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The homeostasis of glutamate, the primary excitatory neurotransmitter in the
brain and is crucial for normal brain function. The mitochondrial enzyme
glutamate dehydrogenase (GDH) connects the multifunctional amino acid
glutamate, which is intimately related to glutamate metabolism, to the Krebs
cycle. As a result, GDH reglutes the synthesis and uptake of the chemical
messenger glutamate in neuroendocrine cells, playing a crucial role in the
metabolism of proteins and carbohydrates. Nonetheless, brain ageing and
numerous neurodegenerative diseases, including Parkinson’s disease and
Alzheimer’s disease, have been linked to GDH malfunction or dysregulation. In
this review, we summarize the dynamics of GDH levels in the ageing brain and
provide additional details about the role of GDH in the ageing brain.
Understanding the metabolic mechanisms underlying glutamate homeostasis
in the aging brain and how GDH regulates glutamate-dependent metabolic
processes at synapses may lead to novel therapeutic approaches for
neurodegenerative and psychiatric disorders, potentially slowing the aging
process and promoting brain regeneration.
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Introduction

Glutamate dehydrogenase (GDH) is expressed mostly in the brain, liver, kidney, and
pancreas and is located in the mitochondrial matrix of humans. As a hexameric structure,
functional GDH consists of two sets of trimers, each containing approximately 500 amino
acids. Each monomer has a binding site for guanosine triphosphate (GTP) and another for
nicotinamide adenine diphosphate hydride (NADH)/adenosine diphosphate (ADP); this
structure allows six GTPmolecules, six ADPmolecules, and six NADHmolecules to bind to
the GDH hexamer at its allosteric binding sites. When a substrate interacts with two GDH
trimers, a projecting domain that resembles an antenna connects the subunits (Nassar
et al., 2019).

Numerous small molecules allosterically regulate GDH in animals. GTP and ATP are
the primary allosteric inhibitors. GTP binds to the allosteric domain above the catalytic
domain at the bottom of the antenna to block GDH catalytic activity and stop the release of
glutamate oxidative products, which is a rate-limiting step. By inhibiting the release of
NAD(P)H, an oxidative product of glutamate, NADH can bind to the NADH/ADP binding
site and strengthen the inhibitory effect of GTP on GDH activity. Furthermore,
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diethylstilbestrol (DES), palmitoyl-CoA, and steroid hormones are
also inhibitors of mammalian GDH, although the sites where they
bind are unclear. Finally, green tea contains a polyphenol called
epigallocatechin gallate (EGCG), which likewise functions as an
allosteric inhibitor by competing with ADP (Li et al., 2014). In
contrast, leucine and ADP are the main allosteric activators of GDH.
In contrast to GTP, ADP activates GDH. By binding to the NADH/
ADP binding site and preventing GTP binding, ADP can activate
GDH. Leucine is both an allosteric activator and a catalytic substrate
of GDH; although it has a distinct binding site, its activation
mechanism is comparable to that of ADP (Li et al., 2014).

GDH expression and function

GDH activity varies greatly in various mammalian tissues
(Botman et al., 2014; Treberg et al., 2014). High enzyme levels
are present in the liver, brain, kidney, pancreas, adrenal glands, and
placenta (Rothe and Storm-Mathisen, 1995; Spanaki et al., 2014)
(Figure 1). The liver, where the enzyme comprises approximately 1%
of the total protein, has the highest GDH-specific activity; GDH
activity is lower in other mammalian organs (Botman et al., 2014;
Treberg et al., 2014). According to estimates, the GDH level in the
human kidney and brain is between 20% and 25% of that in the liver
(Spanaki et al., 2010). Recently, studies have employed IHC to
examine human tissues using antibodies that detect both human
GDH isoenzymes. They discovered that all of the hepatocytes in the
human liver express GDH quite abundantly. All cells of the
pancreatic parenchyma in humans, including acinar cells and the

endocrine cells of Langerhans islets, express GDH (Spanaki et al.,
2014). In addition, the epithelial cells of the proximal convoluted
tubules are where GDH is mostly localized in the human renal cortex
(Spanaki et al., 2014; Spanaki et al., 2012). Finally, GDH is present in
both Sertoli and Leydig cells in the human testis (Spanaki et al., 2014;
Spanaki et al., 2010). However, spermatogonia, spermatocytes, and
spermatozoa, i.e., germ cells, are negative for GDH expression
(Spanaki et al., 2014; Spanaki et al., 2010).

Under normal circumstances, GDH is a major regulator of the
metabolism of amino acids and ammonia in the human pancreas,
liver, and brain. GDH uses NAD(P)+ as a coenzyme to catalyze the
oxidative deamination of glutamate to produce alpha-ketoglutaric
acid (α-KG) and ammonia via the following reversible reactions:
glutamate + NAD(P)+↔ α-KG + NH3 + NAD(P)H. α-KG is used in
the tricarboxylic acid (TCA) cycle to produce adenosine
triphosphate (ATP) (Figure 2). In islet β cells, the brain, and
renal tubular cells, the reaction is directed primarily towards the
oxidative deamination of glutamate because these cells and tissues
contain high glutamate and low α-KG/NH3 levels (Komlos
et al., 2013).

GDH aids in preserving the NH4+ concentration in the kidneys
and several other organs (Cooper and Jeitner, 2016; Treberg et al.,
2010). Additionally, the enzyme plays a role in the mechanism by
which pancreatic β-cells secrete insulin (Sener et al., 1980).
GLUD1 mutations reduce the sensitivity of the enzyme to its
inhibitor GTP, which fuels hyperinsulinaemia/hyperammonaemia
(HI/HA) syndrome, a condition characterized by elevated blood
NH4+ levels and low glucose levels (De Lonlay et al., 2001;
MacMullen et al., 2001). Pancreatic β-cells expressing mutant

FIGURE 1
Primary roles of glutamate dehydrogenase (GDH) in several organs. GDH helps the brain recycle glutamate and regulates the production of the
primary excitatory neurotransmitter. GDH is essential for themetabolism of ammonia in the liver and kidney. GDH activity affects the rate of insulin release
from pancreatic β-cells.
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GDH produce 2-oxoglutarate in a dysregulated manner, which is
linked to the release of insulin (Fahien and Macdonald, 2011).

Mutations in short-chain 3-hydroxyacyl-CoA dehydrogenase
(SCHAD), which is involved in the oxidation of fatty acids, can

also result in hyperinsulaemia and hypoglycaemia (Kapoor et al.,
2009; Molven et al., 2004). Recently, GDH from pancreatic islets was
shown to be bound by SCHAD, which inhibits its activity (Li et al.,
2010). However, mutated SCHAD is incapable of binding to GDH.
The subsequent activation of pancreatic GDH causes incorrect
insulin release (Li et al., 2010), comparable to that observed with
GLUD1 mutations, which impair GDH inhibition by GTP (Nissim,
1999; Treberg et al., 2010).

Research on ADP-ribosylation suggested that this alteration also
plays a part in mediating the effect of GDH on insulin synthesis. For
example, GDH in pancreatic β-cells is rendered inactive by SIRT4-
dependent ADP-ribosylation, which restricts the release of insulin
(Haigis et al., 2006). Under low-glucose conditions, the inactivation
of GDH may be reversed, leading to an increase in blood insulin
levels and pancreatic GDH activity. Under calorie restriction,
reduced ADP-ribosylation of GDH was observed, which was
linked to increased insulin levels and increased GDH activity
(Guan and Xiong, 2011).

Genetics of GDH

The well-preserved 45-kb gene GLUD1, which is divided into
13 exons, encodes GDH (Michaelidis et al., 1993). While GLUD1,
which is found only in hominoids, is expressed in multiple tissues
(Plaitakis et al., 1980), its isoform, GLUD2, is expressed exclusively
in the brain and testicular tissues (Shashidharan et al., 1994). The
sole isoform in rodents that encodes GDH is GLUD1 (Burki and
Kaessmann, 2004). Recent studies have revealed that astrocytes and
testicular supporting cells exhibit significant levels of
GLUD2 expression (Spanaki et al., 2010). GLUD2 is an
intronless X-linked gene (Shashidharan et al., 1994) that evolved

FIGURE 2
Diagrammatic representation of glutamate dehydrogenase-catalysed processes and their overall metabolic importance.

FIGURE 3
Diagram of the enzymes involved in the metabolism of
glutamate, glutamine, α-ketoglutarate, and γ-aminobutyric acid in the
brain. Glul: glutaminase; Gls: glutamine synthetase; GDH: glutamate
dehydrogenase; Ogdh: α-ketoglutarate dehydrogenase; Idh3a:
isocitrate dehydrogenase subunit three alpha; GAD1: glutamate
decarboxylase 1.
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fewer than 23million years ago via the retrotransposition of a spliced
mRNA from the GLUD1 gene, which has an intron, in hominoid
progenitors. The alterations in amino acids that confer the distinct
brain-specific characteristics of the GLUD2-derived enzyme
occurred when the size of the brains of ancestors of humans and
great apes increased. By permitting greater neurotransmitter transit
and clearance, GLUD2 may have contributed to improved brain
function in both humans and apes. Therefore, GLUD2 may have
played a role in hominoid evolution and the development of an
increased cognitive capacity (Burki and Kaessmann, 2004).

The pH dependence of human GDH isoenzymes (hGDH1 and
hGDH2), which are encoded by distinct genes (GLUD1 and
GLUD2), varies. In the 2-oxoglutarate amination process,
hGDH2 shifts the pH optimum from 8.0 to 7.5, in contrast to
hGDH1 (Kanavouras et al., 2007; Plaitakis et al., 2003). This
distinction is thought to be significant in astrocytes, whose
absorption of synaptic glutamate linked to OH ion counter-
transport acidifies their cytoplasm and mitochondrial matrix
(Poitry et al., 2000).

ADP activates both isoenzymes; however, ADP activation of
hGDH2 is more noticeable. The two enzymes also differ in their
nucleotide-dependent regulation (Plaitakis et al., 2000). The
amplitude of the effect at saturating ADP concentrations
(approximately 1 mM) is ten times greater for hGDH2 than for
hGDH1; specifically, the SC50 value for ADP, the ADP
concentration eliciting 50% of the maximum activation, is

roughly three times higher for hGDH2 (58.7 µM) than for
hGDH1 (17.0 µM) (Kanavouras et al., 2007). Similarly, the
impact of leucine, another well-known allosteric activator, is
approximately ten times greater for hGDH2 than for hGDH1,
even though the two hGDH isoenzymes’ SC50 values and their
decreased activity with the addition of ADP are comparable
(Kanavouras et al., 2007).

Cho et al. reported the kinetics of the two different GDH
forms from the bovine brain (bGDH1 and bGDH2) (Cho et al.,
1995). The authors use the terms isoform and isoprotein as
synonyms for bGDH1 and bGDH2. We refer to these GDHs
as the enzyme forms since the structural information to
categorize them as isoforms or isoenzymes using the
previously stated categories is currently insufficient.
bGDH1 and bGDH2 were separated from the whole
homogenate (Cho et al., 1995). The kinetic characteristics of
bGDH1 and bGDH2 were measured at a fixed ADP
concentration (1 mM) and are similar to those of the
hGDH1 and hGDH2 isoenzymes at intermediate ADP
saturation (0.1–0.25 mM). Specifically, both hGDH1 and
bGDH1 have a higher Km for glutamate and a lower Km for
2-oxoglutarate than do hGDH2 and bGDH2. The two human and
bovine isoenzymes also exhibit the same differences in the Km for
ammonium, and under similar conditions, allosteric activation
by ADP was more evident for bGDH2 than for hGDH2 (Cho
et al., 1995). In addition, the high sensitivity of the

FIGURE 4
Diagram showing themetabolism of glutamate in astrocytes and glutamatergic neurons. Glutamate is the primary excitatory neurotransmitter in the
central nervous system (CNS). However, glutamate is also intimately linked to energy metabolism in the brain. Astrocytes are primarily responsible for
intersynaptic glutamate elimination following glutamatergic transmission. Glutamate can be recycled back to neurons after being aminated to glutamine
by astrocytes. Alternatively, glutamate dehydrogenase (GDH) may deaminate glutamate to α-ketoglutarate prior to continued oxidation in the TCA
cycle, which promotes ATP production.
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hGDH2 isoenzyme to dilution, as previously mentioned, is also
reflected in the higher Vmax for bGDH1 than for bGDH2
(202 and 124 μmol/min per mg of protein, respectively, in the
presence of 1 mM ADP). Overall, kinetic studies indicate that the
two enzyme forms of GDH identified in the bovine brain are
functionally similar to the two human GDH isoenzymes.

GDH in brain development

Since glutamate is the primary excitatory neurotransmitter in
the central nervous system (CNS), mitochondrial function and
glutamate metabolism are closely related in the brain (Baudry
and Lynch, 1979). Specifically, mitochondria control the energy
state of the brain, the use of metabolic substrates, and the
detoxification of excess neurotransmitters.

Target neurons are depolarized by glutamate produced by active
synapses via certain receptors (Mayer et al., 1984; Spreafico et al.,
1994). Glutamate is a quick-acting neurotransmitter, but it also has
long-lasting effects on the structure and function of neurons as a
signalling molecule. Glutamate neurotransmission plays a
significant role in modulating synaptic activity during nervous
system development (Cohen and Greenberg, 2008; Ghiani et al.,
2007), as well as in learning and memory construction and the
gathering and storing of new knowledge (Cotman et al., 1988;
McEntee and Crook, 1993).

Enzyme histochemistry has shown that GDH is present in rat
hippocampal dendritic layers and that GDH activity increases in
tandem with the postnatal maturation of synaptic structures
(Schünzel and Wolf, 1982). Similar increases in neuronal GDH
staining were observed in subsequent studies of the rat
hippocampal region during postnatal development, namely, in
the stratum lacunosum-moleculare and the molecular layer of
the dentate gyrus in the hippocampus (Kugler and Schleyer,
2004; Rothe and Schünzel, 1990). Significant increases in GDH
levels have also been observed in the rat cerebellum in the late
postnatal stage, an increase that is believed to be a reflection of
synaptogenesis and neuronal development (Wolf and Schünzel,
1987; Wolf et al., 1986). In particular, GDH activity increases in the
cerebellar cortex in the molecular layer, granule cell bodies,
internal granule cell layer, cerebellar glomeruli, and Purkinje
cell perikarya to a lesser extent. Studies that have measured
GDH activity and exogenous glutamate use in primary neuronal
cultures from the rat ventral mesencephalon have shown that
GDH activity is approximately four times higher in mature (12-
day-old) cultures than in immature (4-day-old) cultures and have
identified a significant correlation between exogenous glutamate
use (added to the medium at 1.2 mM) and GDH activity in
cultured cells (Plaitakis and Shashidharan, 2000). Furthermore,
compared with mature cultures, immature cultures secrete
significantly more alanine and aspartate into the medium,
indicating that the transamination route is the primary
mechanism by which exogenous glutamate is metabolized in
these cells. Together with the previously mentioned results
showing significant increases in GDH activity in the growing
brain, these observations imply that the growth of nerve
terminals and synaptic connections coincides with significant
increases in glutamate use (away from transamination).

GDH in the ageing brain

Developmental synaptic pruning, which is essential for honing
neurons, progressively results in cumulative, nonpathological
synaptic degradation over time, which has an irreversible effect
on all maturing organisms. The capacity of an individual to
successfully adjust to their surroundings is inevitably hampered
by this natural ageing process (Diniz and Crestani, 2023). Ageing is a
major risk factor for the development of mental and neurological
diseases (Cole et al., 2019; Hou et al., 2019). Changes in
neuroplasticity or cellular changes that directly affect plasticity
pathways may be partially responsible for the loss of cognitive
performance associated with ageing. Numerous studies have
shown that as people age, the glutamatergic system changes,
which can result in synaptic dysfunction, neuronal damage, or
even death (Cox et al., 2022; Segovia et al., 2001). Chronic
inflammation plays a major role in neurodegenerative disorders
and brain ageing (Godbout and Johnson, 2009; Hirsch and Hunot,
2009). Accordingly, research has shown that as mice age, both wild-
type (Wt) and transgenic (Tg) mice with CNS-Glud1 overexpression
may exhibit elevated expression of genes linked to
neuroinflammation (Wang et al., 2014). Another study revealed
that only Tg model mice exhibited a chronic inflammatory response
when the hippocampal regions of 9-month-old CNS-Glud1 Tg and
WT mice were examined (Wang et al., 2010). These findings could
suggest a possible connection between neuroinflammation in the
ageing brain and variations in GDH expression.

As mentioned previously, GDH activity fluctuates throughout
life and differs across various brain regions. Modest GDH activity is
detected in the central and peripheral nervous systems of rats at
birth. Nonetheless, GDH activity increases significantly during the
postnatal developmental stage, with earlier increases in the medulla
and a rough doubling in the cerebellar cortex and fivefold increase in
the hippocampus (Rothe et al., 1983). The development of brain
regions with high glutamatergic activity results in elevated GDH
activity (Rothe et al., 1983). On the other hand, a different study
revealed that as male albino rats aged, the tissues throughout the
brain presented a decrease in GDH activity (Rajeswari and Radha,
1984). GDH reactivity in the hippocampal regions of juvenile, adult,
and elderly rats has also been assessed. In young rats, the stratum
oriens of the CA1–CA4 regions in the hippocampus has the highest
enzymatic reactivity. The molecular layer of the fascia dentata and
the layer of mossy fibres are next in descending order. In practically
every stratum analysed, adult rats exhibit stronger enzymatic
reactivity than do juvenile rats. Except for the stratum oriens of
the CA1–CA4 fields, where enzymatic reactivity is higher in older
rats than in adult rats, GDH reactivity is lower in older rats than in
adult rats (Bronzetti et al., 1990). Similarly, previous research has
shown that in rats, GDH activity is detected earlier in the medulla
oblongata and pons than in other brain regions (Leong and Clark,
1984). In adults, these areas present the greatest activity, with the
midbrain and hypothalamus being the second and third most
affected areas, respectively.

Studies in humans and rodents have consistently shown a loss of
synaptic connections and neurons along glutamatergic
neurotransmission pathways with aging (Francis, 2003; Morrison
and Hof, 2007). These losses mostly impact areas of the brain, such
as the cerebral cortex and hippocampus, which are also affected in
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Tg mice that overexpress Glud1. Because glutamate transport into
glial cells or neurons is reduced in the brains of old mice, the loss of
synapses and neurons in these areas results in increased amounts of
extracellular glutamate (Nickell et al., 2005; Zoia et al., 2004). Tg
mice overexpressing Glud1 have been used to investigate the
connection between the ageing process and glutamate-induced
metabolic responses (Choi et al., 2014). The findings of that
study revealed that the hippocampus and striatum of Tg mice
differed from those of WT mice at different ages in terms of the
amount of neurochemicals, including lactate (Choi et al., 2014).

Neurons appear to be specifically susceptible to glutamate
release and overproduction, as well as ageing. Wang et al.
reported that Glud1 Tg and WT mice have different gene
expression patterns (Wang et al., 2014); additionally, regardless
of whether a mouse was Tg or WT, dynamic changes in the
expression of certain genes in the hippocampus were observed
during ageing through comparisons across several age periods
spanning from 10 days to 20 months of life. Overall, the
hippocampal transcriptome was more significantly affected by
Glud1 overexpression in mature and aged mice than in young
mice. Importantly, the Gene Ontology (GO) categories of genes
with altered expression in Tg mice overlapped with a significant
number of GO categories of genes with altered expression in WT
mice during ageing, even though the changes in gene expression in
the hippocampus of Tg andWTmice did not always follow the same
pattern. The expression of genes linked to growth, neurogenesis,
process elongation, and neuronal migration decreased in both Tg
and WT animals during the developmental, maturation, and ageing
phases; additionally, genes involved in neuroinflammation, voltage-
gated channel function, and synaptic transmission modulation were
activated. In a different investigation, Michaelis et al. observed that
in the CA3 area of the hippocampus, Glud1 overexpression does not
result in any age-related changes in dendritic structure or neuronal
population numbers (Michaelis et al., 2011). In another study, which
contrasted anterograde axoplasmic transport in WT mice with that
in Tg mice overexpressing the Glud1 gene in CNS neurons, the
authors reported that Tg animals presented increased rates of
anterograde axoplasmic transport in olfactory neurons in vivo
and in hippocampal neurons in brain slices ex vivo (Lee et al.,
2024). Given the links between neurodegeneration and disrupted
axonal transport (Berth and Lloyd, 2023) and the ageing process
(Milde et al., 2015), additional research is urgently needed.

Notably, GDH plays an epigenetic role in neuronal plasticity.
Research has indicated that the α-KG-consuming protein Tet3 (the
primary α-KG-dependent dioxygenase in neurons that converts 5-
methyl-dC into 5-hydroxymethyl-dC and then into 5-formyl- and
5-carboxy-dC) reroutes mitochondrial GDH, which converts
glutamate into α-KG in an NAD + -dependent manner, to the
nucleus, indicating the onsite production of α-KG. Additionally,
glutamate dehydrogenase has a stimulatory effect on
Tet3 demethylation activity in neurons, and neuronal activation
increases the level of α-KG. Overall, the GDH–Tet3 interaction may
play a role in epigenetic changes during neural plasticity (Traube
et al., 2021).

The cellular dysfunction observed during ageing has been
partially attributed to impaired mitochondrial activity (Javadpour
et al., 2024; Miwa et al., 2022). Studies have shown that GDH activity
can differ among various populations of brain mitochondria, in

addition to differences in GDH levels and activity across different
brain areas. Subcellular fractionation results revealed that the
nonsynaptic mitochondria of the medulla oblongata have
approximately double the GDH-specific activity of those of the
striatum and cortex; in contrast, the GDH activity in synaptic
mitochondria is essentially consistent throughout various rat
brain areas (Leong and Clark, 1984). Glutamate metabolism has
been assessed in a variety of mitochondrial populations in the brain
at different ages during the ischaemia and postischemic healing
stages (Ferrari et al., 2018); different cerebral mitochondria exhibit
varying levels of GDH activity, indicating different responses to
ischaemia, postischemic recovery, and ageing. The ability of
glutamate to increase synaptic adaptability during the
recirculation phase of brain ischaemia may account for the
diverse impacts on brain mitochondria. Therefore, depending on
where they are located in the presynaptic and postsynaptic
compartments, separate nonsynaptic and intrasynaptic
mitochondria have variable metabolic properties that result from
differing energy needs. However, in another study, GDH activity was
shown to decrease with age in both synaptic and nonsynaptic
mitochondrial populations in the brains of rats (Deshmukh and
Patel, 1980) (Figure 3).

Changes in GDH levels have been observed in brain cells and
other cell types with ageing, findings that may be associated with
changes in CNS metabolism. According to previous studies,
leukocyte GDH activity is lower in older people than in younger
people, suggesting that GDH activity may play a role in ageing
(Kravos and Malesic, 2010). However, another study revealed that
the overall activity of GDH in lymphocytes increases with age, which
may represent an adaptive reaction related to glutamatergic neuron
loss (Iwatsuji et al., 1989). The regulatory mechanism of GDH is
most likely linked to the regulation of glutamine metabolism
(Iwatsuji et al., 1989). However, numerous animal studies have
shown that GDH activity in the brain increases with age and
decreases with senescence (Mahapatro and Patnaik, 1993).
However, GDH activity in the rat liver does not vary with age
(Prabhakaram and Singh, 1988). These findings suggest that
different cell types exhibit different changes in GDH activity as
they age (Figure 4).

Mammalian GDH is modulated by high levels of progesterone
and oestrogen, which also exert greater inhibitory effects on human
GDH2 than on human GDH1. Oestrogens produced by astrocytes
may play a role in controlling glutamate metabolism in the brain
through their efficient interaction with human GDH2 (Borompokas
et al., 2010). One of the variables affecting how GDH levels change as
people age is sex. GDH activity was assessed in leukocytes frommales
and females from various age groups (Kravos andMalesic, 2010). The
results revealed that leukocyte GDH activity decreased with age in
both sexes, especially after the age of 50 years. Furthermore, after the
age of 60 years, both sexes experienced accelerated decreases in GDH
activity. GDH activity declined more rapidly in women between the
ages of 20 and 50 than duringmenopause and showed amore uniform
decline in men with aging. According to the results from that study,
ageing may be exacerbated by a slow decrease in leukocyte GDH
activity throughout life, and the brain appears to experience similar
phenomena. Additional research on the importance of the effects of
hormones on GDH activity and differences in GDH activity patterns
between sexes is needed.
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Finally, research has shown that an uncommon GLUD2 gene
variant, T1492G, which causes a gain-of-function Ser445Ala
substitution in hGDH2, is linked to the onset of early-onset
Parkinson’s disease in some populations (Plaitakis et al., 2013). This
variant has a significantly greater sensitivity to oestrogen-induced
inhibition but is even more resistant to GTP inhibition than wild-
type hGDH2. In female patients, the consequent regulation of
hyperactive GDH by oestrogens may protect against the early onset
of PD (Plaitakis et al., 2013). The positive results of oestrogen therapy in
animal PD models provide more evidence supporting this hypothesis
(Gillies and McArthur, 2010). In addition to a marked loss of neurons
and reductions in the numbers of dendritic spines and axon terminals,
transgenic mice overexpressing GDH also presented elevated levels and
release of glutamate in the brain (Bao et al., 2009). Additionally,
increased GDH expression led to the upregulation of numerous
genes, including those linked to cellular damage, inflammation,
oxidative stress, Parkinson’s disease, and Huntington’s disease
(Wang et al., 2010). Early AD was reported to lead to a substantial
increase in the quantity of 3-nitrotyrosine residues in proteins,
including nitrosylated GDH, whose function is significantly
diminished in some patients with early AD (Reed et al., 2009).
However, additional research revealed that the GDH protein level in
the brain is elevated (Burbaeva et al., 2005) and that the plasma of AD
patients exhibits increased levels of GDH activity (Miulli et al., 1993).

Conclusion

GDH is an essential metabolic enzyme that links glutamate to
numerous other metabolic pathways. The roles of GDH dysregulation
and dysfunction in a variety of illnesses, particularly neurodegenerative
diseases, have received increasing attention in recent years. More
investigations are needed to fully understand the effects of this
enzyme, especially with respect to the neuroplasticity of the ageing
human brain. We have examined the functions of GDH in the ageing
brain in this review. We believe that GDH plays a key role in neuronal
degenerative pathways. Future research efforts should consider human
studies, even if the significance of GDH in ageing has been described.
Promoting neuronal regeneration may help prevent neurodegenerative
diseases. Future studies may uncover novel approaches for using GDH
in their detection and treatment. Thus, developing new techniques to
cure mental and neurological illnesses, slow the ageing process, and
promote neuroplasticity may be possible.
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