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Background: Macrophages exhibit diverse activation states. Notably,
M2 macrophages, alternatively activated cells, are notably increased within
glioblastoma (GBM). Herein, our current study aimed to identify gene
biomarkers relevant to M2 macrophages using high-dimensional weighted
gene co-expression network analysis (hdWGCNA) and predict a candidate
drug for GBM.

Methods: Single-cell RNA sequencing (scRNA-seq) data (GSE162631) and
expression data (GSE4290) for GBM were obtained from the Gene Expression
Omnibus (GEO) database. The Seurat package was used for quality control,
processing of scRNA-seq data, and identification of different GBM cell types.
Subsequently, the clusterProfiler package was employed to functionally annotate
the genes specifically highly expressed in the cells. Notably, genes related to the
M2macrophages were screened by differential expression analysis, and the gene
modules were classified by hdWGCNA. Thereafter, a diagnostic model was
constructed, and its robustness was tested. Moreover, drug candidates that
could bind to the specific genes identified in this study were predicted and
further confirmed via molecular docking.

Results: Ten cell clusters were classified, with macrophages showing a higher
proportion in GBM samples. Moreover, highly expressed genes specific to the
M2 macrophages were mainly enriched in neutrophil migration, myeloid
leukocyte migration, and chemokine production. A total of 11 gene modules
(module 1–11) specific to M2 macrophages were also determined; notably,
module 7 showed a relatively high expression of genes. Three key genes,
namely, nuclear factor-kappa-B-inhibitor alpha (NFKBIA), nuclear receptor 4A2
(NR4A2), and FosB Proto-Oncogene, AP-1 Transcription Factor Subunit (FOSB),
were obtained by intersecting 3,257 differentially expressed genes (DEGs) with
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the hub genes screened by hdWGCNA. These three genes were applied to establish
a robust and reliable diagnostic model, and they were found to bind to the
candidate drug thalidomide.

Conclusion: The current study revealed the potential gene biomarkers and drug
candidate for GBM based on genes related to M2macrophages, contributing to the
understanding of the underlying mechanism of GBM.

KEYWORDS

tumor-associated macrophages, M2 macrophages, glioblastoma, high-dimensional
weighted gene co-expression network analysis, thalidomide

1 Introduction

Glioblastoma (GBM) is an aggressive and incurable brain tumor
that accounts for approximately 49% of all malignant brain tumors
(Zhou et al., 2024; Liu et al., 2024; Guo et al., 2024). The current
standard treatments mainly include surgery and radio-chemotherapy
using alkylating agents and the supplementation of tumor-treating
fields (Tan et al., 2020; Weller et al., 2021). The prognosis of GBM
remains dismal, with an overall survival of 14–21 months (Stupp et al.,
2017). A study highlighted the complex functional interactions between
GBM and the cellular architecture of the brain, underscoring the
intricate relationship between the tumor and the central nervous
system (Salvalaggio et al., 2024).

A major limitation of the existing therapies lies in their focus
solely on GBM cells while neglecting the dynamic interplay of the
tumor with its microenvironment (Quail and Joyce, 2017).
Within the microenvironment of GBM, immune cells,
particularly tumor-associated macrophages (TAMs), have been
widely studied (Jain et al., 2023). TAMs, consisting of microglia-
or monocyte-derived populations, are self-renewing populations
that exhibit significant heterogeneity and dominate the immune
landscape in newly diagnosed tumors (Pombo Antunes et al.,
2021). Macrophages can functionally polarize into two
phenotypes (M1 and M2); in particular, M2 macrophages
inhibit inflammation and are found in increased proportion in
cerebral tumors such as GBM (Michiba et al., 2022). Moreover,
an animal model experiment revealed that M2 TAMs can be
activated and in turn enhance tumor progression under the
guidance from tumor-released immunosuppressive cytokines
and chemokines, while the breakdown of M2 TAMs effectively
suppresses GBM (Louis et al., 2016; Pyonteck et al., 2013;
Moghaddam et al., 2023). This evidence, therefore, suggests
that M2 TAMs in the tumor microenvironment may be a
potential therapeutic target for GBM.

Computational analyses have become indispensable in the
screening of tumor-specific genes and prognosis-relevant

biomarkers, contributing to the development of cancer
therapeutics (Huang et al., 2018; Yan et al., 2025). At present,
data from the Gene Expression Omnibus (GEO) database are
commonly used to assess gene transcription levels, support the
monitoring of mRNA expressions, and predict cellular functions
(Yin et al., 2022; Wang et al., 2025). As an unbiased systematic
biology analysis method, weighted gene co-expression network
analysis (WGCNA) explores co-expressed gene modules (Li et al.,
2023a; Wang et al., 2024), whereas high-dimensional weighted gene
co-expression network analysis (hdWGCNA) is a comprehensive
framework that analyzes the co-expression networks based on high-
dimensional transcriptomics data (Morabito et al., 2023). So far, the
application of hdWGCNA in GBM remains limited, presenting an
opportunity for further exploration. Herein, our current study
aimed to identify M2 macrophage-related gene biomarkers for
GBM and screen effective drug candidates that bind to the
biomarkers via molecular docking. The goal of the present study
was to reveal the mechanisms underlying the involvement of
M2 macrophages in GBM and provide some novel insights for
this field.

2 Methods

2.1 Data source

The single-cell RNA sequencing (scRNA-seq) data were
extracted from the dataset GSE162631, which contained four
GBM samples. The chip data of GBM were obtained from the
dataset GSE4290, which contained 77 GBM samples and 23 normal
samples from epilepsy patients.

2.2 Processing the scRNA-seq data

The scRNA-seq data were first read using the “Seurat” R
package to retain the cells with the following criteria: 1)

TABLE 1 Parameters for molecular docking in this assay.

Term Spacing Npts Center

FOSB_thalidomide 0.747 40 40 126 3.334 −0.885 −21.310

NFKBIA_thalidomide 0.681 126 126 126 38.520 25.943 28.220

NR4A2_thalidomide 0.642 126 126 126 17.362 −40.441 −16.738

Abbreviations: GBM, glioblastoma; TAMs, tumor-associated macrophages;
GEO, gene expression omnibus; WGCNA, weighted gene co-expression
network analysis; hdWGCNA, high-dimensional WGCNA; scRNA-seq,
single-cell RNA sequencing; PCA, principal component analysis; UMAP,
uniform manifold approximation and projection; DEGs, differentially
expressed genes; ROC, receiver operator characteristics; AUC, area under
the curve; GO, Gene Ontology; NFKBIA, nuclear factor-kappa-B-inhibitor
alpha; NR4A2, nuclear Receptor 4A2; FOSB, FosB proto-oncogene, AP-
1 transcription factor subunit; CCL1, CC chemokine ligand 1; NF-κB,
nuclear factor-kappa B; PCs, principal components.
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mitochondrial gene count between 200 and 6,000 and 2)
mitochondrial gene count >10% (Tan et al., 2023). Thereafter,
the data were standardized using the SCTransform function and
subjected to dimensionality reduction via principal component
analysis (PCA). The “harmony” R package was applied to
remove the batch effects to ensure a robust downstream
analysis. For dimensionality reduction analysis, we performed
uniform manifold approximation and projection (UMAP) using
the first 50 principal components (PCs). Subsequently, a
k-nearest neighbor (KNN) plot was generated based on the
Euclidean distance using the FindNeighbors function. Finally,
all the cells were clustered via the FindCluster function at the
resolution of 0.1 (for the macrophages, the resolution was set at
0.05) and annotated using the known marker genes provided by
the CellMarker database (Xu et al., 2024).

2.3 Identification and functional enrichment
analysis of higher-expression genes

Specifically higher-expression genes in different cell clusters
were identified using the “FindAllMarkers” function at the
following parameters: logfc.threshold = 0.30, min.pct = 0.25, and
only.pos = T. The functional enrichment analysis on these genes was
implemented using the “clusterProfiler” R package (Yu et al., 2012).

2.4 Identification of M2macrophage-related
biomarkers

The hdWGCNA is a systems biology analysis method for
identifying co-expressed gene modules and mining key

FIGURE 1
Single-cell landscape in GBM. (A) UMAP plot showing the distribution of samples following the removal of batch effects. (B) UMAP plot displaying
different cell types in GBM. (C) Expression levels ofmarker genes belonging to different cell types in GBM. (D) Percentage of different cell types in different
GBM samples.
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regulatory factors based on high-dimensional transcriptomic
data. In this study, the rds data were read using the
“hdWGCNA” R package (Morabito et al., 2023). The co-
expression network was established on M2 macrophages under
the selected optimal soft threshold to obtain relevant gene
modules. The correlation between the gene modules and
M2 macrophages was calculated to reveal the gene module of
interest. The connectivity of the gene modules was determined to
identify the hub genes in the module.

2.5 Identification of the DEGs

All the samples were divided into the control and GBM groups,
and differential gene expression was calculated for the two groups

using the “Limma” R package (Ritchie et al., 2015). The relevant
DEGs were subsequently filtered under the criteria of |log2FC| ≥
1 and the adjusted p-value <0.01.

Then, the obtained DEGs were intersected with the hub genes
identified by hdWGCNA to obtain the key gene
biomarkers for GBM.

2.6 Construction of a diagnostic model

To quantify the risk for GBM patients, a nomogram was
established with the key gene biomarkers using the “rms” R
package (Li et al., 2023b). The predictive potential and the
robustness of the nomogram were then tested based on the
receiver operator characteristics (ROC) curve (and the calculated

FIGURE 2
Landscape of the macrophage subpopulation in GBM. (A) Violin plot on the inflammation-promoting score of macrophage subpopulations.
(B) Distribution on the macrophage subpopulations based on the visualization using the UMAP plot. (C,D) Bar chart displaying the top 20 enriched
items of genes specifically highly expressed in macrophage subpopulations.

Frontiers in Pharmacology frontiersin.org04

Feng et al. 10.3389/fphar.2025.1587258

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1587258


area under the curve (AUC) value), calibration curve, and
decision curve.

2.7 Candidate drug prediction for GBM and
molecular docking

Enrichment analysis on the gene set was implemented via the
“Enrichr” R package (Kuleshov et al., 2016). Based on the dataset
DSigDB, the binding of the candidate drug to the key gene
biomarkers was predicted. The crystal structure of the receptor
proteins was then obtained from the UniProt database, prioritizing
those determined by X-ray or NMR, with lower-resolution
structures serving as the secondary source. The positions were
extended long enough to ensure a comprehensive coverage of the
adequate binding sites.

Based on the prediction results, the 3D structure of the drug
candidate was downloaded from PubChem as the ligand, and the
drug candidates were scaled down according to their p-value if they
did not have any 3D structure or required gene overexpression or
knockdown. The PyMOL software was utilized to remove water
molecules and small molecules and add hydrogen molecules. The
energy of the 3D structure of the drug candidate was minimized by
using the ChemBioOffice software, and molecular docking was

performed to obtain the results with binding energy <−5 kcal/
mol and hydrogen bond length <3.5 Å. The detailed parameters
for each molecular docking are listed in Table 1 (Xiao et al., 2024).

2.8 Statistical analysis

All computational analyses of this study were realized in R
software 4.1.1. The data of two groups were compared using the
Wilcoxon test. The threshold of statistical significance was set when
the p-value was below 0.05.

3 Results

3.1 Single-cell landscape in GBM

The scRNA-seq analysis was performed to classify cell clusters of
GBM. Following data filtering, standardization, removal of batch
effects, and dimensionality reduction, the cells were divided into
10 main clusters (Figures 1A,B). Based on the annotation from the
CellMarker2.0 database, the following cell types were defined:
macrophages (C1QB, C1QA, and HLA-DRA), monocytes
(FCN1 and CXCL3), neutrophils (S100A8, S100A9, and

FIGURE 3
Sorting of M2macrophage-related gene modules via hdWGCNA. (A) Sorting of the optimal soft power threshold for hdWGCNA. (B) Dendrogram of
hdWGCNA of M2 macrophages. (C) Division of gene modules (M2 macrophage-M1 to M2 macrophage-M11) for hdWGCNA.
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S100A12), fibroblasts (VWF and DCN), MKI67+ progenitor cells
(MKI67 and TOP2A), microglial cells (CD163, SPP1, and VSIG4),
epithelial cells (VIM and MIF), T cells (GZMA, NKG7, and CCL5),
plasma cells (IGHG1, IGHG3, and CD79A), and B cells (CD79A,
CD79B, and CD24). The expression levels of the marker genes in
these cell clusters are displayed in Figure 1C. Calculation of the
percentage of the 10 clusters in the four GBM samples revealed a
relatively higher percentage of macrophages (Figure 1D). These
discoveries indicated the potential involvement of
macrophages in GBM.

3.2 Landscape of macrophages in GBM

To characterize macrophage subpopulations in GBM, they were
divided into two main subclusters. Considering the dynamic
transformation of M1 and M2 macrophages, it is difficult to

distinguish these subclusters using the markers. Hence,
AddModuleScore was applied to calculate the score of the pro-
inflammatory factors (Figure 2A). An evidently higher score was
seen in cluster_1 than in cluster_0. Accordingly, cluster_1 was
marked as M1 macrophages, and cluster_0 was marked as
M2 macrophages (Figure 2B).

Subsequently, highly expressed genes specific to M1 and
M2 macrophages were subjected to Gene Ontology (GO)
enrichment analysis. It was observed that the genes associated
with M2 macrophages were mainly enriched in neutrophil
migration, myeloid leukocyte migration, and chemokine
production, whereas the genes related to M1 macrophages were
mainly enriched in the defense response to virus regulation or viral
life cycle and negative regulation of viral genome replication
(Figures 2C,D). Collectively, these results provided the
preliminary data for the polarization tendency of macrophages in
GBM and the potential enriched pathways of their specific genes.

FIGURE 4
Identification of M2 macrophage-specific gene modules based on hdWGCNA. (A) Expression level of genes belonging to each module in different
cells (red represents the highly expressed genes, and blue represents the lower expressed genes). (B) Correlation matrix in different gene modules.
(C) Co-expression network of hub genes belonging to each gene module. (D) Co-expression network of the hub gene based on gene module
M2 macrophage-M7.
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3.3 Identifying M2 macrophage-related
gene modules via hdWGCNA

Then, M2 macrophage-related gene modules were classified
using hdWGCNA. Based on the computed optimal soft power
threshold of 16 (Figure 3A), we constructed a gene clustering
dendrogram in the hdWGCNA framework with
M2 macrophages as the study object. Different colored bars at
the bottom indicated a total of 11 modules identified, each
consisting of genes with similar expression patterns (Figure 3B).
The eigengene-based connectivity kME was further calculated to
reveal 11 gene modules (M2 macrophage-M1 to M2 macrophage-
M11 (Figure 3C)).

The expression levels of genes in the modules in different cell
clusters were quantified, showing a relatively high expression of
genes in M2 macrophage-M7 (Figure 4A). Therefore,
M2 macrophage-M7 was regarded as the key module for
plotting the correlation matrix (Figure 4B) and gene co-
expression network (Figure 4C). The hub gene network of the
M2 macrophage-M7 module was additionally generated based on
the 10 primary key genes (in the inner circle) and the
15 secondary key genes (in the outer circle), as shown
in Figure 4D.

3.4 Analysis on the DEGs based on GEO data

The samples of GBM and control from GEO data were utilized
to screen the DEGs under the thresholds of |log2fold change| ≥ 1 and
adjusted p-value < 0.01. In total, 3,257 DEGs (1,459 up-regulated
DEGs and 1,798 down-regulated genes) were identified (Figure 5A).
The top 20 up-regulated and down-regulated DEGs were selected to
draw a heatmap. As shown in Figure 5B, some genes (e.g., IGFBP2,
CPOL3A1, and CEP55) were highly expressed in GBM.
Subsequently, we acquired three common genes (NR4A2, NR4A2,
and FOSB) by intersecting the DEGs with the hub genes identified by
hdWGCNA (Figure 5C).

3.5 Construction of a diagnostic model

A nomogram was created using the expression levels of these
three key genes to quantify the risk for GBM patients (Figure 6A).
The nomogram showed an AUC = 0.955 (Figure 6B), and the
calibration curve and the ROC curve were nearly overlaid
(Figure 6C), suggesting a high predictive efficacy of the
diagnostic model. Furthermore, the decision curve was plotted to
evaluate the robustness of the model, and an evidently higher benefit
of the nomogram than that of a single gene was noticed (Figure 6D).
These discoveries collectively demonstrated a strong predictive value
of our diagnostic model.

3.6 Prediction of the drug candidate for GBM
and molecular docking

Finally, the three key genes were uploaded and analyzed via
the Enrichr package, and the binding of the drug candidates to the
three genes was predicted using the DSigDB database. Finally,
thalidomide was predicted as the potential drug for GBM, and
6ucl, 1ikn, and 5y41 were the protein structures for FOSB,
NFKB1A, and NR4A2, respectively. Notably, the protein
structures of the three genes all stably bound to thalidomide
(Figures 7A–C; Table 2).

4 Discussion

Macrophages have been considered scavengers that regulate the
immune response against pathogens and maintain homeostasis
within tissue. In response to various cytokine stimulations,
macrophages undergo a switch in their metabolic pathways,
which lead to their differentiation into either the inflammatory
(M1) or regulatory (M2) subtypes (Mehla and Singh, 2019). While
TAMs do not strictly follow M1/M2 polarization, they generally
exhibit an M2-like polarization state to facilitate the growth of

FIGURE 5
Analysis of the differentially expressed genes based on GEO data. (A) Volcano plot showing the differentially expressed genes based on GEO data
(red represents the up-regulated differentially expressed genes, and blue represents the down-regulated differentially expressed genes). (B) Heatmap
demonstrating the expression levels of the differentially expressed genes (red represents the up-regulated differentially expressed genes, and blue
represents the down-regulated differentially expressed genes). (C) Upset plot on the differentially expressed genes and the hub gene
from hdWGCNA.
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tumors via triggering immune suppression (Mehla and Singh, 2019).
Tumor–immune cell interactions are increasingly recognized as
critical drivers of GBM progression and invasion. In particular,
the crosstalk between TAMs and GBM cells promotes an
immunosuppressive microenvironment that facilitates tumor
growth, angiogenesis, and resistance to therapy (Hambardzumyan
et al., 2015). M2-polarized TAMs can secrete a variety of cytokines
and growth factors, such as TGF-β and VEGF, which contribute to
extracellular matrix remodeling and enhance tumor invasiveness
(Pombo Antunes et al., 2021; Li et al., 2022; Peng et al., 2022). These
findings encouraged us to further explore biomarkers related to
M2 TAMs in the research of GBM. Understanding these complex
interactions not only deepens our knowledge of GBM pathobiology
but also paves the way for developing personalized therapeutic
strategies targeting specific immune components. Following the
identification of M2 macrophages, specifically highly expressed
genes were found to be enriched in the pathways such as
neutrophil migration, myeloid leukocyte migration, and
chemokine production. Existing studies have demonstrated that
neutrophil migration plays a critical role in initiating and

enhancing the inflammatory response by facilitating the
recruitment of immune cells to the sites of tissue injury or
infection (de Oliveir et al., 2016). Moreover, neutrophils, which
play a crucial part in the innate immune system, can also promote
the growth of GBM cells (Wang et al., 2023; Chen et al., 2022).
Circulating myeloid cells refer to mature neutrophils and
monocytes, which can migrate out from the blood vessels and
into the tissue in response to inflammation (Marelli-Berg and
Jangani, 2018). In addition, some prior studies have shown the
association between some chemokines such as CC chemokine ligand
1 (CCL1) and M2 macrophage polarization (Sironi et al., 2006).
These findings indicated a potential link between the highly
expressed genes in M2 macrophages and the pathways related to
inflammatory cell migration and chemokine activity, which requires
further investigation in the context of GBM.

This study identified the gene modules specific to
M2 macrophages in GBM using hdWGCNA. Earlier studies
on GBM have applied WGCNA to discover anoikis- and
prognosis-related genes (Sun et al., 2022; Zhou et al., 2021;
Sun et al., 2024). Similarly, some other investigations

FIGURE 6
Construction of the diagnostic model based on the hub genes. (A) Nomogram using the gene expression level of the hub genes (with the
corresponding score based on the expression level). (B–D) ROC curve (B), calibration curve (C), and decision curve (D) based on the
established nomogram.
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employed WGCNA to classify M2 macrophage-related gene
modules in chronic rhinosinusitis with nasal polyps (Zhu
et al., 2022), proliferative diabetic retinopathy (Meng et al.,
2022), and melanoma (Wu et al., 2022). Based on the analysis
of hdWGCNA, we revealed 11 gene modules linked to
M2 macrophages in GBM; in particular, the genes in module
M7 were notably highly expressed in M2 macrophages. The hub
genes of the module M7 were accordingly selected to be
intersected with the DEGs screened from both the control and

tumor groups. Finally, NFKBIA, NR4A2, and FOSB were
determined as three common M2 macrophage-related genes in
GBM. NFKBIA has been identified as an inhibitor of nuclear
factor-kappa B (NF-κB) and exerts an anti-tumor effect on GBM
(Komotar et al., 2011). NR4A2 has been extensively characterized
in the cerebral subcellular regions and is indispensable for the
normal function of dopaminergic neurons. A study also
supported that NR4A2 could be a druggable target of GBM
(Karki et al., 2020). FOSB is reported as an oncogene in GBM,

FIGURE 7
Result of molecular docking showing the drug candidates. (A–C) Molecular docking results showing the docking of thalidomide with FOSB (A),
NFKBIA (B), and NR4A2 (C). Blue molecules in the figure represent the receptor proteins, the green molecules represent the drug molecules, and the
turquoisemolecules represent the amino acid. The binding between the receptor proteins and the drugmolecules is shown in the formof a yellow dotted
line. The number in the figure is the length of the hydrogen bond (Å).

TABLE 2 The binding energy based on the molecular docking.

Compound CID Molecular_name Gene_name PDB_ID Energy (kcal/mol)

5,426 thalidomide FOSB 6ucl −5.14

5,426 thalidomide NFKBIA 1ikn −7.46

5,426 thalidomide NR4A2 5y41 −7.31
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and knockdown of FOSB could inhibit the growth of GBM cells
in vitro and in vivo (Qi et al., 2022). In the current study, the three
common genes, which bound to the drug candidate thalidomide
(a cancer treatment drug with anti-inflammatory, immuno-
modulatory, and anti-angiogenic properties and some
neuroprotective effect on adults), were applied to establish a
robust and reliable diagnostic model (Franks et al., 2004;
Vargesson and Stephens, 2021). Some other studies have also
demonstrated the potential therapeutic effects of thalidomide in
treating GBM (Eatmann et al., 2023; Hassler et al., 2015) and that
thalidomide intervention leads to altered perfusion and
permeability of GBM (Conq et al., 2024). Therefore, we
speculated that the three common genes may be the druggable
targets of thalidomide in GBM, and our future study will
continue to validate the speculation.

Some limitations in the present research should be pointed out.
Since the sample size for the analysis was relatively small, some
larger cohorts should be incorporated to better validate the
generalization of the present study results. Second, the study was
an in silico analysis without any laboratory or clinical validation.
Randomized clinical trials or relevant experimental analyses should
be added for further verification. Third, while we particularly
focused on M2 macrophage-related key genes in researching the
biomarkers for GBM, some other cell clusters may be potentially
equally important. Thus, our future study will continue to explore
the specific implications of these cell clusters and relevant specific
genes to provide a better insight into the molecular
mechanisms of GBM.

5 Conclusion

To conclude, our study identified M2 macrophage-related gene
biomarkers via hdWGCNA and predicted a potential candidate drug
for GBM, providing valuable insights into the potential molecular
mechanisms underlying the progression of GBM. These
computational analyses can be applied as the prediction tools to
evaluate the prognostic outcomes for patients and facilitate the
selection of appropriate immunotherapy strategies.

5.1 Scope statement

Ten cell clusters were identified, and a higher percentage of
macrophages was seen in GBM samples. Moreover, the highly
expressed genes specific to M2 macrophages were mainly enriched
in neutrophil migration, myeloid leukocyte migration, and chemokine
production. A total of 11 gene modules specific to M2 macrophages
were also classified, and a relatively high expression of genes in module
7 in M2 macrophages was noted. The DEGs were intersected with the
hub genes from hdWGCNA to obtain three key genes for GBM,
namely, NFKBIA, NR4A2, and FOSB. These three genes were used
to establish a robust and reliable diagnostic model, and they bound to
the drug candidate thalidomide. The current study revealed the
potential gene biomarkers and drug candidates for GBM based on
M2 macrophages, contributing to the understanding of the underlying
mechanisms of GBM.
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