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Background: Myocarditis is an inflammation of the myocardium caused by a
variety of reasons, with myocardial cell necrosis and interstitial inflammatory cell
infiltration as the main manifestations. Pedunculoside (PE) plays a protective role
in inflammatory diseases; however, it’s effect and mechanism on myocarditis
remains unexplored.

Methods: In this study, we evaluated the cardioprotective effects of PE in vivo and
in vitro using the LPS + ATP-induced cardiomyocyte injury model and the LPS-
induced rat myocarditis model, and elucidated its potential mechanism.

Results: We found that PE demonstrated inhibition of H9c2 cell death and
decreased ROS, Ca2+ levels, and MMP loss induced by LPS + ATP. Moreover,
PE improved cardiac function in LPS-induced myocarditis rats. Mechanistically,
PE suppressed the activation of the NLRP3 inflammasome, PIP2, and MAPK
signaling pathways, which are associated with P2X7R. Additionally, PE
interfered with and attenuated the interaction between P2X7R and PIP2,
displaying strong docking activity with P2X7R.

Conclusion: Taken together, PE exhibited significant anti-myocarditis activity by
interacting with P2X7R and inhibiting the NLRP3, PIP2, and MAPK pathways,
highlighting its potential as a therapeutic agent for clinical myocarditis treatment.
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1 Introduction

Myocarditis, characterized by inflammatory lesions in the myocardium, arises from
various factors such as infection, toxin exposure, and immune activation (Han et al., 2023).
Pathogenic mechanisms, including calcium dysregulation, inflammation, oxidative stress,
and mitochondrial dysfunction, contribute to organ dysfunction (Kawakami et al., 2021).
Bacterial infections and toxins can cause severe myocardial damage (Wang et al., 2021).
Clinically, mild patients have no obvious symptoms, while severe patients may experience
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heart failure, arrhythmia and even sudden death (Nie et al., 2022).
Currently, there is still no specific treatment for myocarditis, but
studies have reported that Chinese herbal medicine has a good effect
on improving myocarditis (Chen et al., 2020). Therefore, there is a
critical need to identify effective compounds of Chinese herbal
medicine for the treatment of myocarditis.

P2X7R, a bifunctional membrane ion channel, regulates various
physiological functions, including eliminating infectious organisms,
regulating inflammatory processes, and inducing cell death (Xu
et al., 2020). P2X7R plays a critical role in multiple aspects of
cardiovascular diseases. Studies have demonstrated that P2X7R
knockout significantly alleviated angiotensin II (Ang II)-induced
myocardial injury (Zhong et al., 2024). In diabetes-related heart
injury, blocking P2X7R improved heart problems through PKCβ
and ERK pathway (Huang et al., 2021). Additionally, P2X7R
antagonists effectively attenuated pathological injury in
experimental autoimmune myocarditis by suppressing immune
cell activity as well as downregulating the expression of NADPH
oxidase 2/4 (Zempo et al., 2015). What’s more, P2X7R activation
initiates the inflammasome pathway, leading to the release of mature
IL-1β and aiding in the elimination of infectious organisms such as
Toxoplasma gondii, Staphylococcus aureus, and Escherichia coli
(Bhattacharya and Jones, 2018). The NLRP3 inflammasome, a
crucial cytoplasmic multi-protein complex, senses and responds
to infections caused by diverse pathogens, playing a significant role
in host defense mechanisms (Han et al., 2022). Phosphatidylinositol-
4,5-bisphosphate (PIP2), a crucial signaling molecule, regulates
various cellular functions, including cell membrane dynamics, cell
morphology, differentiation, proliferation, and ion transport. Upon
activation, PLC hydrolyzes PIP2 to diacylglycerol (DAG) and
inositol 1, 4, 5-trisphosphate (IP3), acting as second messenger in
cell signaling (Lowe et al., 2022). IP3 facilitates intracellular Ca2+

release, while PIP2 also severs as an epigenetic regulator of
ribosomal RNA gene transcription (Yang et al., 2021). Therefore,
PIP2 may modulate inflammation by inhibiting the activation of
NLRP3 inflammasome. Furthermore, MAPK signaling pathway
serves as a conduit for numerous inflammatory factors,
regulating cellular processes like proliferation, differentiation, and
apoptosis (Chen et al., 2023). Inhibition of the MAPK signaling
pathway has been demonstrated to reduce inflammatory factor
release, suggesting its potential as a therapeutic target (Zhao
et al., 2021). Hence, modulation of the P2X7R/NLRP3/IL-1β,
PIP2 and MAPK signaling pathways could offer an effective
approach for treating inflammatory diseases.

Jiubiying, derived from the dry bark of Ilex rotunda Thunb.,
exhibits antibacterial analgesic, anti-inflammatory, and anti-tumor
effects (Chen et al., 2019). Previous studies of Jiubiying primarily
focused on its efficacy in treating gastrointestinal and infectious
diseases, and recent findings suggest that Jiubiying has a notable
cardiovascular protective effect (Li et al., 2021). Given this potential,
developing Jiubiying into an effective treatment for cardiovascular
diseases holds promising prospects. PE, the main active compound
isolated from Jiubiying, is an ursane type pentacyclic triterpenoid
saponin. Chinese Pharmacopoeia 2020 stipulates PE content in
Jiubing dry products to be not less than 4.5%, serving as a quality
indicator. PE exhibits diverse pharmacological activities, including anti-
tumor, anti-inflammatory, and cardiovascular protective effects (Zeng
et al., 2022). However, its potential to protect against myocarditis and
the underlying mechanism remains largely unknown. Building on the
pathogenic role of P2X7R in myocarditis and the cardiovascular
protective properties of PE, we hypothesized that PE may play a
protective role against myocarditis by inhibiting P2X7R and regulate
the P2X7R/NLRP3/IL-1β, PIP2 andMAPK signaling pathways, thereby
alleviating the inflammatory infiltration and damage of myocardial
tissue. Investigating the cardiovascular protective targets and
mechanisms of PE both in vitro and in vivo may provide a
theoretical basis for the development of novel anti-cardiovascular
disease drugs.

2 Materials and methods

2.1 Chemical and reagents

PE was isolated from Jiubiying in our laboratory with a purity
greater than 98%, which was tested by HPLC. LPS, LDH, and BCA
protein detection kits were obtained from Beyotime (Shanghai, China).
ATP was purchased from Macklin (Shanghai, China). (4, 5-
Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), 2′,
7′-Dichlorodihydrofluorescein diacetate (DCFH2-DA), Fluo-3a.m.,
Hoechst 33,342 and ethylene glycol tetra acetic acid (EGTA) were
purchased from Sigma-Aldrich (St. Louis, MO, United States). PE-
Annexin V Apoptosis Detection Kit was bought from BD
PharmingenTM (Becton-Dickinson, NJ, United States). From
Thermo Fisher Scientific (Waltham, MA, United States),
Mitochondrial membrane potential assay kit (JC-1), PierceTM
Protein A/G Magmetic Beads and BCA protein detection kit were
obtained. Dulbecco’s modifiedeagle medium (DMEM) and fetal bovine
serum (FBS) were acquired from Gibco (Grand Island, NY,
United States). AZD9056 was acquired from MedChemExpress
(New Jersey, United States). IL-1β and TNF-α ELISA kits were
obtained from Neobioscience (Shenzhen, China). SOD, MDA, ALT
and AST detection kits were purchased on selection from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China), CK-MB detection
kit bought from Shanghai Enzyme Linked Biotechnology Co. LTD.
(Shanghai, China).

Antibodies for P2X7R (#13809), Cleaved-IL-1β (#63124), IL-1β
(#31202) Cleaved Caspase-1 (#89332), PLCγ2 (#3872),
IP3 Receptor1 (#8568), DAG Lipase α (#13626), p-JNK (#9255),
JNK (#9252), p-ERK (#4370), ERK (#4695), p-p38 (#4511), p38
(#8690), GAPDH (#5174) and the secondary antibodies including
anti-rabbit IgG, HRP-linked Antibody (#7074) as well as anti-mouse

Abbreviations: CK-MB, creatine kinase-MB; Co-IP, co-immunoprecipitation;
DAG, diacylglycerol; DCFH2-DA, 2′, 7′-Dichlorodihydrofluorescein diacetate;
DMEM, Dulbecco’s modified eagle medium, ECG, Electrocardiograph; EF,
ejection fraction; EGTA, ethylene glycol tetra acetic acid; ELISA, Enzyme-
linked immunosorbent assay; FBS, fetal bovine serum; FS, fractional
shortening; H&E, hematoxylin-eosin; IP3, inositol 1, 4, 5-trisphosphate;
LDH, lactate dehydrogenase; MAPK, mitogen-activated protein kinase;
MDA, malondialdehyde; MMP, mitochondrial membrane potential; MTT, (4,
5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide; Neu, neutrophils;
NLRP3, nod-like receptor 3; PE, Pedunculoside; PIP2, phosphatidylinositol 4,
5-bisphosphate; PVDF, polyvinylidene fluoride; P2X7R, P2X7 receptor; ROS,
reactive oxygen species; SOD, superoxide dismutase; TNF-α, tumor necrosis
factor-α; WBC, white blood cells.
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IgG, HRP-linked Antibody (#7076) were obtained from Cell
Signaling Technology (Beverly, MA, United States). NLRP3
(DF7438), and ASC (DF6304) were purchased from Affinity
Biosciences (Cincinnati, OH, United States), Caspase-1 (ab1872)
were obtained from Abcam (Cambridge, MA, United States). PIP2
(#53412) were obtained from Senta (Santa Cruz Biotechnology,
United States).

2.2 Cell culture

H9C2 cells were purchased from the Cell Bank of the Chinese
Academy of Sciences (Shanghai, China) and cultured in DMEM
with 10% FBS and 1% Penicillin/Streptomycin, incubated at 37°C in
a humidified atmosphere with 5% CO2.

2.3 Cell viability assay

H9c2 cells were seeded into a 96-well plate at the density of 4 ×
103/well overnight. This was followed by exposure to a series of
concentrations of PE (5, 10, 20, 40, 80 μM) or AZD9056 (2.5, 5, 10,
20, 40 μM) for 24 h, or pre-administered with PE (5, 10, 20 μM) for
4 h or AZD9056 (2.5, 5, 10, 20, 40 μM) for 1 h followed by incubated
with LPS (1 μg/mL) for 12 h and subsequently ATP (10 mM) for
another 24 h. After incubation, the absorbance wasmeasured using a
microplate reader (SYNERGYH1, Bio Tek, United States) by
measuring an absorbance of 490 nm.

2.4 Measurement of lactate
dehydrogenase (LDH)

H9c2 cells were seeded into a 96-well plate at the density of 4 ×
103/well overnight. This was followed by pre-administered with PE
(5, 10, 20 μM) for 4 h, then acted with LPS (1 μg/mL) for 12 h and
ATP (10 mM) for another 24 h. After which the culture supernatant
was collected to detect LDH release, and the absorbance was
measured at 450 nm using a multimode plate reader by
measuring absorbance of 450 nm.

2.5 Apoptosis assay

H9c2 cells were seeded into a 96-well plate at the density of 4 ×
103/well overnight. This was followed by pre-administered with PE
(5, 10, 20 μM) for 4 h, then acted with LPS (1 μg/mL) for 12 h and
ATP (10 mM) for another 24 h. The cells were labeled with PI (1 μg/
mL) and Hochest 33,342 (1 μg/mL), and then washed twice and
recorded by fluorescence microscope (Leica, Wetzlar, Germany).

2.6 Flow cytometry

H9c2 cells were seeded into a 6-well plate at the density of 1.0 ×
105/well overnight. Cells were pre-administered with PE (20 μM) for
4 h followed by LPS (1 μg/mL) induction for 12 h and ATP (10 mM)
induction for another 24 h. 400 μL of Binding Buffer (1×) was

resuspended and then transferred into flow tubes; 3 μL of Annexin V
and 7-AAD were added and mixed thoroughly, then incubated for
15 min; the cells were detected and analyzed by flow cytometry.

H9c2 cells were seeded into a 12-well plate at the density of 5.0 ×
104/well overnight. After this cells were treated with LPS (1 μg/mL)
for 12 h and ATP (10mM) for a series of times, or treated with PE (5,
10, 20 μM) for 4 h, followed by incubation with LPS (1 μg/mL, 12 h)
and ATP (10 mM, 0.25 h or 10 h). The cells were labeled with ROS
probe (DCFH2-DA 1 μM, 0.5 h) or Ca2+ probe (Fluo-3a.m. 1 μM,
1 h) respectively and then washed and collected for detection by the
FACSMelodyTM Cell Sorter (BD bioscience, United States).

2.7 Fluorescence assay

H9c2 cells were seeded into a 96-well plate at the density of 4.0 ×
103/well overnight. After which cells were pre-administered with PE
(5, 10, 20 μM) or AZD9056 (5 μM) for 4 h ahead of time and then
induced by LPS (1 μg/mL) for 12 h and ATP (10 mM) for another
0.25 h, and then labeled with ROS probe (DCFH2-DA 1 μM,
30 min), MMP probe (10 μg/mL JC-1, 100 μL/well, 30 min) or
PI dye (10 μg/mL, 10 min) and Hoechst33342 (1 μg/mL, 5 min). The
cells were washed twice with PBS (100 μL/well). Ultimately, the cells
were photographed and analyzed with a fluorescence microscope.

2.8 Immunofluorescence

As previously mentioned, the immunofluorescence of PIP2,
NLRP3, Caspase-1, and ASC was investigated. Briefly, H9c2 cells
were seeded into a confocal dish at the density of 8 × 104/dish
overnight (SPL, Pocheon, Korea). The cells were pre-treated with PE
(20 μM) for 4 h or AZD9056 (5 μM) for 1 h before being stimulated
with LPS (1 μg/mL) for 12 h and ATP (10 mM) for another 24 h. Cells
were incubated with the corresponding primary antibody overnight at
4°C, followed by incubation with goat anti-mouse IgG Fluor®

488 Conjugate (#S0017, 1:200) for 1 h at room temperature. After
that, the cells were fixed and stained for 30 min with Hoechst 33,342
(1 mM) and were imaged with a confocal laser microscope (Leica,
Wetzlar, Germany).

The cells were transfected with Plasmids of EGFP-NLRP3 for 36 h
by using turboFect transfection reagents (#R0531, Thermo Fisher
Scientific, Grand Island, NY, United States), followed by treatment
with PE (40 μM) for 4 h and LPS (1 μg/mL) for 12 h and ATP (10mM)
for another 24 h, and the next steps were described above.

2.9 Western blot analysis

The study employed RIPA (1% PMSF and 1% cocktail) to
extract total proteins of cells as well as the heart tissue. Total
protein concentration was determined using the bicinchoninic
acid (BCA) method (Thermo Fisher Scientific, United States).
The denatured protein (20 μg in cell samples or 30 μg in animal
tissue samples) was separated through 10% or 12% SDS-PAGE gel
electrophoresis and electroblotting on PVDF membrane (Millipore,
Billerica, MA, United States). After blocked with 5% skimmilk up to
2 h at RT, the membrane was incubated with primary antibodies at
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4°C overnight. The antibodies used in the study were as follows: anti-
P2X7R (1:1000), NLRP3 (1:1000, ASC (1:1000), Cleaved-Caspase-1
(1:1000), Caspase-1 (1:1000), Cleaved-IL-1β (1:1000), IL-1β (1:
1000), PIP2 (1:1000), PLCγ2 (1:1000), DAG (1:1000), IP3 (1:
1000), p-JNK (1:1000, #4668), JNK (1:1000), p-ERK (1:1000),
ERK (1:1000), p-p38 (1:1000) and p38 (1:1000). After that, the
membrane was exposed to ChemiDoc™ MP Imaging System (Bio-
Rad, Hercules, CA, United States) after incubating with secondary
antibody including anti-rabbit IgG, HRP-linked Antibody (1:1000)
and anti-mouse IgG, HRP-linked Antibody (1:1000).

2.10 Co-immunoprecipitation assay

Antigen samples were mixed with specific antibody (anti-PIP2)
overnight at 4°C, and then protein A/G magnetic beads were added
for 1 h. Immunoprecipitation products were eluted with SDS-PAGE
reduction sample buffer.

2.11 Molecular docking

The structure of Peduncloside was downloaded from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/) and converted to
mol2 format for preservation. The structure of P2X7R was predicted
by alpha fold in Uniport (https://www.uniprot.org) (ID = AF-Q99572-
F1), download the complex crystal structure containing the original
ligand, performed point charges on the target protein, and save it as a
PDBQT format file. AutoDock4.2.6 software was used for molecular
docking, and the binding energy (binding energy) ≤−5.0 kJ mol−1 was
used as the screening basis. After which, Pymol 2.1 software was used to
visualize the molecular docking results.

2.12 Cellular thermal shift assay (CETSA)

The HEK293T cells were lysed with RIPA Lysis Buffer (1%
PMSF and 1% cocktail) and the cell lysates were co-incubated with
vehicle control (DMSO) or PE (20 μM) for 0.5 h on ice, then
centrifuged at 15,000 rpm for 20 min at 4°C. After which, the
supernatant was divided into 6 parts on average and heated
respectively at different temperatures (44, 47, 50, 53, 56, 59, 62,
65, 68°C and 71°C) for 3 min followed by cooling for 30 s at room
temperature. Then the samples were centrifuged and the change of
P2X7R protein level followed by temperatures after drug treatment
was detected by Western blot assay.

2.13 Animals and ethical statement

All animal experimentations were approved by the Laboratory
Animal Management Ethics Committee of Guangxi University of
Chinese Medicine (Approval No. DW20230830-174). All
experiments were in accordance with the Guidelines for the Care
and Use of Laboratory Animals issued by the National Institutes of
Health. The experimental animal production license numbers were
SYXK (GUI-2019-0001). According to “Guangxi University of
Traditional Chinese Medicine Care and Use of Laboratory

Animals”, all animals received humane care. Healthy male SD
rats (220–250 g) were purchased from Hunan Slack Jingda
Laboratory Animal Co., Ltd. and acclimated for 1 week under
standard SPF (specific pathogen-free environment) conditions.
The rats were fed in SPF-grade rat cages at a room temperature
of 25°C ± 5°C and relative humidity controlled at about 50%. Rat
litter, rat chow, and drinking water were all sterile-sterilized.

2.14 Animal feeding, modeling, and
administration

50 Male SD rats were randomly divided into 5 groups (n = 10):
control group, LPS group, PE low-dose group (PE-L, 10 mg/kg), PE
medium-dose group (PE-M, 20mg/kg), and PE high-dose group (PE-H,
40 mg/kg). The PE administration group was given continuous tail vein
administration for 5 days, once a day, while the rats in the control group
and the LPS group were injected with physiological saline through the
tail vein at the same time, and the model group and the administration
group were then injected with LPS (8 mg/kg) intraperitoneally for 18 h
(PE used in animals is made by the inclusion of hydroxypropyl-β-
cyclodextrin, and the inclusion rate is 80%).

2.15 Detection of rat electrocardiogram and
echocardiogram

After 18 h of intraperitoneal injection of LPS (8 mg/kg), the rats
were anesthetized with 4 mL/kg chloral hydrate (10%). The ECG
changes of the rats in each group were recorded in real-time, and
MyLab™Six intelligent color ultrasonic diagnostic instrument
(Maastricht, Netherlands) was used to record the
Echocardiographic changes of rats in each group.

2.16 Routine analysis of blood

Rats were treated with LPS for the sake of inducing myocarditis.
Blood was collected from anesthetized rats via the abdominal aorta.
The amounts of WBC and Neu in blood were detected by Mindray
hematology analyzer.

2.17 Determination of TNF-α, IL-6, SOD,
MDA, CK-MB, ALT, and AST

With a tissue grinder (Tianjin, China), SD rats’ heart tissue was
homogenized. The samples were centrifuged. Their supernatant was
collected immediately and stored at −80°C. As per the manufacturer’s
instructions, TNF-α and IL-6 levels were detected by ELISAkits, the SOD,
MDA CK-MB, ALT, and AST were examined by corresponding kits.

2.18 Hematoxylin and eosin (H&E) staining

After the SD rats were treated with LPS for 18 h, the rats were
anesthetized, the heart, and tissues were isolated, and fixed in 4%
paraformaldehyde buffer for H&E staining.
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2.19 Statistical analysis

All data were processed by GraphPad Prism 6.0 software
(GraphPad Prism; San Diego, CA, United States), and all

experiments were repeated at least three times. The results were
presented as average value ±standard deviation (SD). The
significance of differences between groups was determined by a
one-way analysis of variance, after which Dunnett’s multiple

FIGURE 1
PE exerted a protective effect against LPS + ATP-induced damage in H9c2 cells. (A) The chemical structure of PE. (B)H9c2 cells were treatedwith PE
(5, 10, 20, 40, 80 μM) for 24 h, the cytotoxicity of PE was detected by MTT assay. (C) H9c2 cells were treated with different concentrations of PE (5, 10,
20 μM) for 4 h, induced by LPS (1 μg/mL) for 12 h and ATP (10mM) for 24 h.MTT assay was used to analyze the effect of PE on the survival rate of H9c2 cells
induced by LPS + ATP (n = 3); (D) H9c2 cells were stained with Hoechst 33,342 and PI for 15 min. Images were obtained under fluorescence
microscope (scale bar = 10 μm); (E) LDH assay was used to analyze the effect of PE on LDH release level of H9c2 cells induced by LPS + ATP (n = 3); (F) PI
fluorescence statistics (n= 3); (G,H)H9c2 cells were stainedwith Annexin V/7-AAD and analyzed by flow cytometry (n= 3). Comparedwith control group,
###P < 0.001; Compared with LPS + ATP group, **P < 0.01, ***P < 0.001.
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FIGURE 2
PE attenuated LPS + ATP-induced ROS generation and MMP loss in H9c2 cells. (A,B) H9c2 cells were induced by LPS (1 μg/mL) for 12 h and ATP
(10 mM) for 0.25, 0.5, 1, 2 h. The cells were labeled with DCFH2-DA (1 μM) for 0.5 h, and the ROS levels were analyzed by flow cytometry (n = 3). (C,D)
H9c2 cells were treated with different concentrations of PE (5, 10, 20 μM) for 4 h H9c2 cells were induced by LPS (1 μg/mL) for 12 h and ATP (10 mM) for
0.25 h. The cells were labeled with DCFH2-DA (1 μM) for 0.5 h, and the ROS levels were analyzed by flow cytometry (n = 3); (E) The images were
obtained under fluorescence microscope. (F) H9c2 cells were pre-treated with PE (20 μM) for 4 h, LPS (1 ug/mL) for 12 h, ATP (10 mM) for 10 h, and JC-1
staining for 1 h. Images were obtained under fluorescence microscope) (scale bar = 10 μm). Compared with control group, ###P < 0.001; Compared with
LPS + ATP group, ***P < 0.001.
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comparisons test was used for post hoc analysis. When P < 0.05,
results were considered to be statistically significant.

3 Results

3.1 PE exerted a protective effect against LPS
+ ATP-induced damage in H9c2 cells

To preliminarily evaluate whether PE (Figure 1A) has a certain
protective effect on LPS + ATP-induced H9c2 cell damage, the cell
viability was firstly measured. The results showed that PE (5, 10,
20 μM) protected H9c2 cells from LPS + ATP damage to a certain
extent without obvious cytotoxicity (Figures 1B,C). The result in
Figure 1E hinted that PE (5, 10, 20 μM) significantly reduced the
LDH release level of H9c2 cells induced by LPS + ATP.
Simultaneously, the PI fluorescence and Annexin/7AAD staining
results indicated that PE remarkably decreased LPS + ATP-induced
cell death (Figures 1D,F–H). All in all, these results demonstrated
that PE exerted striking protective effects on LPS + ATP-
damaged H9c2 cells.

3.2 PE attenuated LPS + ATP-induced ROS
generation and MMP loss in H9c2 cells

Cell damage induced by LPS + ATP leads to the destruction of
MMP and the generation of ROS(Song et al., 2022). The effect of PE
on the level of cellular ROS and MMP was detected. The results in
Figures 2A,B showed that LPS + ATP stimulated a sharp increase in
ROS levels at 0.25 h compared with the control group. Based on
which, flow cytometry and immunofluorescence results displayed
that PE reduced the level of ROS (Figures 2C–E) and P2X7R
inhibitor AZD9056 showed a similar effect. Taken together,
results demonstrated that PE had a certain inhibitory effect on
LPS + ATP-induced ROS levels in H9c2 cells, thus verifying that PE
had a certain antioxidant activity. Mitochondrial membrane
potential reflects the integrity of mitochondrial function and is a
sensitive indicator for evaluating mitochondrial function. When the
stability of MMP is abnormal, the normal physiological function of
cells will be destroyed (Yang et al., 2025). MMP decreased after
H9c2 cells were treated with LPS + ATP, in this case, the green
fluorescence was significantly enhanced, whereas the red
fluorescence intensity was greatly weakened. This was distinctly
reversed when cells were treated with PE (20 μM). Overall, PE
(20 μM) ameliorated LPS + ATP-stimulated MMP loss (Figure 2F).

3.3 PE inhibited the activation of
NLRP3 inflammasome

NLRP3 inflammasome is essential for host immune defense
against bacterial, fungal, and viral infections (Wang et al., 2022).
Stimulated by viral RNA, pore-forming toxins and ATP, NLRP3,
Caspase-1 and ASC will form NLRP3 inflammasome, and activated
Caspase-1 will further cut cytokine pro-IL-1β, and pro-IL-1β will be
released outside the cell, triggering a series of inflammatory
reactions in the body (Li et al., 2022). After activation of

inflammasome, ASC will form ASC spots, which are
supramolecular aggregates of ASC dimer and one of the means
of Caspase-1 activation (Xia et al., 2021). Figures 3A,B fluorescence
images showed that when H9c2 cells were stimulated by LPS + ATP,
green fluorescence (NLRP3 fluorescence as well as Caspase-1
fluorescence) was heightened. Nevertheless, the above results
were curbed after PE (20 μM) pretreatment. In addition, EGFP-
NLRP3 was transfected into H9c2 cells to construct an
NLRP3 overexpression model. As shown in Figure 3C, compared
with LPS + ATP group, PE pretreatment reduced the green
fluorescence of NLRP3 in H9c2 cells stimulated by LPS + ATP
obviously, pointing out that PE inhibited NLRP3 expression. The
Western blot data in Figure 3D indicated that when H9c2 cells were
stimulated by LPS + ATP, the protein expressions of NLRP3, ASC,
Cleaved Caspase-1, Cleaved-IL-1β increased observably, compared
with the control group. The above protein expression was
downregulated after pretreatment with different concentrations of
PE (Figure 3D). In conclusion, PE inhibited the activation of
NLRP3 inflammasome.

3.4 P2X7R facilitated LPS + ATP-induced
cardiomyocyte injury

ATP can activate the P2X7R ion channel, and its expression is
enhanced when the body is in an inflammatory state (Karmakar
et al., 2016). NLRP3 is the convergence point of multiple IL-1β
release signals, some of which may be related to P2X7 activation (Li
et al., 2018). To further verify the effect of P2X7R on NLRP3-
dependent IL-1β secretion, the P2X7R inhibitor AZD9056 was
afforded for the following experiments. Figures 4A,B showed
that, without toxicity to H9c2 cells, AZD9056 (2.5–40 μM)
improved cell viability compared with LPS + ATP group, and
AZD9056 (5 μM) worked better. Western blot data revealed that
LPS + ATP induced a hike in the level of P2X7R compared with the
control group, while PE (5, 10, 20 μM) pretreatment reduced the
level of P2X7R signally (Figure 4C). Additionally, compared with the
LPS + ATP group, the protein expressions of P2X7, NLRP3, ASC,
Cleaved Caspase-1, and Cleaved-IL-1β were distinctly reduced after
pretreatment with AZD9056 (5 μM) (Figures 4D,E). Taken together,
P2X7R mediated NLRP3-dependent IL-1β secretion and promoted
LPS + ATP-induced cardiomyocyte injury.

3.5 P2X7R activated PIP2 signaling pathway
in LPS + ATP-induced H9c2 cells

As shown in Figure 5A, the results of Western blot showed that
in the inflammatory response of H9c2 cells stimulated by LPS +
ATP, LPS + ATP downregulated the protein expression of PLCγ2,
and upregulated the protein expression of PIP2, DAG and IP3. After
PE pretreatment, the results were reversed. According to the
literatures, P2X7R may also be involved in the activation of the
PIP2 signaling pathway. In this experiment, AZD9056 reduced the
protein expression of PIP2, DAG, IP3, and upregulate the protein of
PLCγ2 (Figure 5B). Meanwhile, immunofluorescence results
exhibited that PE and AZD9056 inhibited the fluorescence
expression of PIP2 (Figure 5C). In addition, the interaction
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between PIP2 and P2X7R was enhanced under LPS + ATP
stimulation, while the expression of P2X7R binding to PIP2 was
reduced after PE treatment (Figure 5E).

Ca2+ has an irreplaceable regulatory role in many cellular
functions and is a crucial signaling factor in inflammatory
responses (Zhou and Tian, 2018). The results of flow cytometry
showed that the level of Ca2+ in H9c2 cells increased after LPS + ATP
induction, but the results were reversed after PE (20 μM)

pretreatment. Besides, EGTA is a special calcium chelator, which
can inhibit the level of extracellular calcium (Ye et al., 2020). When
H9c2 cells were pretreated with EGTA (8 μM), the level of
calcium ions was also inhibited, so it could be preliminarily
determined that PE inhibited LPS + ATP-induced Ca2+ by
inhibiting the level of extracellular Ca2+ (Figure 5D). In short,
P2X7R mediated LPS + ATP-induced activation of
PIP2 signaling pathway in H9c2 cells.

FIGURE 3
PE inhibited the activation of NLRP3 inflammasome. (A) The expression of NLRP3 in H9c2 cells was detected by immunofluorescence assay; (B) The
activation of Caspase-1 in H9c2 cells was detected by immunofluorescence assay; (C) The expression of EGFP-NLRP3 in H9c2 cells was detected by
immunofluorescence assay; (D) The protein expressions of NLRP3, ASC, Caspase1, Cleaved Caspase-1, IL-1β and Cleaved-IL-1β in H9c2 cells were
detected by Western blot; scale bar = 20 μm (n = 3). Compared with control group, ###P < 0.001; Compared with LPS + ATP group, **P < 0.01,
***P < 0.001.
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3.6 PE inhibited the activation of MAPK
signaling pathway in LPS + ATP-
induced H9c2 cells

MAPK are serine/threonine kinases including p38MAPK, ERK,
and JNK that respond to extracellular stimuli and regulate various

physiological processes, such as gene expression, stress response,
and cell survival or death (Li et al., 2025). LPS and ATP can both
cause cellular inflammation by activating the phosphorylation of the
above three important MAPK pathway (Zhang et al., 2022).
Therefore, MAPK is another important signaling pathway that
plays an important role in the inflammatory process (Ren et al.,

FIGURE 4
P2X7R facilitated LPS + ATP-induced cardiomyocyte injury. H9c2 cells were treated with AZD9056 (2.5, 5, 10, 20, 40 μM) for 24 h, and cell
proliferation was detected byMTT assay. (A) The effect of AZD9056 onH9c2 cell viability; H9c2 cells were treatedwith AZD9056 (2.5, 5, 10, 20, 40 μM) for
1 h H9c2, then induced by LPS (1 μg/mL) for 12 h and ATP (10mM) for 24 h (n = 3); (B) The effect of AZD9056 on the survival rate of H9c2 cells induced by
LPS + ATP was determined by MTT assay (n = 3); (C–E) The protein expressions of P2X7R, NLRP3, ASC, Caspase-1, Cleaved Caspase-1, IL-1β and
Cleaved-IL-1β in H9c2 cells were detected byWestern blot (n= 3). Comparedwith control group, #P < 0.05, ##P < 0.01, ###P < 0.001; Comparedwith LPS
+ ATP group, *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 5
P2X7R activated PIP2 signaling pathway in LPS +ATP-inducedH9c2 cells. H9c2 cells were treatedwith PE for 4 h or AZD9056 (5μM) for 1 h, and then
induced by LPS (1 μg/mL) for 12 h, ATP (10 mM) for 24 h or 10 h (A,B) The protein expression of P2X7R, PIP2, DAG, IP3 and PLCγ2 in H9c2 cells were
detected by Western blot (n = 3); (C) The expression of PIP2 in H9c2 cells was detected by immunofluorescence assay (scale bar = 20 μm); (D) The cells
were labeled with Fluo-3 a.m. (1 μM) for 1 h, and the Ca2+ level was detected by flow cytometry (n = 3); (E) The collected proteins were
immunoprecipitated with PIP2 using magnetic beads, and immunocomplexes were determined by Western blot (n = 3). Compared with control group,
##P < 0.01, ###P < 0.001; Compared with LPS + ATP group, **P < 0.01, ***P < 0.001.
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2020). As shown in Figure 6A, LPS + ATP upregulated the
phosphorylation levels of JNK, ERK and P38, while PE pretreatment
reversed the protein expression levels. Previous studies have shown that
P2X7R may play a role in activating MAPK signaling pathway. In this
experiment, AZD9056 reduced the protein levels of p-JNK, p-ERK and
p-p38 (Figure 6B). The above results verified that P2X7R is located
upstream of MAPK, and PE exerted an inhibitory effect on the MAPK
signaling pathway by P2X7R regulation.

3.7 PE targeted P2X7R to exert an anti-
inflammation effect

As shown in Figure 7A, the molecular docking result showed that
PE and P2X7R havemultiple binding sites such as ARG-125, ARG-126,
ARG-294, PRO-142 and LYS-145, and the binding energy
reached −8.0 kJ/mol, which demonstrated the combination of PE
and P2X7R. Furthermore, the interaction between PE and P2X7R
was explored by molecular docking and CETSA assay. As shown in
Figure 7B, P2X7R was degraded in DMSO-treated cells with increasing
temperature. However, P2X7R was relatively stable in PE treated cells
under the same temperature conditions (Figure 7C). These results
indicated that PE could bind to P2X7R and increase its thermal stability.

3.8 PE alleviated the cardiac dysfunction in
LPS-induced myocarditis rats

The ECG of the LPS group was abnormal, and the ST segment
was elevated, while the PE-L, PE-M and PE-H ECGs recovered
significantly, and the ST segment decreased (Figure 8A). The results
showed that LPS caused significant abnormalities in the
electrocardiogram of rats and might lead to myocardial ischemia,
while PE alleviated this injury. EF and FS are often used to indicate
and reflect left ventricular systolic function (Li et al., 2019). The EF
and FS were reduced in the LPS group obviously, while PE was able
to alleviate this situation (Figures 8B,C), suggesting that PE relieved
the cardiac dysfunction caused by LPS.

3.9 PE ameliorated LPS-induced myocarditis
in rats

Blood routine analysis revealed that LPS increased the levels of
WBC and Neu in the blood of rats, while PE reduced the above index
(Figure 9A). As shown in Figures 9B,C, similarly, PE-L, PE-M, and
PE-H alleviated the level of TNF-α and IL-1β in the serum and heart
tissue increased in LPS group. Additionally, compared with the

FIGURE 6
PE inhibited the activation ofMAPK signaling pathway in LPS +ATP-inducedH9c2cells. (A, B)The protein expressions of p-JNK, JNK, p-ERK, ERK, p-p38
and p38 in H9c2 cells were detected by Western blot (n = 3). Compared with control group, ###P < 0.001; Compared with LPS + ATP group, ***P < 0.001.
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control group, SOD levels in heart tissue induced by LPS were
obiviously decreased, and MDA, CK-MB, ALT and AST levels were
significantly increased, while PE effectively ameliorated such damage to
a certain extent (Figures 9D–H). Furthermore, H&E staining results
displayed the degree of myocardial tissue damage. The cardiomyocytes
of the control group were normal without bleeding or neutrophil
infiltration, while the myocardial injury in the LPS group was
severe, and myocardial fibrosis and inflammatory cell infiltration
were seen. PE significantly alleviated this phenomenon, that is,
improved myocardial injury in rats (Figure 9I). In a word, PE
improved LPS-induced myocarditis in rats.

3.10 PE mitigated LPS-induced myocarditis
in rats by regulating NLRP3/PIP2/MAPK
signaling pathway

P2X7R produced in the heart tissue, which activated
NLRP3 inflammasome after LPS stimulation, with significantly
increased expression of P2X7R, NLRP3, ASC, Cleaved Caspase-1
and Cleaved IL-1β in comparison with control group (Figure 10A).
LPS upregulated the expression of p-JNK, p-ERK and p-p38, PIP2,
DAG, IP3, and downregulated the expression of PLCγ2 (Figures
10B,C). After pretreatment with PE (10, 20, 40 μM), the expression
of these proteins was reversed. These data demonstrated that PE
inhibited the activation of P2X7R/NLRP3/IL-1β, PIP2 and MAPK
signaling pathway, so as to ameliorate myocardial injury in a way.

4 Discussion

Traditional Chinese medicine reputes that myocarditis belongs
to the category of “palpitations” and “heartache”. The internal cause

is caused by the lack of healthy qi, and the external cause is caused by
the pathogenic toxin invading the heart including wind-heat
pathogenic toxin and damp-heat pathogenic toxin. Therefore, as
a medicine that clears heat, detoxifies, promotes Qi and cools blood,
Jiubiying is suitable for symptoms of myocarditis. According to
relevant literature, LPS, a component of the outer membrane of
Gram-negative bacteria, serves as an effective inducer of
myocarditis. LPS binds to TLR4, activates innate immunity,
triggers signaling, and induces pro-inflammatory cytokines,
causing myocardial inflammation and injury (Fang et al., 2024).
It also causes oxidative stress and mitochondrial dysfunction,
further driving myocarditis development (Liu et al., 2023). The
effect of the main active compound PE in Jiubiying in improving
myocarditis in vitro and in vivo was deliberated in this study. We
prove for the first time that PE could protect from myocarditis
through P2X7R/NLRP3/IL-1β, PIP2 and MAPK signaling pathways
via binding to P2X7R.

Oxidative stress occurring during inflammation can aggravate
the autoimmune process of myocarditis (Lu et al., 2023). Therefore,
inhibition of the antioxidant system and long-term oxidative stress
may be one of the pathological mechanisms of cardiac
remodeling leading to inflammatory cardiomyopathy (Tada
and Suzuki, 2016). The results showed that LPS + ATP
increased the ROS and MDA levels, and decreased the SOD
level and MMP, which was reversed by PE treatment,
demonstrating PE has an antioxidant property.

Inflammation is the main cause of further myocardial damage
and dysfunction (Chen et al., 2022). Activated neutrophils can
secrete cytokines such as TNF-α and IL-1β to further damage the
myocardium, leading to metabolic dysfunction, degeneration, and
necrosis (Yu et al., 2020). The in vivo results showed that PE
inhibited the increased numbers of WBC, Neu, and increased
levels of TNF-α and IL-1β in LPS-induced myocarditis rats.

FIGURE 7
PE targeted P2X7R to exert an anti-inflammation effect. (A) The molecular docking of PE and P2X7R; (B,C) Cellular thermal shift assay (CETSA) was
used to determine the effect of PE on P2X7R protein stability.
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FIGURE 8
PE alleviated the cardiac dysfunction in LPS-induced myocarditis rats. Rats were injected with PE (10, 20, 40 mg/kg) through tail vein for 5 days,
followed by intraperitoneal injection of LPS for 18 h, and anesthetized with 4 mL/kg 10% chloral hydrate. (A) ECG of rats was measured; (B,C) The
echocardiography of rats was measured by MyLab™Six intelligent color ultrasonic diagnostic instrument and counted (n = 5). Compared with control
group, ###P < 0.001; Compared with LPS group, ***P < 0.001.
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A variety of cellular enzymes are stored in the cardiomyocytes,
which can reflect the integrity of the cardiomyocytes. When the
myocardium is damaged, the cardiomyocytes will experience
ischemia or even necrosis, and the permeability of the cell
membrane will also change, releasing a large amount of enzyme

(Qin et al., 2022). Among them, CK-MB is more stored in
cardiomyocytes and less often in tissues other than the
myocardium, so it can specifically reflect the extent of myocardial
damage (Zhou et al., 2022). In addition, the content of ALT and AST
will increase when the tissue is damaged or necrotic. On this basis,

FIGURE 9
PE ameliorated LPS-induced myocarditis in rats. The rats were injected with PE (10, 20, 40 mg/kg) through tail vein for 5 days, followed by
intraperitoneal injection of LPS for 18 h to determine the corresponding blood routine indexes of the rats. (A) The number of WBC and Neu in the blood of
rats (n= 5); (B) Release level of TNF-α and IL-1β in serum of rats (n= 5); (C) TNF-α and IL-1β release level in rat heart tissue (n = 5); (D) SOD level in rat heart
tissue (n= 5); (E)MDA level in rat heart tissue (n= 5); (F)CK-MB level in rat heart tissue (n= 5); (G)ALT level in rat heart tissue (n= 5); (H) AST level in rat
heart tissue (n = 5); (I) Histopathological evaluation of the heart by H&E staining (200×), scale bar = 100 μm. Compared with control group, #P < 0.05,
##P < 0.01, ###P < 0.001; Compared with LPS group, *P < 0.05, **P < 0.01, ***P < 0.001.
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the presence of myocardial damage in the body can be judged by
detecting its contents (Lazo et al., 2015). The results of this study
showed that PE inhibited the elevation of CK-MB, ALT and AST.

The occurrence and progression of myocarditis is inseparable
from the mediation and participation of NLRP3 inflammasome
(Toldo and Abbate, 2024). It is a good choice to inhibit the activation

FIGURE 10
PE mitigated LPS-induced myocarditis in rats by regulating the NLRP3/PIP2/MAPK signaling pathway. The rats were injected with PE (10, 20,
40 mg/kg) through tail vein for 5 days, followed by intraperitoneal injection of LPS for 18 h. (A)Western blot was used to detect the protein expression of
P2X7R, NLRP3, ASC, Cleaved Caspase-1, Caspase-1, Cleaved-IL-1β, IL-1β in rat heart tissue (n = 5); (B) p-JNK, JNK, p-ERK, ERK, p-p38, p38 protein
expression (n = 5); (C) Protein expression of PIP2, PLCγ2 and IP3 (n = 5). Compared with control group, ##P < 0.01, ###P < 0.001; Compared with LPS
group, *P < 0.05, **P < 0.01, ***P < 0.001.
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of NLRP3 inflammasome and downstream inflammatory
pathways to improve cardiac function of myocarditis rats. In
the inflammatory response, P2X7R performs crucial function.
LPS stimulated P2X7R synthesis and inflammasome assembly,
inflammasome production and further IL-1β release (Rowell
et al., 2020). Experimental data made it clear that PE had a
certain inhibitory effect on the activation of P2X7R and
NLRP3 inflammasomes, and AZD9056 (P2X7R inhibitor) also
obviously inhibited the activation of NLRP3 inflammasomes.
Furthermore, the molecular docking and CETSA results both
showed that PE and P2X7R have a good combination.
Therefore, it was determined that PE improved myocardial
injury and LPS + ATP-induced H9c2 cell damage by
inhibiting P2X7R-mediated NLRP3-dependent IL-1β
secretion via binding to P2X7R.

PLC activation can mediate the cleavage of PIP2 into DAG
and IP3, thereby activating Ca2+ (Bang et al., 2021). PE inhibited
the release of extracellular Ca2+, which might be affected by the
PIP2 signaling pathway. The amino acid sequence of the
proximal C-terminal region of the P2X receptor revealed the
presence of two clusters of basic residues that form the regulatory
PIPn binding site in most subunits (Xiao et al., 2018). However,
there are few reports on the activation of PLC by P2X7, and K+

depletion has been proposed as a mechanism. Furthermore, the
regulation of downstream effects of PLC by P2X7 has been
reported. In microglia, P2X7-induced Ca2+ elevation was
found to increase DAG lipase activity, which is produced by
PLC (Lu et al., 2024). And negative modulation of P2X7 via
consumption of PIP2 has also been reported (Ma et al., 2022). So
far, no direct interaction between PIP2-P2X7R has been found.
Nevertheless, the Co-IP results well proved that the interaction
between PIP2 and P2X7R was enhanced under LPS + ATP
stimulation, and the binding between P2X7R and PIP2 were
decreased after PE treatment. Besides, in this experiment, it was
found that when P2X7R was inhibited with its inhibitor
AZD9056, the expressions of PIP2, DAG, and IP3 were also
inhibited accordingly, indicating that when H9c2 cells were
induced with LPS + ATP, P2X7R participated in the activation
of PIP2 signaling pathway, but the specific connection between
them needs to be further ascertained.

Three members of MAPKs are phosphorylated upon P2X7R
activation, namely, the closely related extracellular signal-
regulated kinases ERK1 and ERK2, JNK and p38 MAPK,
activated by stimuli including inflammatory signals and
stress, and these kinases are involved in inflammation,
apoptosis and proliferation. The results showed that PE
improved myocardial injury by inhibiting the MAPK
signaling pathway and P2X7R was also involved in the
activation of MAPK signaling pathways. But the relationship
between them needs further investigation.

Overall, PE improved LPS + ATP-induced H9c2 cell
injury and had a protective effect on LPS-induced
myocarditis rat. In addition, it’s found for the first time
that P2X7/NLRP3/IL-1β, PIP2, and MAPK signaling
pathways are involved in the regulatory effect of PE on
myocarditis, providing a prospect for development and
application of myocarditis drugs.

5 Conclusion

In this study, we investigated the protective effects and
mechanism of PE on LPS-induced myocarditis. The results
illustrated that PE showed a markedly anti-myocarditis activity
in vitro and in vivo. Mechanistically, PE could bind to P2X7R
and inhibit the binding between P2X7R and PIP2, subsequently
inhibited the activation of NLRP3 inflammasome, PIP2 and MAPK
signaling pathways. Therefore, PE may be a promising drug for the
treatment of myocarditis.
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