liver through the “gut-hepatic axis”
mechanism, which inhibits the activation of Kupffer cells and release
of inflammatory factors (Liu et al., 2022; Zhao et al., 2022). At the
molecular level, HRFE inhibits the activation of downstream
p38MAPK and p65NF-κB signaling pathways by blocking the
phosphorylation of TAK1, and downregulates the mRNA and
protein expression of TNF-α, TGF-β, and IL-6 (Zhao et al.,
2022). HRP indirectly affects intrahepatic lipid metabolism by
regulating the metabolites derived from the bacterial flora (Liu

et al., 2022). In summary, sea buckthorn intervenes in ALD
pathology at multiple targets through its synergistic effects of
antioxidant, anti-inflammatory, lipid metabolism regulation,
intestinal barrier repair, and inhibition of the TAK1/p38MAPK/
NF-κB inflammatory signaling pathways.

Drugs used to treat ALD (for example, curcumin, resveratrol,
and glycyrrhizic acid) exert their therapeutic effects by regulating
macrophage polarization, along with inhibition of proinflammatory
M1 (CD86+/iNOS+) and activation of anti-inflammatory reparative
M2 (CD206+/Arg-1+) as the key mechanisms (Li et al., 2019; Zhou
L. et al., 2022). IL-10, an anti-inflammatory cytokine, enhances
M2 polarization through the STAT3 pathway, inhibiting the release
of TNF-α and IL-6, while upregulating the expression of arginase-1
(Arg-1), which reduces nitric oxide (NO) toxicity by metabolizing
arginine and promotes polyamine and proline synthesis to accelerate
liver tissue repair. For example, silymarin inhibits NF-κB through
PPARγ activation, reduces the M1 marker IL-1β, and induces Arg-
1-mediated reversal of fibrosis (Surai et al., 2024). Tanshinone IIA
attenuates ethanol-induced hepatic injury through upregulation of
the IL-10/STAT6 axis drivingM2 polarization (Koushki et al., 2015).
Such modulations can synergistically improve the inflammatory
microenvironment and oxidative stress in ALD and delay the
fibrosis process.

5 Discussion

This study provides a systematic review of the pathogenesis of
ALD and the interventional role of FPUM. The core pathological
processes of ALD involve disturbances in alcohol metabolism
(acetaldehyde toxicity, CYP2E1 activation), oxidative stress
overload (ROS accumulation, inhibition of antioxidant enzymes),
activation of inflammatory signaling (for example, the TLR4/NF-
κB/NLRP3 pathways), programmed cell death (apoptosis, necrotic
apoptosis, pyroptosis, and ferroptosis), and dysregulation of the gut-
liver axis (LPS leakage, flora imbalance). In response to the limited
effectiveness and significant side effects of traditional therapeutic
approaches, FPUM demonstrate unique advantages through multi-
component synergistic effects. For example, ginsenosides (GRb1,
GRk3) improve lipid metabolism and oxidative stress by inhibiting
CYP2E1 and regulating the AMPK/SIRT1/Nrf2 signaling pathway;
DHM in HDT activates the autophagy-lipophagy pathway and
restores mitochondrial function; and puerarin and seabuckthorn
flavonoids mediate hepatoprotection through the antagonism of
inflammatory vesicles and regulation of the diversity of intestinal
flora. In addition, FPUM can meet the needs of chronic disease
management through multi-targeted interventions and has shown
potential to complement conventional drugs in complex aspects of
liver regeneration (e.g., Hippo/YAP pathway) and fibrosis reversal
(e.g., TGF-β/Smad modulation). Nevertheless, existing studies are
mostly limited to animal models and in vitro experiments, with
insufficient evidence for clinical translation, and systematic
validation of their safety and efficacy is urgently needed.

Future research should focus on the following directions: (1) In-
depth analysis of molecular mechanisms: Mass spectrometry should
be used to identify the key active metabolites of FPUM’s multi-
component synergism, combined with single-cell sequencing and
organoid modeling to elucidate its specific regulatory network on

Frontiers in Pharmacology frontiersin.org12

Li et al. 10.3389/fphar.2025.1586238

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1586238


hepatocyte subpopulations and nonparenchymal cells (e.g., Kupffer
cells, HSC). For example, the molecular dynamics of ginsenosides in
regulating NLRP3/NLRP6 inflammatory vesicles may reveal its
“liver-gut axis” interaction mechanism. (2) Preclinical and clinical
trial design: A standardized ALD staging animal model (e.g., the Gao
binge-Ethanol model) needs to be established to evaluate the
quantitative and quantitative effects of FPUM at different stages
of the disease. Clinical trials should be advanced in phases: phase I
focuses on evaluating toxicity and pharmacokinetics; phase II
explores the synergistic effect of combination therapies (e.g., with
selonsertib or IL-22) on severe alcoholic hepatitis, and detects novel
biomarkers, such as serum sC5b9 and intestinal barrier markers
(e.g., claudin-3, LBP); and phase III verifies the benefits of long-term
intervention on fibrosis reversal and hepatocellular carcinoma
prevention. (3) Potential for drug synergistic application:
Combination of FPUM with existing drugs may overcome
monotherapy limitations. For example, puerarin combined with
glucocorticoids may reduce the latter’s dose and alleviate the risk of
immunosuppression; HDT polysaccharides in combination with
probiotics may enhance the protective effects of the intestinal
barrier through the regulation of the flora-metabolite axis (e.g.,
SCFAs, bile acids). In addition, the development of nano-delivery
systems (e.g., liposomal encapsulation of ginsenosides) may enhance
bioavailability, and the integration of herbal remedies with modern
precision medicine strategies may open up new avenues for
ALD treatment.

Although FPUM show multi-target therapeutic potential, its
clinical application still faces the following core challenges: (1)
Dosage standardization and quality control challenges: the
complexity of FPUM’s composition and geographical variability
make it difficult to define the dose-effect relationship. Studies have
shown that the content of Sr, Rb, and other key active metabolites in
HDT varies significantly depending on the region of origin (e.g.,
Shanxi vs. Jiangxi) (Sr content fluctuates from 1.80 to 62.8 mg/kg),
which produces inconsistency in therapeutic efficacy. In addition,
most FPUM (e.g., Pueraria) have a narrow therapeutic window,
exceeding the upper limit of dosage is prone to sensitization or liver
damage, but the current Chinese Pharmacopoeia only partially
limits the medicinal dosage (e.g., Pueraria ≤ 15 g/d), and lacks a
precise quantitative standard for the active metabolite (e.g.,
ginsenoside Rk3). (2) Bioavailability and pharmacokinetic
bottleneck: The oral bioavailability of polysaccharides and
saponins in FPUM is generally low due to their large molecular
weight, poor water solubility, and obvious first-pass effect. For
example, single oral absorption rate of QR is less than 20%, and
the metabolism of intestinal flora may change its active form.
Although fat-soluble components (e.g., flavonoids) can show
enhanced absorption via liposomes or nano-delivery systems
(e.g., chitosan encapsulation), they still face the problem of low
solubility and insufficient transmembrane transport efficiency.
Animal models show that DHM has a short retention time in the
liver tissue (half-life <4 h) and needs to be administered frequently
to maintain efficacy, which may limit clinical translation. (3)
Insufficient clinical validation and grade of evidence: most studies
on FPUM intervention in ALD have focused on cell or animal
models, and clinical trials are still in their infancy. For example, only
a few phase I/II trials have validated the safety of ginsenosides (e.g.,
GRb1 alone or combined with YN-3 probiotic intervention in mild

ALD), but with limited sample sizes (n < 100), shorter duration of
treatment (≤12 weeks), and lack of long-term follow-up data on
endpoints with hard indicators (e.g., rate of reversal of hepatic
fibrosis, incidence of HCC). In addition, the synergistic
combination of metabolite preparations (e.g., Pueraria - HDT
ratio) has not been verified by rigorous double-blind randomized
controlled trials (RCTs), and the theory of “multi-component-
multi-targets” is in urgent need of translational medicine support.
(4) Defects in production process and quality standards: Traditional
extraction processes (e.g., water decoction, alcohol precipitation)
can easily lead to the degradation or imbalance of active metabolites
(e.g., saponins, polysaccharides). For example, the synergistic effect
of flavonoids and polysaccharides in sea buckthorn extract is limited
by the separation and purification technology, and industrial
production may weaken its “overall effect”. At the same time,
FPUM raw materials are at risk of heavy metal contamination.
Studies show that the Al content of some botanical drugs (e.g., HDT)
is as high as 17.5 mg/kg, which may exacerbate liver damage, but the
existing standard of “Heavy Metal Limits for TCM” only covers few
elements (e.g., Pb, Cd), and there is no safety threshold for trace
elements such as Sr, Rb, and so on. (5) Insufficient multidisciplinary
integration and policy support: Modernization of TCM requires the
integration of pharmacology, synthetic biology, and artificial
intelligence (AI) technology, but current research is scattered and
lacks systematic approach. For example, although the mechanism of
intestinal flora-FPUM interactions has been emphasized, there is a
lack of joint analysis of flora metabolome and host epigenetics. In
addition, there is a disconnect between international natural product
standards (e.g., ISO 18664) and domestic registration requirements
(e.g., Guidelines for Clinical Research of New Chinese Medicines),
which makes it difficult to expand the chain of evidence for FPUM
through international multicenter trials. In conclusion, to break
through the bottleneck of FPUM in treating ALD, it is necessary to
establish a whole chain research system of “composition analysis -
process optimization - clinical validation - policy coordination,” and
at the same time, to strengthen the integration of multi-omics
technology and traditional medical experience in a manner to
realize the efficient translation from laboratory to clinic.
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