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Background: Palmitoylation, a critical post-translational modification, regulates
protein localization and function in cancer. However, its role in glioma
progression, immune modulation, and prognosis remains poorly understood.

Methods: We integrated transcriptomic, clinical, and mutation data from
multicenter cohorts to analyze 30 palmitoylation-related genes in low-grade
gliomas (LGG). Consensus clustering, differential expression analysis, and LASSO
regression were employed to define palmitoylation clusters, identify prognostic
genes, and construct a risk signature. The evaluation of immune infiltration and
immunotherapy efficacy was further conducted across different risk groups. In
the palmitoylation-related risk model, IGFBP2 was functionally validated through
siRNA-mediated knockdown and a series of assays, including EdU incorporation,
cell cycle analysis, wound healing, and transwell migration assays.

Results: Two palmitoylation clusters (A/B) were identified, with Cluster B
exhibiting poorer survival (P < 0.001), enriched JAK-STAT signaling, and
elevated immune infiltration (M1/M2 macrophages, CD8+ T cells). A five-gene
prognostic signature (CHI3L1, IGFBP2, MEOX2, EMILIN3, SFRP2) demonstrated
robust predictive accuracy in training (AUC 0.92–0.94) and validation cohorts
(AUC 0.68–0.83). High-risk patients showed upregulated PD-1, PD-L1, and
CTLA4 (P < 0.001) and higher TIDE scores, indicative of immune dysfunction.
IGFBP2 knockdown suppressed glioma cell proliferation (P < 0.01) and migration
(P < 0.001), linking it to tumor aggressiveness.

Conclusion: Palmitoylation plays a pivotal role in LGG progression by influencing
immune evasion and stromal interactions. The developed prognostic signature
and nomogram offer practical tools for risk stratification in clinical settings, with
IGFBP2 identified as a promising therapeutic target. These insights highlight the
potential of palmitoylation-focused therapies to enhance outcomes for LGG
patients.
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Highlights

• Identified two palmitoylation clusters with distinct survival
(Cluster B: HR = 2.3, p < 0.0001).

• Developed a five-gene prognostic model (AUC up to 0.94)
validated across TCGA and CGGA cohorts.

• High-risk patients exhibit immune-excluded phenotypes with
elevated PD-L1/CTLA4 and TIDE scores.

• IGFBP2 silencing reduced LGG proliferation and migration
(p < 0.0001).

1 Methods

1.1 Data acquisition

We retrieved gene expression data and clinical details for low-
grade glioma (LGG) patients from the Cancer Genome Atlas
(TCGA) and the Chinese Glioma Genome Atlas (CGGA). Only
pathologically confirmed WHO grade II/III diffuse gliomas were
included. Patients with prior radiotherapy/chemotherapy or other
neurological disorders were excluded. The expression data of GTEx
normal tissues included in the Xena database were standardized
using the Toil process. FPKM values were converted to TPM using
the formula: TPM = (FPKM/ΣFPKM) × 106. Batch effects between
TCGA and CGGA datasets were corrected using the ComBat
algorithm to ensure data consistency. Mutation and Copy
Number data were collected from the cBioPortal website,
encompassing 652 patients/680 samples from various studies:
Brain Lower Grade Glioma (TCGA, PanCancer Atlas), Low-
Grade Gliomas (UCSF, Science 2014), Anaplastic
Oligodendroglioma, Anaplastic Oligoastrocytoma (MSK, Neuro
Oncol 2017), and Pilocytic Astrocytoma (ICGC, Nature Genetics
2013). In this study, we utilized TCGA data as the training set, while
two cohorts from CGGA were employed as the validation set. The
list of palmitoylation regulating genes (ZDHHC1, ZDHHC2,
ZDHHC3, ZDHHC4, ZDHHC5, ZDHHC6, ZDHHC7, ZDHHC8,
ZDHHC9, ZDHHC11, ZDHHC12, ZDHHC13, ZDHHC14,
ZDHHC15, ZDHHC16, ZDHHC17, ZDHHC18, ZDHHC19,
ZDHHC20, ZDHHC21, ZDHHC22, ZDHHC23, ZDHHC24,
LYPLA1, LYPLA2, ABHD17A, ABHD17B, ABHD17C, PPT1,
PPT2) was derived from published literature (Cai et al., 2023;
Qian et al., 2020).

1.2 Consensus clustering analysis of
palmitoylation genes and Principal
Component Analysis (PCA)

The common prognosis-related palmitoylation genes
identified through Cox regression analysis were utilized for
subsequent unsupervised cluster analysis. We divided the
samples into Palmitoylation Clusters A and B, testing k
values from one to nine. We selected the k value with the
best clustering stability, characterized by lower coefficient of
variation, higher clustering consistency, and a relatively steep
cumulative distribution function (CDF) curve. The
classification of LGG patients into two clusters was further

validated by Principal Component Analysis (PCA) performed
with the “stats” package.

1.3 Gene Set Variation Analysis and single-
sample gene set enrichment analysis (GSVA
and ssGSEA)

GSVA is a powerful tool for analyzing gene sets and identifying
pathway enrichment. It is an unsupervised and non-parametric
method for scoring gene sets and converting them to pathway
levels. For enrichment analysis, we downloaded the “c2.
cp.kegg.v7.2. symbols.gmt” gene set from MSigDB, a
comprehensive collection of annotated gene sets. We used the
GSVA algorithm to calculate the scores for each gene set and
explore the biological functional differences between the two
Palmitoylation clusters. We set the threshold for significant
enrichment at adjusted P < 0.05. The ssGSEA algorithm, based
on immune gene sets, considered genes related to various immune
cell types, pathways, functions, and checkpoints. In this study, we
used the “GSVA” R package to comprehensively evaluate the
immune landscape of each LGG sample in different
Palmitoylation clusters (Cao et al., 2023).

1.4 Identifying and clustering of DEGs
between the palmitoylation clusters

The “limma” R package was employed to detect differentially
expressed genes (DEGs) between the two palmitoylation clusters,
applying thresholds of |logFC| > 1 and adjusted P < 0.001.
Functional annotation through GO analysis examined biological
processes, cellular components, and molecular functions, while
KEGG enrichment analysis revealed significantly enriched
signaling and immune-related pathways within the DEGs of the
palmitoylation clusters. The “ConsensusClusterPlus” R package was
then used to perform clustering analysis on these genes, following
previously established methods for palmitoylation genes.

1.5 Palmitoylation-related prognostic
signature construction

Based on the 1,543 DEGs from TCGA training set, we identified
1,081 prognosis-related genes that were common to both the
CGGA325 and CGGA693 cohorts through univariate Cox
regression analysis. A prognostic signature was constructed using
the LASSO algorithm implemented in the “glmnet” R package. Ten-
fold cross-validation (nfold = 10) was performed to determine the
optimal lambda value, which was selected as the value minimizing
the cross-validation error (cvfit$lambda.min). The robustness of the
prognostic signature was confirmed through external validation sets
(CGGA325 and CGGA693). Samples were stratified into high-risk
and low-risk categories using the median risk score derived from the
training set. The predictive ability of the signature was evaluated
using KM survival analysis and ROC curves in the training and
validation sets using the “timeROC” R packages. Additionally, we
created a nomogram using the “rms” R packages to predict 1-, 3-,
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and 5-year survival rates and calibrated the model to assess its
consistency with practice.

1.6 Immune microenvironment and
immunotherapy assessment

The ssGSEA algorithm was also used to assess the diverse
immune cell infiltrations, and the “estimate” R package was
employed for estimating the tumor microenvironment (TME),
encompassing stromal score, immune score and estimate score.
Tumor Immune Dysfunction and Exclusion (TIDE) (http://tide.
dfci.harvard.edu) serves as an analytical instrument for assessing the
likelihood of tumor immune evasion. We standardized the mean
value of each gene across all samples, as stipulated by the website.

1.7 siRNA treatment

The U251 low-grade glioma (LGG) cell line was acquired from
the American Type Culture Collection (Manassas, VA,
United States). Three IGFBP2 siRNAs were purchased from
GenePharma (Shanghai, China) and transfected into U251 cells
using InvitroRNA™ (InvivoGene Biotechnology, Suzhou, China).
Non-targeting siRNAs (GenePharma, Shanghai, China) were used
as negative controls in the experiments.

1.8 qRT-PCR

To analyze IGFBP2 gene expression and its alterations following
siRNA transfection, qRT-PCR was conducted. RNA was isolated
from U251 cells using TRIzol reagent (Takara, Japan), followed by
cDNA synthesis with HiScript II qRT SuperMix (Vazyme, China).
The qRT-PCR assay was subsequently carried out using ChamQ
Universal SYBR qPCR Master Mix (Vazyme, China). The primer
sequences used for qRT-PCR are as follows:

IGFBP2:
Forward: 5′-GCACTTGTGAGAAGCGCCG-3′
Reverse: 5′-GCCTCCTTCTGAGTGGTCATC-3′
GAPDH:
Forward: 5′-TGCACCACCAACTGCTTAGC-3′
Reverse: 5′-GGCATGGACTGTGGTCATGAG-3′

1.9 Western blot analysis

Proteins were extracted from U251 cells using RIPA lysis buffer
(Beyotime, China) containing a protease inhibitor cocktail (Roche,
Switzerland). Protein concentrations were measured using a BCA
assay (Thermo Fisher, United States), and 30 µg of each sample was
resolved on 10% SDS-PAGE gels before being transferred to PVDF
membranes (Millipore, United States). The membranes were
blocked with 5% non-fat milk in TBST for 1 h at room
temperature and then probed with primary antibodies overnight
at 4°C: anti-IGFBP2 (1:1,000, Abcam, ab123456) and anti-β-actin (1:
5,000, Proteintech, 66009-1-Ig). After TBST washes, the membranes
were incubated with HRP-conjugated secondary antibodies (1:5,000,

Cell Signaling Technology, 7074S) for 1 h at room temperature.
Protein bands were detected using an ECL system (Tanon, China)
and captured with a ChemiDoc™ XRS + System (Bio-Rad,
United States).

1.10 EdU incorporation assay

Cell proliferation was evaluated using the EdU Cell Proliferation
Kit (BeyoClick™, China). U251 cells were plated in 24-well plates
and treated with 10 μM EdU for 2 h at 37°C. After fixation with 4%
paraformaldehyde for 15 min and permeabilization with 0.3%
Triton X-100 for 20 min, cells were stained with Click Reaction
Mix (containing Alexa Fluor 594) for 30 min in the dark. Nuclei
were labeled with Hoechst 33,342 (Beyotime, China) for 10 min.
Fluorescent images were acquired using a Nikon Eclipse
Ti2 microscope (Japan), and EdU-positive cells were analyzed
using ImageJ software (NIH, United States).

1.11 Cell cycle analysis by flow cytometry

Cells were collected, fixed in 70% ethanol overnight at 4°C, and
incubated with 50 μg/mL propidium iodide (PI; Sigma,
United States) and 100 μg/mL RNase A (Beyotime, China) for
30 min at 37°C in the dark. Cell cycle phases (G0/G1, S, and G2/
M) were assessed using a CytoFLEX flow cytometer (Beckman
Coulter, United States) and analyzed with CytExpert software
(v2.4), with quantification based on DNA content.

1.12 Apoptosis detection by flow cytometry

Apoptosis was assessed using the Annexin V-FITC/PI
Apoptosis Detection Kit (BD Biosciences, United States). Cells
were harvested, washed with PBS, and suspended in 100 μL
binding buffer. After adding 5 μL Annexin V-FITC and 5 μL
PI, cells were incubated for 15 min at room temperature in the
dark. Apoptotic cells were measured using a BD FACSCanto II
flow cytometer (BD Biosciences, United States), and data were
analyzed with FlowJo software (v10.8), distinguishing early
apoptotic (Annexin V+/PI−) and late apoptotic (Annexin V+/
PI+) populations.

1.13 Wound healing assay and transwell
migration assay

Twenty-four hours post-transfection with IGFBP2 siRNA,
U251 cells were plated in 6-well plates, and a wound was
introduced using a 1-mL pipette tip. Cell migration was
monitored by capturing images at specific time intervals. For the
transwell migration assay, U251 cells were placed in the upper
chamber of transwell inserts with 200 µL of serum-free medium,
while the lower chamber contained 500 µL of medium
supplemented with 20% fetal bovine serum. After 24 h of
incubation at 37°C, cells that migrated to the lower chamber
were fixed with 4% paraformaldehyde, stained with 0.1% crystal
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violet, and visualized under an optical microscope. Migrated cells
were quantified and documented.

1.14 Statistical analyses

All experiments were independently repeated three times.
Data are presented as mean ± SD. Comparisons between two
groups were conducted using t-tests for normally distributed data
and Wilcoxon rank-sum tests for non-normally distributed data.
For multiple group comparisons, analysis of variance (ANOVA)
was applied for parametric data, while the Kruskal–Wallis test
was used for non-parametric data. Survival analysis was
performed using the Kaplan-Meier method, with statistical
significance set at P < 0.05. All analyses were carried out
using R software (version 4.2.0) and GraphPad Prism
software (version 7.0).

2 Introduction

Glioma, the most prevalent primary malignant tumor of the
central nervous system, continues to pose significant therapeutic
challenges due to its aggressive progression, immunosuppressive
microenvironment, and resistance to conventional therapies (Varn
et al., 2022). Despite advances in molecular stratification, the
prognosis for patients remains dismal, underscoring the urgent
need for novel biomarkers and therapeutic strategies (Alessio
et al., 2022). Post-translational modifications (PTMs), such as
palmitoylation, have emerged as critical regulators of oncogenic
signaling and immune evasion in cancers. This reversible lipid
modification, mediated by a family of ZDHHC enzymes and
depalmitoylases (e.g., LYPLA, PPT), governs protein localization,
stability, and interaction networks (Pan and Chen, 2022). While
palmitoylation dysregulation has been implicated in malignancies
like breast and lung cancer, its role in shaping LGG progression,
immune modulation, and clinical outcomes remains poorly
characterized.

Recent studies suggest that palmitoylation may influence tumor-
immune crosstalk by modifying immune checkpoint proteins or
chemokine receptors (Yao et al., 2019). However, a systematic
exploration of palmitoylation-related genes (PRGs) in LGG
heterogeneity, prognostic stratification, and therapeutic
vulnerability is lacking. Moreover, the interplay between
Palmitoylation-related DEG subtypes, immune infiltration
patterns, and immunotherapy response remains unexplored.
Addressing these gaps could unravel mechanisms underlying
LGG immune evasion and identify actionable targets to improve
patient outcomes.

In this study, we integrated multi-omics data from The Cancer
Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA)
cohorts to delineate palmitoylation-related molecular subtypes and
their clinical implications (Roychowdhury and Chinnaiyan, 2016;
Qian et al., 2021). Through consensus clustering and functional
enrichment analyses, we identified two distinct palmitoylation
clusters with divergent survival outcomes and immune
landscapes. Cluster B, characterized by elevated immune
infiltration and enriched JAK-STAT signaling, paradoxically

exhibited poorer prognosis, suggesting an immunosuppressive
microenvironment despite abundant immune cell presence.
Leveraging differentially expressed genes (DEGs) between
clusters, we constructed a robust five-gene prognostic signature
(CHI3L1, IGFBP2, MEOX2, EMILIN3, SFRP2) validated across
independent cohorts (AUC: 0.68–0.94). High-risk patients
demonstrated upregulated immune checkpoints (PD-1, PD-L1,
CTLA4) and elevated Tumor Immune Dysfunction and
Exclusion (TIDE) scores, indicative of immunotherapy resistance.
Functional validation revealed that IGFBP2 silencing suppressed
LGG cell proliferation, migration and invasion, positioning it as a
potential therapeutic target.

The study highlights the dual impact of palmitoylation in
promoting LGG progression and facilitating immune evasion,
establishing a prognostic framework for risk assessment and
supporting the development of palmitoylation-targeted therapies
to address treatment resistance. By addressing key gaps in the
understanding of the PTM-immune axis in LGG, this research
provides valuable translational insights for advancing
personalized oncology.

3 Results

3.1 Palmitoylation clusters in LGG

In this study, we focused on the analysis of 30 palmitoylation
regulating genes (ZDHHC1, ZDHHC2, ZDHHC3, ZDHHC4,
ZDHHC5, ZDHHC6, ZDHHC7, ZDHHC8, ZDHHC9,
ZDHHC11, ZDHHC12, ZDHHC13, ZDHHC14, ZDHHC15,
ZDHHC16, ZDHHC17, ZDHHC18, ZDHHC19, ZDHHC20,
ZDHHC21, ZDHHC22, ZDHHC23, ZDHHC24, LYPLA1,
LYPLA2, ABHD17A, ABHD17B, ABHD17C, PPT1, PPT2). First,
we analyzed the chromosomal localization of these 30 genes
(Figure 1A). Subsequently, we compared the expression levels of
these palmitoylation regulating genes between TCGA-LGG and
GTEx normal tissues. Among the 30 genes analyzed, 24 were
significantly upregulated in LGG tissues compared to normal
tissues, whereas 5 were significantly downregulated.
ZDHHC13 expression exhibited no significant
difference (Figure 1B).

We utilized the cBioPortal database to examine mutation
frequencies of palmitoylation-related genes in LGG patients,
revealing generally low mutation rates (Figure 1C). Among these,
ABHD17A exhibited the highest mutation frequency at 4.1%.
Furthermore, analysis of copy number variations (CNVs)
indicated that such alterations were infrequent. Notable CNV
amplifications were detected in ZDHHC9, ZDHHC12,
ZDHHC15, and ABHD17A, while CNV deletions were more
common in ZDHHC3, ZDHHC6, and ZDHHC19 (Figure 1D).

Subsequently, univariate Cox regression analysis was conducted
using transcriptomic data paired with survival information from the
CGGA_325, CGGA_693, and TCGA datasets. The results,
visualized through forest plots (Figure 1E), identified nine genes
(ZDHHC1, ZDHHC5, ZDHHC7, ZDHHC12, ZDHHC13,
ZDHHC15, ZDHHC18, ZDHHC22, LYPLA1) that demonstrated
statistically significant and consistent associations with prognosis
across all three datasets.
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3.2 Immune cell infltration analysis between
palmitoylation clusters

To gain deeper insights into the biological processes and clinical
significance of palmitoylation regulating genes, we performed
consensus clustering analysis on samples from the TCGA
databases. The samples were classified based on the expression
levels of the nine palmitoylation regulating genes identified in the
previous section. We tested different k values from 1 to 9 and found
that k = 2 provided the best clustering stability (Figures 2A,B).
Accordingly, we divided the LGG population into two clusters:
Palmitoylation Cluster A and Palmitoylation Cluster B.

Principal component analysis (PCA) revealed that most LGG
patients could be distinguished based on the Palmitoylation cluster

classification (Figure 2C). Kaplan-Meier survival analysis revealed a
significant disparity in overall survival (OS) between the two
clusters. Patients in Palmitoylation Cluster A had a better
prognosis compared to those in Palmitoylation Cluster B
(Figure 2D). Heatmaps intuitively displayed the distribution of
the nine palmitoylation-related genes across different clusters,
grades and ages. Notably, a higher percentage of grade 3 LGG
patients and elevated expression levels of most palmitoylation-
related genes were observed in Palmitoylation Cluster B (Figure 2E).

Significant variations in immune cell infiltration were observed
between the two clusters. Patients in Palmitoylation Cluster B
showed higher levels of immune cell infiltration compared to
Palmitoylation Cluster A, except for CD56 bright natural killer
(NK) cells, which were less prevalent in Cluster B (Figure 2F).

FIGURE 1
Analysis of Palmitoylation Regulating Genes in LGG. (A) Chromosomal localization of 30 palmitoylation regulating genes. (B) Expression levels of
palmitoylation regulating genes in TCGA-LGG and GTEx normal tissues. (C) Mutation frequencies of palmitoylation regulating genes in LGG patients
using the cBioPortal database. (D) Copy number variations (CNVs) of palmitoylation regulating genes in LGG patients. (E) Forest plot of univariate Cox
regression analysis for the association between palmitoylation regulating genes and prognosis in CGGA_325, CGGA_693, and TCGA datasets.
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To explore the biological functions differentiating the two
clusters, we conducted Gene Set Variation Analysis (GSVA).
The results indicated that pathways involving extracellular
matrix-receptor interactions, leukocyte transendothelial
migration, lysosomal activity, and tumor-related pathways
(such as the JAK-STAT signaling pathway (Philips et al.,
2022)) were notably enriched in Palmitoylation Cluster
B (Figure 2G).

3.3 Identifcation of palmitoylation-related
DEG subtypes in LGG

Given the notable survival differences between the two
Palmitoylation clusters, we investigated whether genetic
variations might be a key factor. To explore this, we conducted a
detailed analysis to identify potential gene alterations between

Palmitoylation Cluster A and Cluster B, uncovering
1,543 differentially expressed genes (DEGs) (Figure 3A).

GO functional enrichment analysis revealed that these DEGs
were primarily involved in biological processes (BP) such as
leukocyte-mediated immune responses, lymphocyte-mediated
immunity, and leukocyte cell-cell adhesion. In terms of cellular
components (CC), the DEGs were enriched in major
histocompatibility complex (MHC) protein complexes, MHC
class II protein complexes, and extracellular matrix (ECM)
containing collagen. For molecular functions (MF), the DEGs
were associated with ECM structural components, immune
receptor activity, and integrin binding (Figure 3B).

KEGG pathway enrichment analysis further showed that the
DEGs were enriched in pathways related to proteoglycans in
cancer, cell adhesion molecules, ECM-receptor interactions,
antigen processing and presentation, Th17 cell differentiation,
and Th1 and Th2 cell differentiation (Figure 3C). These findings

FIGURE 2
Immune Cell Infiltration Analysis Between Palmitoylation Clusters. (A) Heatmap of consensus clustering matrix for k = 2. (B) Consensus clustering
stability for different k values (2–9). (C) Principal component analysis (PCA) of LGG patients based on Palmitoylation cluster classification. (D) Kaplan-
Meier survival curves showing overall survival (OS) differences between Palmitoylation Cluster A and Palmitoylation Cluster B. (E)Heatmap displaying the
distribution of nine palmitoylation regulating genes across different clusters, grades and ages. (F) Immune cell infiltration levels in Palmitoylation
Cluster A and Palmitoylation Cluster B. (G) Gene Set Variation Analysis (GSVA) of biological pathways in Palmitoylation Cluster A and B.
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suggest that genetic differences between the two clusters may
contribute to the observed survival disparities.

To explore the clinical relevance of specific DEGs, we
performed consensus clustering analysis, testing k values
from 1 to 9. The optimal clustering stability was achieved at
k = 2 (Figures 3D,E), leading to the identification of two
Palmitoylation-related DEG subtypes: DEG Subtype Cluster
A and DEG Subtype Cluster B. Kaplan-Meier survival

analysis demonstrated that patients in DEG Subtype Cluster
A had significantly better survival outcomes compared to those
in DEG Subtype Cluster B (Figure 3F).

Heatmap analysis revealed notable differences in tumor grade
and age among LGG patients across Palmitoylation clusters and
DEG subtypes. Palmitoylation Cluster B and DEG Subtype
Cluster B contained a higher proportion of patients with grade
3 or higher tumors (Figure 3G).

FIGURE 3
Identification of Palmitoylation-Related DEG Subtypes in LGG. (A) Volcano plot of differentially expressed genes (DEGs) between Palmitoylation
Cluster A and Palmitoylation Cluster B. (B) GO functional enrichment analysis of DEGs. (C) KEGG pathway enrichment analysis of DEGs. (D) Heatmap of
consensus clustering matrix for k = 2 based on DEGs. (E) Consensus clustering stability for different k values (2–9) based on DEGs. (F) Kaplan-Meier
survival curves showing OS differences between DEG Subtype Cluster A and DEG Subtype Cluster B. (G) Heatmap displaying significant differences
in tumor grade and age among LGG patients across Palmitoylation clusters and DEG subtypes. (H) Expression differences of palmitoylation regulating
genes in different DEG subtypes.
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Further examination of palmitoylation-related gene expression across
DEG subtypes (Figure 3H) showed that 17 genes (ZDHHC1, ZDHHC3,
ZDHHC4, ZDHHC5, ZDHHC6, ZDHHC7, ZDHHC12, ZDHHC13,
ZDHHC14, ZDHHC15, ZDHHC18, ZDHHC23, ZDHHC24, LYPLA1,

LYPLA2, ABHD17C, PPT1) were significantly upregulated in DEG
Subtype Cluster B. In contrast, six genes (ZDHHC11, ZDHHC16,
ZDHHC17, ZDHHC21, ZDHHC22, ABHD17B) exhibited increased
expression in DEG Subtype Cluster A (Figure 3H).

FIGURE 4
Construction and Validation of the Palmitoylation-Related Prognostic Signature. (A) LASSO regression analysis for gene selection. (B)Coefficients of
selected genes in the LASSOmodel. (C) The coefficients of selected genes and their forest plot. (D) The heatmap for selected genes in the TCGA training
set. (E) The heatmap for selected genes in the CGGA325 validation set. (F) The heatmap for selected genes in the CGGA693 validation set. (G) ROC curves
for 1-, 2-, and 3-year survival in the TCGA training set. (H) ROC curves for 1-, 2-, and 3-year survival in the CGGA325 validation set. (I) ROC curves for
1-, 2-, and 3-year survival in the CGGA693 validation set. (J) Kaplan-Meier survival curves for OS in the TCGA cohort. (K) Kaplan-Meier survival curves for
OS in the CGGA325 cohort. (L) Kaplan-Meier survival curves for OS in the CGGA693 cohort. (M)Nomogram for predicting 1-, 3-, and 5-year OS based on
patient sex, grade, age, and risk score. (N) Calibration curves for the nomogram.
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3.4 Construction and validation of the
palmitoylation-related prognostic signature

Considering the complexity and heterogeneity of each
glioblastoma multiforme (GBM) patient, we constructed a
palmitoylation-related prognostic signature to evaluate the
prognosis of GBM patients. To build this prognostic signature,
we identified 1,081 prognosis-related genes common to both the
CGGA325 and CGGA693 cohorts through univariate Cox
regression analysis. We used TCGA-LGG samples as the training
set and CGGA325 and CGGA693 samples as external validation
sets. LASSO analysis was then performed to further refine and select
these genes (Figures 4A,B). Ultimately, we identified five
palmitoylation-related genes and their corresponding coefficients
(Figure 4C). For each LGG patient, the risk score was calculated
using the following formula.

Risk Score � CHI3L1 × 0.14 + IGFBP2 × 0.11 +MEOX2 × 0.02

+ EMILIN3 × 0.02 + +SFRP2 × (− 0.01).

Based on this score, patients in the TCGA cohort and the two
external validation sets (CGGA325 and CGGA693) were stratified
into high-risk and low-risk groups. The expression levels of the five
selected genes, along with the risk scores and patient survival status,
are reflected in Figures 4D–F for the TCGA, CGGA325, and
CGGA693 datasets. Subsequently, we evaluated the prognostic
performance of the palmitoylation-related signature using ROC
analysis. In the training set, the AUC values for 1-, 2-, and 3-
year survival were 0.92, 0.94, and 0.89, respectively (Figure 4G). This
signature also demonstrated stable prognostic performance in the
two external validation sets: for the CGGA325 cohort, the AUC
values were 0.82, 0.80, and 0.83 for 1-, 2-, and 3-year survival
(Figure 4H); for the CGGA693 cohort, the AUC values were 0.68,
0.75, and 0.75 (Figure 4I). These results indicate that our signature is
a reliable predictor of LGG patient prognosis.

Survival status analysis revealed that high-risk patients experienced
worse prognoses compared to low-risk patients across all three cohorts
(Figures 4J–L). Kaplan-Meier survival analysis further validated that
high-risk LGG patients had significantly reduced overall survival (OS)
compared to low-risk patients (P < 0.0001).

To enhance clinical utility, we developed a nomogram
incorporating patient sex, grade, age, and risk score to predict 1-, 3-,
and 5-year OS (Figure 4M). The nomogram indicated that a total score
of 195 corresponded to 1-, 3-, and 5-year survival rates of 81.8%, 45.8%,
and 22.2%, respectively. Calibration curves demonstrated the
nomogram’s accuracy in predicting patient OS (Figure 4N).

Collectively, these results suggest that the palmitoylation-related
prognostic signature is a robust predictor of LGG prognosis, and the
nomogram offers valuable insights for estimating patient
survival outcomes.

3.5 The palmitoylation-related prognostic
signature characterized by distinct immune
infltration landscapes

After constructing the palmitoylation-related prognostic
signature, we used Sankey diagrams to visualize the distribution

of LGG samples across different classification methods. The results
showed that most patients in Palmitoylation Cluster A were
associated with DEG Subtype Cluster A, which had lower risk
scores and better prognoses (Figure 5A). Conversely, the majority
of patients in DEG Subtype Cluster B were associated with
Palmitoylation Cluster B, exhibiting higher risk scores and poorer
prognoses (Figure 5A). Quantitative analysis further supported these
findings, showing that the risk scores in DEG Subtype Cluster B were
significantly higher than those in DEG Subtype Cluster A (P < 0.001,
Figure 5B). Additionally, the risk scores in Palmitoylation Cluster B
were also significantly higher (P < 0.001, Figure 5C), indicating a
potential association between palmitoylation-related genes and
LGG prognosis.

We focused on the nine key palmitoylation regulating genes that
showed significant differences in univariate analysis. Our analysis
revealed that eight genes (ZDHHC1, ZDHHC5, ZDHHC7,
ZDHHC12, ZDHHC13, ZDHHC15, ZDHHC18, LYPLA1) were
significantly upregulated in DEG Subtype Cluster B. In contrast,
ZDHHC22 was upregulated in DEG Subtype Cluster A (Figure 5D).
These results suggest that these palmitoylation regulating genes may
be associated with the poor prognosis observed in high-risk
LGG patients.

3.6 Palmitoylation-related prognostic
signature predicted the efficacy of
immunotherapy

To explore the role of the palmitoylation-related prognostic
signature in LGG prognosis via the tumor microenvironment
(TME), we assessed the relationship between risk scores and
immune cell infiltration, revealing significant associations with
multiple immune cell types. Specifically, naive B cells (R = 0.17,
P = 0.047, Figure 6A), M0 macrophages (R = 0.30, P = 0.00061,
Figure 6B), M1 macrophages (R = 0.35, P = 4.3e−5, Figure 6C),
M2 macrophages (R = 0.35, P = 4.3e−5, Figure 6D), and
neutrophils (R = 0.19, P = 0.03, Figure 6J) exhibited positive
correlations with risk scores. In contrast, activated mast cells
(R = −0.25, P = 0.0044, Figure 6E) and monocytes (R = −0.49, P =
5e−9, Figure 6F) showed significant negative correlations.
Additionally, CD8 T cells (R = 0.23, P = 0.0081, Figure 6G)
and follicular helper T cells (R = 0.22, P = 0.014, Figure 6H) also
had positive correlations, while eosinophils (R = −0.22, P = 0.013,
Figure 6I) showed a negative correlation.

A heatmap was constructed to illustrate the relationships
between the five feature genes and 22 types of immune cell
infiltration. The analysis showed that M1 macrophages,
M2 macrophages, and CD4 memory activated T cells were
significantly correlated with all five feature genes
(Figure 6K). In contrast, activated dendritic cells,
eosinophils, and gamma delta T cells showed no significant
associations with these genes.

Additionally, IGFBP2 emerged as the gene most strongly linked
to immune cell infiltration. Using the ESTIMATE algorithm, we
assessed stromal, immune, and ESTIMATE scores in LGG samples,
which were significantly higher in the high-risk group (Figure 6L).
This indicates lower tumor purity and increased infiltration of
immune and stromal cells in high-risk patients.
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3.7 Palmitoylation-related prognostic
signature predicted the efcacy of
immunotherapy

Immune checkpoint inhibitors (ICIs) targeting PD-1, PD-L1,
and CTLA-4 have shown significant therapeutic potential in various
cancers. To investigate the connection between the palmitoylation-
related prognostic signature and immunotherapy, we compared the

expression levels of these immune checkpoints between high-risk
and low-risk groups. The analysis revealed that high-risk patients
exhibited significantly elevated levels of PD-1 (P < 0.001, Figure 7A),
PD-L1 (P < 0.001, Figure 7B), and CTLA4 (P < 0.001, Figure 7C)
compared to low-risk patients.

To evaluate the implications for immunotherapy efficacy, we
employed the Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm to classify the entire LGG cohort. The results indicated

FIGURE 5
Distinct Immune Infiltration Landscapes Characterized by the Palmitoylation-Related Prognostic Signature. (A) Sankey diagram visualizing the
distribution of LGG samples across different classification methods. (B) Box plot showing the significant difference in risk scores between DEG Subtype
Cluster A and DEG Subtype Cluster B. (C) Box plot showing the significant difference in risk scores between Palmitoylation Cluster A and Palmitoylation
Cluster B. (D) Expression levels of nine key palmitoylation regulating genes in different DEG subtypes.
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that the high-risk group had significantly higher TIDE scores
(Figures 7D,E).

We also assessed TIDE scores for specific cell subsets, including
CD8 T cells and myeloid-derived suppressor cells (MDSCs), in both
high-risk and low-risk groups (Figure 7F). The high-risk group
displayed higher TIDE scores for these subsets, providing partial
insight into the observed increase in immune infiltration despite
poorer prognosis in this group.

3.8 Functional validation of
IGFBP2 knockdown in U251 cells

To further enhance the credibility of the prognostic signature,
we conducted in vitro functional validation experiments. The
CHI3L1-encoded protein drives tumor growth, migration, and
invasion in gliomas, with its expression levels correlating with
tumor malignancy and adverse prognosis. IGFBP2, a component

FIGURE 6
Correlation Between Risk Scores and Immune Cell Infiltration. (A) Correlation between risk scores and naive B cells. (B) Correlation between risk
scores and M0 macrophages. (C) Correlation between risk scores and M1 macrophages. (D) Correlation between risk scores and M2 macrophages. (E)
Correlation between risk scores and activated mast cells. (F) Correlation between risk scores and monocytes. (G) Correlation between risk scores and
CD8 T cells. (H) Correlation between risk scores and follicular helper T cells. (I) Correlation between risk scores and eosinophils. (J) Correlation
between risk scores and neutrophils. (K)Heatmap of correlations between the five feature genes and 22 types of immune cell infiltration. (L) Plot showing
the significant difference in stromal, immune, and ESTIMATE scores between high-risk and low-risk groups.
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of the IGF (insulin-like growth factor) axis, regulates cell
proliferation, differentiation, and apoptotic processes. In gliomas,
IGFBP2 expression is linked to tumor growth and malignancy.
MEOX2, which encodes a protein involved in glioma
development and angiogenesis, has expression levels that may
correlate with tumor invasiveness and vascularization. EMILIN3
(Elastin-like polypeptide 3) is primarily studied for its interactions
with the tumor microenvironment and its effects on glioma cell
behavior. SFRP2, an inhibitor of the Wnt signaling pathway, affects
glioma cell proliferation, migration, and survival throughWnt signal
regulation. Correlation analyses revealed a central role of IGFBP2 in
immune-mesenchymal interactions, supported by its substantial
weight in prognostic models and its potential novel mechanism
in palmitoylation-mediated immune evasion. While acknowledging
the well-documented importance of other signature genes through
extensive literature evidence, we prioritized IGFBP2 for functional
validation based on these compelling findings.

Initial screening via qRT-PCR andWestern blot (WB) identified
siRNA2 as the most effective interference fragment for
IGFBP2 knockdown, validated at both mRNA and protein levels

(Figure 8A). Subsequent functional analyses using siRNA2 revealed
that IGFBP2 silencing significantly reduced cellular proliferation, as
evidenced by decreased EdU incorporation rates (P < 0.001,
Figure 8B). Flow cytometry-based cell cycle analysis
demonstrated a marked increase in the proportion of cells
arrested in the G1 phase following IGFBP2 knockdown
(Figure 8C). Concurrently, apoptosis assays revealed a significant
elevation in apoptotic rates (P < 0.001), including both early and late
apoptotic populations (Figure 8D). Furthermore, IGFBP2 depletion
attenuated cellular migratory and invasive capacities, as confirmed
by wound healing and transwell invasion assays (Figures 8E,F).

In summary, our findings indicate that interference with
IGFBP2 expression can effectively inhibit the proliferation and
migration of U251 cells.

4 Discussion

This study offers a detailed examination of palmitoylation-
related genes in LGG, highlighting their significant impact on

FIGURE 7
Prediction of Immunotherapy Efficacy by the Palmitoylation-Related Prognostic Signature. (A) PD-1 expression in high-risk versus low-risk groups.
(B) PD-L1 expression in high-risk versus low-risk groups. (C) CTLA4 expression in high-risk versus low-risk groups. (D,E) TIDE scores demonstrating a
significant difference between high-risk and low-risk groups. (F) Box plot illustrating the significant difference in TIDE scores for specific cell subsets
between high-risk and low-risk groups.
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tumor progression, immune microenvironment regulation, and
clinical outcomes. While palmitoylation genes are distributed
across diverse chromosomal loci without evidence of cancer-
specific clustering (Figure 1A), their functional convergence in
lipid modification suggests transcriptional or epigenetic
regulation may coordinate their activity more than genomic
proximity. Through the integration of multi-omics data and
functional validation, we identified unique palmitoylation
clusters, established a reliable prognostic signature, and explored
potential mechanisms connecting palmitoylation to
immunotherapy effectiveness.

Our identification of two palmitoylation clusters (Cluster A and
B) in LGG highlights the heterogeneity of palmitoylation dynamics
in LGG biology. The upregulation of 24 palmitoylation regulating
genes in tumor tissues (e.g., ZDHHC12, LYPLA1) compared to
normal tissues suggests a tumor-promoting role for palmitoylation
in LGG. Notably, the higher prevalence of grade 3 tumors and

poorer survival in Cluster B correlates with enriched pathways such
as extracellular matrix-receptor interactions and JAK-STAT
signaling, which are known drivers of glioma invasion and
treatment resistance (Fujii et al., 2023; Kwiatkowska and Symons,
2020). These findings align with studies demonstrating that
palmitoylation regulates membrane localization of oncoproteins,
including Src-family kinases and Ras GTPases, which are critical for
tumor progression (Mareel and Leroy, 2003). However, the low
mutation frequency of palmitoylation genes (e.g., ABHD17A at
4.1%) implies that their dysregulation may primarily occur at the
transcriptional or post-translational level, warranting further
mechanistic investigations.

The pronounced immune infiltration in Cluster B, characterized
by elevated M1/M2 macrophages and CD8+ T cells, paradoxically
associates with worse prognosis. This “immune-excluded”
phenotype, marked by high stromal and ESTIMATE scores,
mirrors observations in other cancers where dense stromal

FIGURE 8
Functional Validation of IGFBP2 Knockdown inU251 Cells. (A) qRT-PCR andWestern blot analysis of IGFBP2 expression in U251 cells following siRNA
transfection. (B) EdU incorporation assay demonstrating the impact of IGFBP2 knockdown on cell proliferation. (C) Flow cytometry analysis of cell cycle
distribution post-IGFBP2 knockdown. (D) Flow cytometry analysis of apoptosis rates post-IGFBP2 knockdown. (E) Wound healing assay illustrating the
effect of IGFBP2 knockdown on cell migration. (F) Transwell invasion assay revealing the effect of IGFBP2 knockdown on cell invasion.
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barriers limit immune effector cell function despite abundant
infiltration (Shi et al., 2021). The negative correlation between
monocytes and risk scores further underscores the complexity of
immune interactions in glioma, as monocytes can differentiate into
immunosuppressive tumor-associated macrophages (Mulder et al.,
2021). The poorer prognosis may stem from an immunosuppressive
microenvironment. For instance, M2 macrophages and regulatory
T cells (Tregs) could suppress effector T cell function via IL-10 and
TGF-β secretion. The enrichment of antigen presentation pathways
(e.g., MHC class II complexes) in Cluster B suggests that
palmitoylation may modulate immune evasion by altering
antigen processing—a hypothesis supported by the upregulation
of PD-1, PD-L1, and CTLA4 in high-risk patients. ZDHHC enzymes
may enhance PD-L1 membrane localization and stability via
palmitoylation, as shown for other immune checkpoints (Yao
et al., 2019). These findings position palmitoylation as a potential
mediator of the immunosuppressive microenvironment, offering a
rationale for combining palmitoylation inhibitors with immune
checkpoint blockade.

The five-gene palmitoylation-related signature (CHI3L1,
IGFBP2, MEOX2, EMILIN3, SFRP2) demonstrates robust
prognostic accuracy across independent cohorts (AUC:
0.68–0.94). Its predictive power for survival aligns with the
roles of these genes in glioma biology: CHI3L1 promotes
invasiveness via NF-κB activation (Xu et al., 2023), while
IGFBP2 enhances angiogenesis through IGF signaling
(Kharkova et al., 2014). The inverse association of SFRP2 (a
Wnt inhibitor) with risk scores further supports Wnt pathway
activation as a hallmark of aggressive gliomas (Majchrzak-
Celińska et al., 2016). Importantly, the integration of this
signature into a nomogram incorporating age, grade, and sex
provides a clinically actionable tool for stratifying patients into
risk-adapted therapeutic strategies. While the model
demonstrated high accuracy in the training cohort (AUC
0.94), its performance in external validation (AUC 0.68–0.75)
highlights potential overfitting or cohort heterogeneity. Future
studies should validate this signature in prospective cohorts and
integrate clinical parameters (e.g., IDH mutation status) to
enhance generalizability.

Functional experiments conducted in U251 cell lines
demonstrated that silencing IGFBP2 significantly inhibits
proliferation, migration, and invasion, reinforcing its role as a
critical driver of glioma malignancy. The strong association
between IGFBP2 expression and immune infiltration, such as
macrophages and neutrophils, suggests it may act as a key
interface between palmitoylation and immune modulation. These
findings build on previous research linking IGFBP2 to PI3K/Akt
pathway activation (Qian et al., 2023) and underscore its potential as
a therapeutic target. Future investigations should explore whether
IGFBP2 inhibition can enhance the efficacy of existing therapies,
such as temozolomide or immunotherapies, to address treatment
resistance.

While our findings provide novel insights into palmitoylation-
mediated mechanisms in LGG, several limitations warrant
discussion. First, the retrospective design of the TCGA and
CGGA datasets inherently limits causal inference between
palmitoylation alterations and clinical outcomes. Second, while
we identified associations between specific palmitoylation genes

(e.g., ZDHHC22 in Cluster A) and immune evasion, the exact
mechanistic underpinnings remain unresolved (Du et al., 2021).
For instance, whether ZDHHC22 directly modulates immune
checkpoint trafficking or antigen presentation pathways
constitutes a critical knowledge gap requiring targeted
investigation. Third, while the prognostic signature
demonstrated robust performance in independent cohorts,
external validation in larger multi-institutional cohorts with
standardized clinical annotations will strengthen its
translational utility.

Although functional validation prioritized IGFBP2 due to its
centrality in immune-stromal interactions, the roles of other
signature genes (e.g., CHI3L1, SFRP2) in palmitoylation-
mediated immune evasion remain unexplored. Systematic
interrogation of their palmitoylation-dependent molecular
networks (e.g., Wnt/NF-κB crosstalk for SFRP2) represents a
critical next step. Finally, the metabolic consequences of
palmitoylation dysregulation in LGG remain unaddressed.
Emerging evidence implicates palmitoylation in regulating
nutrient transporters (e.g., GLUT1) and metabolic enzymes
(e.g., ACLY), suggesting its potential role in rewiring glioma
metabolism—a dimension meriting dedicated
metabolomic studies.

Spatial resolution of palmitoylation dynamics also remains
elusive. Current bulk transcriptomic analyses cannot discern
whether observed changes originate from tumor cells or
infiltrating immune populations. Future work integrating spatial
transcriptomics and single-cell RNA sequencing could map
palmitoylation-related gene expression gradients within tumor
microenvironments, while preclinical models (e.g., patient-derived
organoids) may validate therapeutic candidates targeting
this pathway.

5 Conclusion

In conclusion, this study highlights palmitoylation as a key
regulator of LGG progression and immune evasion. The prognostic
signature and nomogram developed here provide practical tools for risk
assessment, while the functional significance of IGFBP2 emphasizes its
potential as a therapeutic target. These findings lay the groundwork for
personalized therapies aimed at modulating palmitoylation pathways to
enhance outcomes for LGG patients.
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