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Introduction: Large Language Models (LLMs), recognized for their advanced
capabilities in natural language processing, have been successfully employed
across various domains. However, their effectiveness in addressing challenges
related to drug discovery has yet to be fully elucidated.

Methods: In this paper, we propose a novel LLM based method for drug-drug
interaction (DDI) prediction, namedDDI-JUDGE, achieved through the integrationof
judging and ICL prompts. The proposed method outperforms existing LLM
approaches, demonstrating the potential of LLMs for predicting DDIs. We
introduce a novel in-context learning (ICL) prompt paradigm that selects high-
similarity samples as positive and negative prompts, enabling themodel to effectively
learn and generalize knowledge. Additionally, we present an ICL-based prompt
template that structures inputs, prediction tasks, relevant factors, and examples,
leveraging the pre-trained knowledge and contextual understanding of LLMs to
enhance DDI prediction capabilities. To further refine predictions, we employ GPT-4
as a discriminator to assess the relevance of predictions generated bymultiple LLMs.

Results: DDI-JUDGE achieves the best performance among all models in both
zero-shot and few-shot settings, with an AUCof 0.642/0.788 and AUPR of 0.629/
0.801, respectively. These results demonstrate its superior predictive capability
and robustness across different learning scenarios.

Development: These findings highlight the potential of LLMs in advancing drug
discovery through more effective DDI prediction. The modular prompt structure,
combined with ensemble reasoning, offers a scalable framework for knowledge-
intensive biomedical applications. The code for DDI-JUDGE is available at https://
github.com/zcc1203/ddi-judge.
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1 Introduction

Polypharmacy, or the simultaneous use of multiple drugs, is common in the treatment
of patients with various diseases (van Roon et al., 2005). However, it can lead to adverse drug
reactions (DDIs) due to drug–drug interactions. DDIs are responsible for 30% of all
reported adverse drug reactions, significantly impacting patient safety, morbidity, mortality,
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and healthcare costs (Ryu et al., 2018). Given the complexity of
diseases and the limitations of single-drug therapies, combination
therapies have the potential to improve efficacy, but they also
increase the risk of unintended interactions (Deng et al., 2020).
Therefore, accurate DDI prediction is crucial for improving
treatment outcomes and minimizing adverse effects. Although
DDI research has become a major focus, the identification of
DDIs remains challenging due to limited clinical trial resources
and the rapid growth of biomedical data.

Current state-of-the-art DDI prediction methods include
traditional machine learning and deep learning approaches.
Among these, deep learning methods leverage technologies such
as deep neural networks (DNNs) (Sze et al., 2017), convolutional
neural networks (CNNs) (Alzubaidi et al., 2021), graph neural
networks (GNNs) (Wu et al., 2020) and transformer (Vaswani,
2017), achieving remarkable performance. However, these methods
often perform poorly in zero-shot scenarios and exhibit limited
capability in learning from large-scale, multi-source data
integration.

Large language models (LLMs), exemplified by architectures
such as GPT-4 (Achiam et al., 2023), Claude (Ryu et al., 2018; Bai
et al., 2022), llama (Touvron et al., 2023a), and Mistral (Jiang et al.,
2023), have demonstrated transformative capabilities in general-
domain tasks through their massive parameter spaces, self-
supervised pretraining frameworks, and attention-based neural
architectures. While LLMs demonstrate exceptional performance
in general tasks, their capabilities in specialized application domains
remain significantly constrained.

In the field of drug discovery, LLM have demonstrated
significant potential in several directions, including the
integration of multi-source data (Wan et al., 2024), the design of
downstream tasks (Guo et al., 2023), and the optimization of
prompting strategies for specific applications (Guo et al., 2024).
These advancements have enabled LLMs to perform tasks such as
molecular property prediction and molecular translation. However,
critical challenges persist in applying LLMs to DDI prediction: 1) the
scarcity of high-quality, annotated DDI datasets due to expensive
experimental validation; 2) poor generalizability under zero-shot
learning conditions, particularly for rare interaction types; 3)
ineffective fusion of heterogeneous data modalities spanning
molecular structures, pharmacological pathways, and
clinical context.

To overcome these limitations, we introduced the DDI-JUDGE
model, which employs in-Context Learning (ICL) to propose a
prompt paradigm tailored for DDI tasks and leverages a judge to
integrate the predictive capabilities of multiple LLMs.

The main contributions of this paper are as follows:

1) We propose a DDI prediction method based on large language
models enhanced by judging and in-context learning, named
DDI-JUDGE.

2) We propose a novel ICL prompt paradigm for DDI prediction,
employing cosine similarity-based exemplar retrieval for in-
context learning and coupling it with an ensemble
discriminator module, such as GPT-4, that strategically
aggregates predictions from heterogeneous LLMs through
confidence-weighted voting, thereby improving robustness
against model bias.

3) The effectiveness of our method has been demonstrated
through comprehensive experiments in both zero-shot and
few-shot scenarios, outperforming other LLM methods.

The structure of this paper is as follows: The Related Work
section provides a brief review focusing on methods of DDI
prediction. The Methods section offers a detailed description of
the proposed DDI-JUDGE method. The Experiments and Results
section presents the experimental setup and analyzes the results.
Finally, the Conclusion section summarizes the key points and
discusses potential directions for future research.

2 Related work

2.1 Methods of drug-drug interactions
prediction

DDI prediction has been an essential area of research due to its
critical implications for rational drug use, enhancing therapeutic
efficacy, and minimizing adverse drug reactions. Numerous
computational models, including traditional machine learning and
deep learning approaches, have been developed for DDI prediction.

Traditional machine learning models predict DDIs by leveraging
features such as drug similarity, protein-protein interaction
networks, and drug phenotypic profiles. For instance, Bayesian
models calculate interaction scores based on protein networks
and drug phenotype similarity (Huang et al., 2013). Label
propagation-based models (Zhang et al., 2015) integrate drug
side effects and chemical structure data, while probabilistic
frameworks, such as the collective soft logic model (Sridhar et al.,
2016) rely on multi-source similarity features. Additionally,
manifold regularization and matrix factorization approaches, like
DDINMF (Yu et al., 2018) and TMFUF (Shi et al., 2018), enhance
predictions by incorporating semi-nonnegative matrix
decomposition and manifold structures.

Deep learning methods have significantly enhanced DDI
prediction by enabling complex feature extraction and multi-
source data integration. Models like DDIMDL (Deng et al., 2020)
and CNN-DDI (Zhang et al., 2022) employ deep neural networks
(DNNs) and CNNs, respectively, to calculate interaction
probabilities using drug similarity matrices. Graph-based
methods, such as SSI-DDI (Nyamabo et al., 2021), convert
SMILES strings into molecular graphs and utilize graph attention
networks (GATs) to extract substructure representations. Tensor-
based approaches like STNN-DDI (Yu et al., 2022) employ tensor
factorization to predict interaction types. Network-based methods
have further refined DDI prediction by incorporating multi-relation
and heterogeneous data. For instance, META-DDIE (Deng et al.,
2022) combines frequent substructure mining and neural encoding
for DDI type prediction, while DANN-DDI (Liu et al., 2022)
employs attention mechanisms to generate comprehensive drug
embeddings from heterogeneous networks. MRCGNN (Xiong
et al., 2023) utilizes multi-relation DDI event graphs with
relational graph convolutional networks for feature extraction.
Similarly, SubGE-DDI (Shi et al., 2024) integrates substructure
representations from molecular graphs with attention-based
mechanisms to improve prediction accuracy. Furthermore, KGE-UNIT
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(Zhang et al., 2024) enhances DDI prediction performance by multi-
task learning. These network-driven and hybrid approaches offer
significant improvements by combining molecular, structural, and
contextual data in highly integrated frameworks. However, the
current method has insufficient learning ability for massive multi-
source data and cannot adapt well to the zero-shot scenario.

2.2 Large language models for
drug discovery

LLM have shown significant potential in advancing molecular
science by bridging textual information and molecular data, which
has facilitated applications such as molecule retrieval, reaction
prediction, and drug discovery. Recent studies, such as Text2Mol
(Edwards et al., 2021), Molxpt (Liu Z. et al., 2023), and Mol-
Instructions (Fang et al., 2023), have established connections
between molecular structures and textual descriptions, enhancing
tasks such as molecule editing, annotation, and retrosynthesis. In
drug development, Y-Mol (Ma et al., 2024) and DrugReAlign (Wei
et al., 2024) demonstrate the versatility of LLMs in tackling complex
tasks. Y-Mol offers a biomedical knowledge-guided approach for
virtual screening, property prediction, and drug interaction
prediction, enhancing domain-specific reasoning. Meanwhile,
DrugReAlign focuses on improving drug repurposing through a
multisource prompt framework that integrates spatial interaction
data and leverages LLMs for reliable drug-target analysis. In
domains such as protein analysis and drug design, Protst (Xu
et al., 2023) and Drugchat (Liang et al., 2023) employ in-context
learning and interactive design to align with user-specific needs.

However, molecular interactions prediction tasks, such as DDIs,
still face many challenges. Existing methods typically rely on high-
quality fine-tuning data and computationally intensive fine-tuning
algorithms (Hu et al., 2021), but the high cost of data acquisition and
model training presents significant obstacles. Enhancing the ability
of LLMs to predict DDIs under the constraints of limited data and
training resources remains a key issue to be addressed.

2.3 Prompt engineering for LLM

The framework that combines pre-training and prompts has
become a widely recognized best practice in natural language
processing, particularly for addressing few-shot and zero-shot
tasks (Liu P. et al., 2023). This approach is founded on the
principle that LLM possess the capability for in-context
learning by leveraging input contexts and instructions (Brown,
2020). Several studies have explored the use of LLM-based
approaches for drug design by incorporating various
prompting strategies. Li et al. (2024) propose a retrieval-based
prompting approach for molecule-caption translation. Liu Y.
et al. (2024) introduce MolecularGPT, which provides curated
molecular instructions for over 1000 property prediction tasks.
Chaves et al. (2024) present TxT-LLM, a method that combines
free-text instructions with string representations of molecules
throughout different stages of the drug discovery process.
However, these methods may not fully capture the complexity

of DDIs, which involve various factors including molecular,
pharmacological, and clinical considerations.

ICL (Dong et al., 2022) can improve the model’s ability to
understand and adapt to different drug combinations by leveraging
contextual information from multiple drug-related tasks.
Additionally, it allows the model to flexibly adjust its responses
based on new data or conditions, such as changes in drug
formulations or patient-specific factors, thereby enhancing its
predictive capability for DDIs. However, designing more effective
ICL prompting paradigms for DDI prediction is an area that
requires further study.

3 Methods

In this section, we will provide a detailed explanation of the
DDI-JUDGE method. This method aims to explore how existing
LLMs can be used for DDI prediction, with the overall framework
illustrated in Figure 1. The method is primarily divided into three
parts: 1) Selecting ICL samples, 2) Building prompts based on ICL,
and 3) Generating an LLM-based discriminator to integrate multi-
model results. First, DDI-JUDGE leverages drug similarity to select
optimal prompt samples, performing positive sample selection and
hard negative sample mining. Next, based on the selected prompt
samples, we construct prompt templates specifically designed for
DDI prediction. Finally, we use GPT to generate an LLM-based
discriminator, which scores the predictions of multiple LLMs and
integrates the results based on the scores.

3.1 Selecting better ICL samples of DDIs

ICL is a prompting paradigm applied to LLMs, which enhances the
capabilities of LLM by using a small number of demonstration prompts.
In DDI prediction, we need to study how to find more suitable prompt
examples. In order to better select prompt examples, we propose an ICL
positive and negative samples selection method for DDI based on drug
similarity calculation. Three widely used similarity measures include
Tanimoto similarity (Tanimoto, 1958), Cosine similarity, and Dice
similarity. Tanimoto To more effectively assess the similarity of drug
feature vectors, we examine the variations in the outcomes produced by
these methods. In drug similarity calculations, Dice similarity emphasizes
shared structural features, making it suitable for identifying common
substructures. Cosine similarity focuses on the angular relationship of
feature vectors, ideal for analyzing high-dimensional molecular data.
Tanimoto similarity balances shared and unique molecular features,
making it particularly effective for comparing molecular fingerprints
in chem-informatics. Let x � (x1, x2, . . . , xn) and y � (y1, y2, . . . , yn)
represent the binary molecular fingerprints of two drugs got from Rdkit
(RDKit, 2013), where each element indicates the presence or absence of a
specific substructure. The Tanimoto similarity is defined as shown in
Equations 1:

SimT x, y( ) � x · y
x‖ ‖2 × y

���� ����2 �
∑xiyi����∑x2i

√ + ����∑y2i
√ − ∑xiyi (1)

where x · y denotes the dot product (inner product) of x and y,
calculated as ∑ xiyi, i.e., the summation of element-wise products.
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‖x‖2 and ‖y‖2 represent the squared norms of vectors x and y,
respectively. Here, the numerator represents the number of shared
substructures, while the denominator captures the total number of
unique substructures across both molecules.

In addition to Tanimoto similarity, we also evaluate Cosine
similarity, which captures the angular distance between vectors of
drugs. For the molecular fingerprints of two drugs x and y, the
similarity can be calculated as shown in Equations 2:

SimC x, y( ) � x · y
x‖ ‖2 × y

���� ����2 �
∑xiyi����∑x2i

√ ����∑y2i
√ (2)

Here, this formulation captures the relative orientation between
molecular feature vectors. Further, Dice similarity can be calculated
as shown in Equations 3:

SimD x, y( ) � 2∑xiyi
∑x2i +∑y2i

(3)

where the dice similarity ranges from 0 to 1. In addition to traditional
fingerprint-based similarity measures, we further explore two additional
categories of similarity metrics to enhance the selection of ICL examples:
graph-based similarity and embedding-based similarity. To explore
structural similarity at the graph level, we utilize the Weisfeiler-
Lehman graph kernel. Let G1 and G2 denote two molecular graphs,
and let ∅(G) be the mapping of a graph to a high-dimensional feature
space based on its structural patterns. The similarity between two
embeddings is computed using their dot product, as defined in
Equations 4:

SimG G1, G2( ) � 〈∅ G1( ),∅ G2( )〉 (4)
where 〈*〉 represents the dot product. This approach captures
topological information beyond atom-level fingerprints, enabling

graph-level matching when selecting prompts based on
molecular structure.

For embedding-based similarity, we leverage pretrained deep
learning models to extract SMILES-based embeddings. Given a pair
of drugs x and y, their corresponding embedding vectors are denoted
as ex and ey. The cosine similarity between the embedding vectors is
used to compute their similarity, as shown in Equations 5:

SimE x, y( ) � ex · ey
ex‖ ‖2 × ey

���� ����2 (5)

This embedding-based metric captures both structural and
functional properties encoded during pretraining, providing a
complementary perspective to symbolic similarity. In our
implementation, the embeddings are generated from SMILES
sequences using the pretrained MolBERT (Fabian et al., 2020) model.
Finally, We utilize the Tanimoto similarity based on 2048-bit Morgan
fingerprints (Morgan, 1965) with a radius of two to calculate molecular
scaffold similarity. The similarity score for each candidate drug pair is
calculated as the product of the similarity scores of the two drugs. Among
the known positive DDI samples, we identify the top-k most similar
molecular SMILES pairs to construct positive sample prompts. Similarly,
for negative sample prompts, we select the top-k most similar SMILES
DDI pairs.

3.2 Building prompts based on ICL

In recent advances in language models, ICL has emerged as a
method to enable models to learn tasks without explicit fine-tuning.
ICL achieves this by providing examples within the input, allowing
the model to understand the task through context and generate
accurate outputs. Based on filtered positive and negative sample

FIGURE 1
The workflow of DDI-JUDGE.
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examples, we constructed prompts for DDI prediction, which are
categorized into zero-shot and few-shot scenarios.

In the zero-shot scenario, the model makes predictions based purely
on its pre-trained knowledge, without relying on specific examples. This
approach is suited for predicting interactions between novel or previously
unseen drug combinations as shown in Figure 2. In contrast, the few-shot
scenario provides a small set of examples to help guide the model’s
predictions, particularly when limited data or related examples are
available as shown in Figure 3. The prompt follows a structured
format, consisting of several key components: input requirements,
prediction task, consideration factors, and examples. The input
requirements specify the drug names and their corresponding
SMILES structures. The prediction task involves predicting whether
an interaction exists between the two drugs, with the outcome being

“yes” or “no.” Consideration factors include an analysis of
pharmacodynamics, metabolic pathways, receptor interactions, and
relevant clinical data, including FDA labels and peer-reviewed
literature. Finally, the examples section provides a practical
demonstration of the input format and expected prediction output,
ensuring clarity in applying the model.

3.3 Predicting DDIs based on judging

In this study, we use GPT-4 as a judge to evaluate DDIs prediction
generated by multiple LLMs. The discriminator assesses the quality of
the explanations provided for each DDI prediction based on four key
criteria: scientific accuracy, clarity and coherence, evidence support, and

FIGURE 2
The zero-shot prompt of DDIs prediction.
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relevance. A detailed prompt is designed for both zero-shot and few-
shot scenarios as shown in Figure 4. In the zero-shot scenario, the
prompt clearly outlines the evaluation criteria and instructions for GPT
to assess each prediction and explanation. In the few-shot scenario, the
prompt includes several examples of high-quality evaluations to help
the model understand how to assign scores. Each explanation is scored
on a scale from one to five for each criterion, and an overall score is

assigned based on the evaluation. After scoring the results from all
models, the predictions are combined using a weighted fusion
approach, where each model’s score is multiplied by a
predetermined weight reflecting its reliability or performance, and
the weighted scores are summed to generate the final DDI prediction.

After scoring the results from all models, the predictions are
combined using a weighted fusion approach, where the weight wi

FIGURE 3
The few-shot prompt of DDIs prediction.

Frontiers in Pharmacology frontiersin.org06

Qi et al. 10.3389/fphar.2025.1589788

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1589788


for each model i is determined by the score given by the
discriminator to that model’s output Smodel is calculated as
shown in Equations 6:

Sfinal � ∑
N

i�1
wiSmodel (6)

Compared to other ensemble learning techniques such as
stacking or boosting, we adopt a weighted fusion strategy to
maintain a streamlined, inference-oriented workflow. This
approach eliminates the need to train extra models and fits well
with LLM workflows that rely mainly on inference rather than
supervised training.

4 Results

4.1 Datasets

In the paper, we use the Luo’s dataset (Luo et al., 2017) contains the
following information, as shown in Table 1. It integrates information
frommultiple authoritative biomedical sources. Specifically, drug-related
information was obtained fromDrugBank 3.0 (Craig et al., 2010), protein
data fromHuman Protein Reference Database (Suraj et al., 2004), disease
associations from Comparative Toxicogenomics Database (Mattingly
et al., 2003), and side-effect information from SIDER (Michael et al.,
2016). These heterogeneous entities—including drugs, proteins, diseases,
and side effects—were incorporated into a unified heterogeneous

FIGURE 4
The prompt of the DDIs prediction judge.
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network. The dataset includes 12,015 nodes (708 drugs, 1,512 proteins,
5,603 diseases, and 4,191 side effects) and over 1.89 million edges, with
10,036 known drug-drug interactions. This large-scale, multi-relational
structure allows for comprehensive modeling of biomedical interactions.

In our study, we employ cross-validation to evaluate the
effectiveness of our proposed method. Specifically, we use a
10-fold cross-validation approach. The dataset is randomly
partitioned into ten subsets, from which nine subsets are used
for training and the remaining one for testing. This process is
repeated ten times, with each subset serving as the test set once.
The final performance result is computed as the average of the
outcomes from all ten iterations. The final performance is
reported as the average of the results across all ten folds,
which helps reduce variance due to random partitioning and
enables reliable comparison of different models. In the zero-shot
scenario, the model is directly tested using the test set. In the few-
shot scenario, positive and negative samples are selected from the
training set for use in context learning prompts.

4.2 Evaluation criteria

DDI prediction is a classification task where the outcomes are
categorized into four types: true positive (TP), false positive (FP),
true negative (TN), and false negative (FN). Based on these
classifications, AUPR (Area Under the Precision-Recall Curve)
and AUC (Area Under the ROC Curve) are widely used
evaluation metrics. 1) AUC assesses the model’s ability to rank
true DDIs higher than non-DDIs across all possible thresholds. It
reflects the trade-off between the true positive rate (TPR = TP/(TP +
FN)) and the false positive rate (FPR = FP/(FP + TN)), providing a
comprehensive view of classification performance. 2) AUPR focuses
on the balance between precision (TP/(TP + FP)) and recall (TP/(TP
+ FN)), which is particularly informative in imbalanced datasets
such as DDI, where positive examples are much rarer than negatives.

In summary, higher AUC andAUPR values indicate that themodel
is better at identifying true interactions while minimizing false positives,
which is critical in real-world pharmaceutical applications where
missing or wrongly predicting DDIs can have serious consequences.

4.3 Comparison models

Given our focus on zero-shot and few-shot scenarios, we
primarily selected models based on LLMs. These models include
GPT-4 (Achiam et al., 2023), GPT-3.5 (Brown, 2020), Davinci-003,

and llama 2 (Touvron et al., 2023b). In addition to these well-
established models, we also included more recent state-of-the-art
models such as llama 3 (Dubey et al., 2024), GPT-4o, DeepSeek V3
(Liu A. et al., 2024), and Claude 3.5 (Bae et al., 2024). All these
models leverage the Transformer architecture, utilizing self-
attention mechanisms and large-scale pretraining to achieve
efficient generation and understanding of natural language
processing tasks through deep learning techniques. Specifically,
GPT-4 and GPT-3.5 are known for their advanced reasoning and
language understanding capabilities, while Davinci-003 provides a
robust foundation for few-shot learning. The inclusion of GPT-4o,
DeepSeek V3, and Claude 3.5 ensures that our benchmark is up-to-
date with the latest advancements in the field.

4.4 Comparison experiments

First, to analyze the impact of drug similarity on the selection of
positive and negative drug pairs as ICL prompts in DDI-JUDGE, we
discuss the effects of Cosine similarity, Dice similarity, and Tanimoto
similarity on the final results. As shown in Table 2, Tanimoto similarity
achieves the best performance, although the differences among the three
are minimal. Tanimoto similarity is particularly suitable for drug
similarity calculation as it effectively balances shared and unique
features, accurately capturing the chemical relationships between
drug molecules. To provide a more comprehensive discussion on
the role of similarity metrics in DDI-JUDGE, we further evaluate
two additional approaches: graph-based similarity and embedding-
based similarity. Specifically, we apply the WL graph kernel to
compute graph similarity, and use SMILES-based embeddings
generated by MolBERT to measure embedding similarity. According
to Table 2, the embedding-based method achieves the best overall
performance, with an AUC of 0.794 and AUPR of 0.815, surpassing all
other methods. The graph-based approach also performs competitively,
with results close to those of Tanimoto, indicating that incorporating
molecular topology can be beneficial. These results suggest that
embedding-based similarity is particularly effective for capturing
deeper structural and semantic information.

Overall, while Tanimoto similarity remains the most efficient
and effective choice in our method, graph-based and embedding-
based similarities present valuable alternatives that can be further
explored or integrated in future improvements.

We mainly conducted experiments in two scenarios: zero-shot
and few-shot. Zero-shot refers to the model predicting DDIs without
any prior training examples or specific task prompts, relying solely
on its pre-trained knowledge. Few-shot involves providing the

TABLE 2 The results of three similarity measure.

Similarity AUC AUPR

Cosine 0.763 0.799

Dice 0.779 0.787

Tanimoto 0.788 0.801

Graph-based 0.785 0.798

Embedding-based 0.794 0.815

TABLE 1 The detail of LUO’s datasets.

Node types Num Edge types Num

Drug 708 Drug-drug 10,036

Protein 1,512 Drug-protein 1,923

Disease 5,603 Protein-protein 7,363

Side Effect 4,192 Drug-Disease 199,214

Protein-Disease 1,596,745
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model with a small number of examples, such as known interactions
between drugs, to help it understand the task requirements before
making predictions.

The experimental results under the zero-shot setting, as shown
in Table 3, reveal that DDI-JUDGE demonstrates the best
performance among all models, achieving the highest AUC
(0.642) and AUPR (0.629). GPT-4o and DeepSeek V3 also
perform well with AUC and AUPR values of 0.585/0.557 and
0.603/0.581, respectively. Llama two exhibits relatively weak
performance, with an AUC of 0.382 and an AUPR of 0.400.

In the few-shot setting, as presented in Table 4, DDI-JUDGE
once again achieves the highest performance, with an AUC of
0.788 and an AUPR of 0.801, showcasing its robustness when
provided with a few examples. Davinci-003 and llama two show
comparatively weaker performance, with AUC/AUPR values of
0.525/0.553 and 0.417/0.488, respectively. The results
demonstrate that DDI-JUDGE effectively leverages few-shot
examples to maintain its superior predictive capabilities.

Comparing the two settings, it is evident that all models benefit
from the few-shot scenario, as providing a small number of
examples improves their performance. DDI-JUDGE shows
significant improvement, with its AUC increasing from 0.642
(zero-shot) to 0.768 (few-shot) and its AUPR rising from

0.629 to 0.760. Overall, few-shot learning enhances the models’
predictive performance, with DDI-JUDGE maintaining its leading
position across both settings.

4.5 The impact of the number of ICL
prompt samples

Next, we discussed the impact of different numbers of ICL
prompt samples on the predictive performance, as shown in
Table 5. As the number of ICL prompt samples increases,
DDI-JUDGE’s performance improves significantly. Starting
from zero-shot, the AUC and AUPR steadily rise as more
prompt samples are provided, with the best performance
achieved when eight samples are used. These results suggest
that increasing the number of ICL prompt samples provides
more contextual information, allowing the model to better
understand the task and make more accurate predictions.

4.6 Case study

Nowadays, an increasing number of studies are exploring
whether methods can be directly translated into practical
improvements in real-world drug discovery and are conducting
relevant experiments (Zhao et al., 2022; Wang et al., 2025a; Wang
et al., 2025b; Zhao et al., 2024; Zhao et al., 2025). To demonstrate the
capability of our method in addressing real-world drug discovery
issues, we conducted experiments and identified several DDIs that
are not present in the DrugBank database.

1) When Rivaroxaban is used concomitantly with
Dihydroxyaluminum Sodium Carbonate, the anticoagulant
effect of Rivaroxaban may be compromised due to the
potential for increased gastrointestinal bleeding in patients
with gastroduodenal ulcers (Goldhaber, 2020).

2) When romidepsin is used concomitantly with quinidine, the
risk or severity of QT interval prolongation may be increased.
Romidepsin, a histone deacetylase inhibitor, is employed in the
treatment of certain types of lymphoma; quinidine is an
antiarrhythmic agent (Abu Rmilah et al., 2020).

3) Simvastatin is a cholesterol-lowering drug that works by
inhibiting the enzyme HMG-CoA reductase. Fluconazole
is a triazole antifungal agent. Studies have shown that the
concurrent use of these two drugs may increase the risk of
myopathy or rhabdomyolysis (Molden et al., 2008).

TABLE 3 The experimental results on the zero-shot scenario.

Methods AUC AUPR

GPT-4o 0.585 0.603

GPT-4 0.557 0.581

GPT-3.5 0.521 0.535

Davinci-003 0.443 0.416

llama 2 0.382 0.400

llama 3 0.573 0.551

Claude 3.5 0.536 0.577

DeepSeekV3 0.541 0.589

DDI-JUDGE 0.642 0.629

TABLE 4 The experimental results on the few-shot scenario.

Methods AUC AUPR

GPT-4o 0.681 0.643

GPT-4 0.656 0.637

GPT-3.5 0.632 0.622

Davinci-003 0.525 0.553

llama 2 0.417 0.488

llama 3 0.631 0.658

Claude 3.5 0.647 0.626

DeepSeekV3 0.679 0.631

DDI-JUDGE 0.788 0.801

TABLE 5 The results on different numbers of ICL prompt samples.

Methods AUC AUPR

DDI-JUDGE (zero-shot) 0.642 0.629

DDI-JUDGE (n = 1) 0.662 0.671

DDI-JUDGE (n = 2) 0.679 0.694

DDI-JUDGE (n = 4) 0.731 0.752

DDI-JUDGE (n = 8) 0.788 0.801
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The case studies demonstrate the capacity of DDI-JUDGE to
identify novel DDIs. Consequently, DDI-JUDGE exerts a beneficial
influence on the design and development process of new drugs.

5 Conclusion

In this paper, we propose an LLM-based method for DDI
prediction, which is achieved through the integration of judging and
ICL prompts. The proposed method outperforms existing LLM
approaches, demonstrating the potential of LLMs for predicting
complex relationships in drug molecules.

First, we propose a novel ICL prompt paradigm for DDI prediction.
This approach selects high-similarity samples as positive and negative
prompts, enabling the LLM to effectively learn and generalize
knowledge. Additionally, we introduce an ICL-based prompt
template that organizes structured prompts, including input
requirements, prediction tasks, relevant factors, and examples. By
leveraging the pre-trained knowledge and contextual understanding
of LLMs, this template enhances DDI prediction capabilities. Finally, we
employ GPT-4 as a discriminator to assess the predictions of multiple
LLMs based on scientific accuracy, clarity, evidence support, and
relevance. These individual results are then combined through a
weighted fusion method to improve prediction accuracy.

In addition, this study emphasizes zero-shot and few-shot
prompting scenarios, which reflect the practical challenges of
real-world DDI prediction, where labeled data are often scarce.
As shown in our analysis, performance improves as the number of
prompt examples increases, including the one-shot setting. Many-
shot prompting, although potentially beneficial, was not explored
further due to input length limitations and diminishing marginal
gains. These findings highlight that zero-shot and few-shot
prompting offer an effective and scalable approach to DDI
prediction in settings with limited labeled data.

The method currently has the following limitations: While it
explores the potential of applying LLMs to DDI prediction, there is
still a lack of domain-specific drug knowledge. For example, GPT-4,
as a discriminator, may introduce potential biases due to its inability
to fully understand domain-specific knowledge and scientific
context. Future work will incorporate more drug-related data and
perform fine-tuning to further optimize the performance.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding authors.

Author contributions

HQ: Writing – original draft, Data curation. XL: Writing –

original draft. CZ: Writing – review and editing. TZ: Writing –

review and editing, Project administration.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research was funded
by National Key R&D Program (2022YFC3321103).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abu Rmilah, A. A., Lin, G., Begna, K. H., Friedman, P. A., and Herrmann, J. (2020).
Risk of QTc prolongation among cancer patients treated with tyrosine kinase inhibitors.
Int. J. cancer 147 (11), 3160–3167. doi:10.1002/ijc.33119

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., et al. (2023).
Gpt-4 technical report. doi:10.48550/arXiv.2303.08774

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., et al.
(2021). Review of deep learning: concepts, CNN architectures, challenges, applications,
future directions. J. big Data 8, 53–74. doi:10.1186/s40537-021-00444-8

Bae, J., Kwon, S., and Myeong, S. (2024). Enhancing software code vulnerability
detection using gpt-4o and claude-3.5 sonnet: a study on prompt engineering
techniques. Electronics 13 (13), 2657. doi:10.3390/electronics13132657

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., et al. (2022).
Constitutional ai: harmlessness from ai feedback. doi:10.48550/arXiv.2212.08073

Brown, T. B. (2020). Language models are few-shot learners. doi:10.48550/ARXIV.
2005.14165

Chaves, J. M. Z., Wang, E., Tu, T., Vaishnav, E. D., Lee, B., Mahdavi, S. S., et al. (2024).
Tx-LLM: a large language model for therapeutics. doi:10.48550/arXiv.2406.06316

Craig, K., Vivian, L., Timothy, J., Philip, L., Son, L., Alex, F., et al. (2010). DrugBank
3.0: a comprehensive resource for ’Omics’ research on drugs. Nucleic Acids Res. 39
(Database issue), D1035–D1041. doi:10.1093/nar/gkq1126

Deng, Y., Qiu, Y., Xu, X., Liu, S., Zhang, Z., Zhu, S., et al. (2022). META-DDIE:
predicting drug–drug interaction events with few-shot learning. Briefings Bioinforma.
23 (1), bbab514. doi:10.1093/bib/bbab514

Deng, Y., Xu, X., Qiu, Y., Xia, J., Zhang, W., and Liu, S. (2020). A multimodal deep
learning framework for predicting drug–drug interaction events. Bioinformatics 36 (15),
4316–4322. doi:10.1093/bioinformatics/btaa501

Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., et al. (2022). A survey on in-context
learning. doi:10.48550/arXiv.2301.00234

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., et al. (2024).
The llama 3 herd of models. doi:10.48550/arXiv.2407.21783

Frontiers in Pharmacology frontiersin.org10

Qi et al. 10.3389/fphar.2025.1589788

https://doi.org/10.1002/ijc.33119
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.3390/electronics13132657
https://doi.org/10.48550/arXiv.2212.08073
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/arXiv.2406.06316
https://doi.org/10.1093/nar/gkq1126
https://doi.org/10.1093/bib/bbab514
https://doi.org/10.1093/bioinformatics/btaa501
https://doi.org/10.48550/arXiv.2301.00234
https://doi.org/10.48550/arXiv.2407.21783
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1589788


Edwards, C., Zhai, C., and Ji, H. (2021). “Text2mol: cross-modal molecule
retrieval with natural language queries,” in Proceedings of the 2021 conference
on empirical methods in natural language processing, 595–607. doi:10.18653/v1/
2021.emnlp-main.47

Fabian, B., Edlich, T., Gaspar, H., Segler, M., and Ahmed, M. (2020). Molecular
representation learning with language models and domain-relevant auxiliary tasks.
doi:10.48550/arXiv.2011.13230

Fang, Y., Liang, X., Zhang, N., Liu, K., Huang, R., Chen, Z., et al. (2023). Mol-
instructions: a large-scale biomolecular instruction dataset for large language models.
2023. doi:10.48550/arXiv.2306.08018

Goldhaber, S. Z. (2020). Thromboembolism prophylaxis for patients discharged from
the hospital: easier said than done. Am. Coll. Cardiol. Found.Wash. D.C. 75, 3148–3150.
doi:10.1016/j.jacc.2020.05.023

Guo, B., Wang, H., Xiao, W., Chen, H., Lee, Z., Han, S., et al. (2024). Sample design
engineering: an empirical study of what makes good downstream fine-tuning samples
for LLMs. doi:10.48550/arXiv.2404.13033

Guo, T., Nan, B., Liang, Z., Guo, Z., Chawla, N., Wiest, O., et al. (2023). What can large
language models do in chemistry? a comprehensive benchmark on eight tasks. Adv.
Neural Inf. Process. Syst. 36, 59662–59688. doi:10.48550/arXiv.2305.18365

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., et al. (2021). Lora: low-
rank adaptation of large language models. arXiv Prepr. doi:10.48550/arXiv.2106.09685

Huang, J., Niu, C., Green, C. D., Yang, L., Mei, H., and Han, J.-D. J. (2013). Systematic
prediction of pharmacodynamic drug-drug interactions through protein-protein-
interaction network. PLoS Comput. Biol. 9 (3), e1002998. doi:10.1371/journal.pcbi.
1002998

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., Casas, D., et al.
(2023). Mistral 7B. arXiv preprint arXiv:231006825. doi:10.48550/arXiv.2310.06825

Li, J., Liu, Y., Fan,W., Wei, X.-Y., Liu, H., Tang, J., et al. (2024). Empowering molecule
discovery for molecule-caption translation with large language models: a chatgpt
perspective. IEEE Trans. Knowl. Data Eng. 36, 6071–6083. doi:10.1109/tkde.2024.
3393356

Liang, Y., Zhang, R., Zhang, L., and Xie, P. (2023). Drugchat: towards enabling
chatgpt-like capabilities on drug molecule graphs. doi:10.48550/arXiv.2309.03907

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., et al. (2024b). Deepseek-v3
technical report. doi:10.48550/arXiv.2412.19437

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig, G. (2023b). Pre-train,
prompt, and predict: a systematic survey of prompting methods in natural language
processing. ACM Comput. Surv. 55 (9), 1–35. doi:10.1145/3560815

Liu, S., Zhang, Y., Cui, Y., Qiu, Y., Deng, Y., Zhang, Z., et al. (2022). Enhancing drug-
drug interaction prediction using deep attention neural networks. IEEE/ACM Trans.
Comput. Biol. Bioinforma. 20 (2), 976–985. doi:10.1109/TCBB.2022.3172421

Liu, Y., Ding, S., Zhou, S., Fan, W., and Tan, Q. (2024a). MolecularGPT: open large
language model (LLM) for few-shot molecular property prediction. doi:10.48550/arXiv.
2406.12950

Liu, Z., Zhang, W., Xia, Y., Wu, L., Xie, S., Qin, T., et al. (2023a). Molxpt: wrapping
molecules with text for generative pre-training. arXiv Prepr. arXiv:230510688,
1606–1616. doi:10.18653/v1/2023.acl-short.138

Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang, W., et al. (2017). A network
integration approach for drug-target interaction prediction and computational drug
repositioning from heterogeneous information. Nat. Commun. 8 (1), 573. doi:10.1038/
s41467-017-00680-8

Ma, T., Lin, X., Li, T., Li, C., Chen, L., Zhou, P., et al. (2024). Y-mol: a multiscale
biomedical knowledge-guided large language model for drug development. doi:10.
48550/arXiv.2410.11550

Mattingly, C. J., Colby, G. T., Forrest, J. N., and Boyer, J. L. (2003). The comparative
Toxicogenomics database (CTD). Environ. Health Perspect. 111 (6), 793–795. doi:10.
1289/ehp.6028

Michael, K., Ivica, L., Juhl, J. L., and Peer, B. (2016). The SIDER database of drugs and
side effects. Nucleic Acids Res. 44 (D1), D1075–D1079. doi:10.1093/nar/gkv1075

Molden, E., Skovlund, E., and Braathen, P. (2008). Risk management of simvastatin or
atorvastatin interactions with CYP3A4 inhibitors. Drug Saf. 31, 587–596. doi:10.2165/
00002018-200831070-00004

Morgan, H. L. (1965). The generation of a unique machine description for chemical
structures-a technique developed at chemical abstracts service. J. Chem. documentation
5 (2), 107–113. doi:10.1021/c160017a018

Nyamabo, A. K., Yu, H., and Shi, J.-Y. (2021). SSI–DDI: substructure–substructure
interactions for drug–drug interaction prediction. Briefings Bioinforma. 22 (6), bbab133.
doi:10.1093/bib/bbab133

Rdkit, L. G. (2013). A software suite for cheminformatics, computational chemistry,
and predictive modeling. Greg Landrum 8 (31.10), 5281.

Ryu, J. Y., Kim, H. U., and Lee, S. Y. (2018). Deep learning improves prediction of
drug–drug and drug–food interactions. Proc. Natl. Acad. Sci. 115 (18), E4304-
E4311–E4311. doi:10.1073/pnas.1803294115

Shi, J.-Y., Huang, H., Li, J.-X., Lei, P., Zhang, Y.-N., Dong, K., et al. (2018). TMFUF: a
triple matrix factorization-based unified framework for predicting comprehensive drug-
drug interactions of new drugs. BMC Bioinforma. 19, 411–437. doi:10.1186/s12859-018-
2379-8

Shi, Y., He, M., Chen, J., Han, F., and Cai, Y. (2024). SubGE-DDI: a new prediction
model for drug-drug interaction established through biomedical texts and drug-pairs
knowledge subgraph enhancement. PLOS Comput. Biol. 20 (4), e1011989. doi:10.1371/
journal.pcbi.1011989

Sridhar, D., Fakhraei, S., and Getoor, L. (2016). A probabilistic approach for collective
similarity-based drug–drug interaction prediction. Bioinformatics 32 (20), 3175–3182.
doi:10.1093/bioinformatics/btw342

Suraj, P., Daniel, N. J., Kristiansen, T. Z., Ramars, A., Vineeth, S., Babylakshmi, M.,
et al. (2004). Human protein reference database as a discovery resource for proteomics.
Nucleic Acids Res. 32 (Suppl. l_1), D497–D501. doi:10.1093/nar/gkh070

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017). Efficient processing of deep
neural networks: a tutorial and survey. Proc. IEEE 105 (12), 2295–2329. doi:10.1109/
jproc.2017.2761740

Tanimoto, T. T. (1958). Elementary mathematical theory of classification and prediction.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., et al.
(2023a). LLaMA: open and efficient foundation language models. doi:10.48550/arXiv.
2302.13971

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., et al. (2023b).
Llama 2: open foundation and fine-tuned chat models. doi:10.48550/arXiv.2307.09288

van Roon, E. N., Flikweert, S., le Comte, M., Langendijk, P. N., Kwee-Zuiderwijk, W. J.,
Smits, P., et al. (2005). Clinical relevance of drug-drug interactions: a structured assessment
procedure. Drug Saf. 28, 1131–1139. doi:10.2165/00002018-200528120-00007

Vaswani, A. (2017). Attention is all you need. Adv. Neural Inf. Process. Syst. doi:10.
48550/arXiv.1706.03762

Wan, F., Huang, X., Cai, D., Quan, X., Bi, W., and Shi, S. (2024). Knowledge fusion of
large language models. doi:10.48550/arXiv.2401.10491

Wang, J., Feng, J., Kang, Y., Pan, P., Ge, J., Wang, Y., et al. (2025b). Discovery of
antimicrobial peptides with notable antibacterial potency by an LLM-based foundation
model. Sci. Adv. 11 (10), eads8932. doi:10.1126/sciadv.ads8932

Wang, J., Luo, H., Qin, R., Wang, M., Wan, X., Fang, M., et al. (2025a). 3DSMILES-
GPT: 3D molecular pocket-based generation with token-only large language model.
Chem. Sci. 16 (2), 637–648. doi:10.1039/d4sc06864e

Wei, J., Zhuo, L., Fu, X., Zeng, X., Wang, L., Zou, Q., et al. (2024). DrugReAlign: a
multisource prompt framework for drug repurposing based on large language models.
BMC Biol. 22 (1), 226. doi:10.1186/s12915-024-02028-3

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. (2020). A
comprehensive survey on graph neural networks. IEEE Trans. neural Netw. Learn.
Syst. 32 (1), 4–24. doi:10.1109/TNNLS.2020.2978386

Xiong, Z., Liu, S., Huang, F.,Wang, Z., Liu, X., Zhang, Z., et al. (2023). Multi-relational
contrastive learning graph neural network for drug-drug interaction event prediction.
Proc. AAAI Conf. Artif. Intell. 37 (4), 5339–5347. doi:10.1609/aaai.v37i4.25665

Xu, M., Yuan, X., Miret, S., and Tang, J. (2023). “Protst: multi-modality learning of
protein sequences and biomedical texts,” in International conference on machine
learning. Honolulu, HI: PMLR, 38749–38767.

Yu, H., Mao, K.-T., Shi, J.-Y., Huang, H., Chen, Z., Dong, K., et al. (2018). Predicting
and understanding comprehensive drug-drug interactions via semi-nonnegative matrix
factorization. BMC Syst. Biol. 12, 14–110. doi:10.1186/s12918-018-0532-7

Yu, H., Zhao, S., and Shi, J. (2022). Stnn-ddi: a substructure-aware tensor neural
network to predict drug–drug interactions. Briefings Bioinforma. 23 (4), bbac209.
doi:10.1093/bib/bbac209

Zhang, C., Lu, Y., and Zang, T. (2022). CNN-DDI: a learning-based method for
predicting drug–drug interactions using convolution neural networks. BMC
Bioinforma. 23 (Suppl. 1), 88. doi:10.1186/s12859-022-04612-2

Zhang, C., Zang, T., and Zhao, T. (2024). KGE-UNIT: toward the unification of
molecular interactions prediction based on knowledge graph andmulti-task learning on
drug discovery. Briefings Bioinforma. 25 (2), bbae043. doi:10.1093/bib/bbae043

Zhang, P., Wang, F., Hu, J., and Sorrentino, R. (2015). Label propagation prediction of
drug-drug interactions based on clinical side effects. Sci. Rep. 5 (1), 12339. doi:10.1038/
srep12339

Zhao, B.-W., Su, X.-R., Hu, P.-W., Ma, Y.-P., Zhou, X., and Hu, L. (2022). A geometric
deep learning framework for drug repositioning over heterogeneous information
networks. Briefings Bioinforma. 23 (6), bbac384. doi:10.1093/bib/bbac384

Zhao, B.-W., Su, X.-R., Yang, Y., Li, D.-X., Li, G.-D., Hu, P.-W., et al. (2024). A
heterogeneous information network learning model with neighborhood-level structural
representation for predicting lncRNA-miRNA interactions. Comput. Struct. Biotechnol.
J. 23, 2924–2933. doi:10.1016/j.csbj.2024.06.032

Zhao, B.-W., Su, X.-R., Yang, Y., Li, D.-X., Li, G.-D., Hu, P.-W., et al. (2025).
Regulation-aware graph learning for drug repositioning over heterogeneous biological
network. Inf. Sci. 686, 121360. doi:10.1016/j.ins.2024.121360

Frontiers in Pharmacology frontiersin.org11

Qi et al. 10.3389/fphar.2025.1589788

https://doi.org/10.18653/v1/2021.emnlp-main.47
https://doi.org/10.18653/v1/2021.emnlp-main.47
https://doi.org/10.48550/arXiv.2011.13230
https://doi.org/10.48550/arXiv.2306.08018
https://doi.org/10.1016/j.jacc.2020.05.023
https://doi.org/10.48550/arXiv.2404.13033
https://doi.org/10.48550/arXiv.2305.18365
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.1371/journal.pcbi.1002998
https://doi.org/10.1371/journal.pcbi.1002998
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.1109/tkde.2024.3393356
https://doi.org/10.1109/tkde.2024.3393356
https://doi.org/10.48550/arXiv.2309.03907
https://doi.org/10.48550/arXiv.2412.19437
https://doi.org/10.1145/3560815
https://doi.org/10.1109/TCBB.2022.3172421
https://doi.org/10.48550/arXiv.2406.12950
https://doi.org/10.48550/arXiv.2406.12950
https://doi.org/10.18653/v1/2023.acl-short.138
https://doi.org/10.1038/s41467-017-00680-8
https://doi.org/10.1038/s41467-017-00680-8
https://doi.org/10.48550/arXiv.2410.11550
https://doi.org/10.48550/arXiv.2410.11550
https://doi.org/10.1289/ehp.6028
https://doi.org/10.1289/ehp.6028
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.2165/00002018-200831070-00004
https://doi.org/10.2165/00002018-200831070-00004
https://doi.org/10.1021/c160017a018
https://doi.org/10.1093/bib/bbab133
https://doi.org/10.1073/pnas.1803294115
https://doi.org/10.1186/s12859-018-2379-8
https://doi.org/10.1186/s12859-018-2379-8
https://doi.org/10.1371/journal.pcbi.1011989
https://doi.org/10.1371/journal.pcbi.1011989
https://doi.org/10.1093/bioinformatics/btw342
https://doi.org/10.1093/nar/gkh070
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.2165/00002018-200528120-00007
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2401.10491
https://doi.org/10.1126/sciadv.ads8932
https://doi.org/10.1039/d4sc06864e
https://doi.org/10.1186/s12915-024-02028-3
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1609/aaai.v37i4.25665
https://doi.org/10.1186/s12918-018-0532-7
https://doi.org/10.1093/bib/bbac209
https://doi.org/10.1186/s12859-022-04612-2
https://doi.org/10.1093/bib/bbae043
https://doi.org/10.1038/srep12339
https://doi.org/10.1038/srep12339
https://doi.org/10.1093/bib/bbac384
https://doi.org/10.1016/j.csbj.2024.06.032
https://doi.org/10.1016/j.ins.2024.121360
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1589788

	Improving drug-drug interaction prediction via in-context learning and judging with large language models
	1 Introduction
	2 Related work
	2.1 Methods of drug-drug interactions prediction
	2.2 Large language models for drug discovery
	2.3 Prompt engineering for LLM

	3 Methods
	3.1 Selecting better ICL samples of DDIs
	3.2 Building prompts based on ICL
	3.3 Predicting DDIs based on judging

	4 Results
	4.1 Datasets
	4.2 Evaluation criteria
	4.3 Comparison models
	4.4 Comparison experiments
	4.5 The impact of the number of ICL prompt samples
	4.6 Case study

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


