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Background: Endocrine therapy combined with CDK4/6 inhibitors remains a
standard treatment for ER+ breast cancer, yet resistance is a prevalent challenge.
This study explores the role of N6-methyladenosine (m6A) modifications,
influenced by m6A-SNPs, in shaping therapy resistance, utilizing single-cell
RNA sequencing to delineate the underlying molecular mechanisms.

Methods: We integrated genome-wide association study data with single-cell
transcriptomic profiles from ER+ breast cancer patients, focusing on differences
between resistant and sensitive responses to CDK4/6 inhibitors. m6A-SNPs were
identified and analyzed for their impact on gene expression and interactions with
RNA-binding proteins, with a particular focus on their roles within key
cellular pathways.

Results: The study identified crucial m6A-SNPs associated with therapy
resistance. Notably, changes in the expression of FILIP1L and TOM1L1, related
to these SNPs, were mapped using pseudotime trajectory analysis, which traced
the evolution from sensitive to resistant cellular states. FILIP1L and
TOM1L1 exhibited dynamic expression changes along the trajectory,
correlating with significant shifts in cell fate decisions. These findings
underscore their potential roles as mediators in the development of
resistance, particularly through their involvement in the PI3K-Akt and Wnt
signaling pathways, critical in cancer progression and drug resistance.

Conclusion:Our findings emphasize the importance of m6A-SNPs in influencing
resistance to therapy in ER+ breast cancer. The dynamic regulation of FILIP1L and
TOM1L1 along the developmental trajectory of tumor cells from sensitivity to
resistance provides insights into the molecular complexity of therapy resistance.
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These results pave the way for developing targeted therapies that modify m6A-
driven pathways, offering new strategies to counteract resistance and improve
patient outcomes.

KEYWORDS

m6A methylation, single nucleotide polymorphism, CDK4/6 inhibitor, ER+ breast cancer,
therapy resistance

1 Introduction

Breast cancer is now the most commonly diagnosed
malignancy and remains a significant cause of cancer-related
mortality worldwide among women (Siegel et al., 2024). The
subtype characterized by the overexpression of estrogen
receptors (ER+ breast cancer) accounts for approximately 70%
of all breast cancer cases and has seen significant treatment
advancements due to the introduction of combined therapy of
endocrine and CDK4/6 inhibitor (Blakely et al., 2023). These
treatments primarily target estrogen signaling and other critical
cellular pathways, markedly improving clinical outcomes
(Glaviano et al., 2024; Lloyd et al., 2024). However, despite
initial therapeutic success, resistance to endocrine therapy is
common, particularly in metastatic breast cancer, where most
patients eventually develop resistance, leading to recurrence and
poor prognosis (Hanker et al., 2020; Glaviano et al., 2024; Zheng
et al., 2024).

The challenge of CDK4/6 inhibitor resistance necessitates a
deeper understanding of the underlying molecular mechanisms
driving this phenomenon. Recently, the post-transcriptional RNA
modifications, specifically N6-methyladenosine (m6A) methylation,
known to regulate mRNA stability, translation, and splicing, has
emerged as influential in cancer progression and treatment
responses (Deng et al., 2023; Wen et al., 2023). Specifically, single
nucleotide polymorphisms (SNPs) that affect m6A modifications
(m6A-SNPs) have recently emerged as important factors in multiple
diseases including cancer (Lv et al., 2022; Wu et al., 2022).
Nevertheless, the involvement of m6A modifications in resistance
to CDK4/6 inhibitors in ER+ breast cancer remains unclear (Wang
D. et al., 2023; Zhuang et al., 2023).

Moreover, the advent of single-cell RNA sequencing (scRNA-
seq) technology has enabled unprecedented insights into the cellular
heterogeneity of tumors, allowing the identification of distinct
subpopulations of tumor cells that may drive resistance to
therapy (Zhang et al., 2021). Integrating genomic data with
single-cell transcriptomic profiles holds great promise for
uncovering the molecular basis of resistance and identifying
potential therapeutic targets.

This study aims to elucidate the role of m6A-SNPs in endocrine
therapy resistance in ER+ breast cancer by employing a two-pronged
approach. First, we identified breast cancer-associated m6A-SNPs
by integrating GWAS summary data withm6Amodification profiles
from the RMVar database, focusing on SNPs with significant
regulatory potential. Second, we utilized scRNA-seq to analyze
the heterogeneity of tumor cells, distinguishing between resistant
and sensitive subpopulations based on their response to CDK4/
6 inhibitor therapy. By combining these genomic and transcriptomic
analyses, we aimed to uncover key molecular pathways and gene

regulatory networks driving resistance, providing insights into
potential therapeutic targets for overcoming resistance in breast
cancer treatment.

2 Materials and methods

2.1 Data sources

In this study, we employed several publicly available databases to
gather genomic and transcriptomic data for analysis. ER+ Breast
cancer genome-wide association study (GWAS) summary statistics
were obtained from the IEU database (ieu-a-1127, https://gwas.
mrcieu.ac.uk), which includes 69,501 breast cancer cases and
105,974 controls of Europeans (Michailidou et al., 2017). The
RMVar database was used to identify m6A-SNPs, which provides
comprehensive information on RNA modifications and associated
genetic variants (https://www.rmvar.renlab.org) (Luo et al., 2021).
Additionally, we retrieved single-cell RNA sequencing (scRNA-seq)
data from the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo) under accession number GSE158724,
which includes data from 41 ER+ breast cancer patients treated with
a combination of endocrine therapy and CDK4/6 inhibitor (Griffiths
et al., 2021).

Bulk transcriptomic data of ER+ breast cancer were obtained
from the TCGA breast cancer (TCGA-BRCA) cohort through the R
package TCGAbiolinks (Colaprico et al., 2016). Expression levels
were normalized using log2(FPKM +1) transformation. To ensure
consistency with the single-cell dataset, we included only ER+ breast
cancer patients with complete overall survival (OS) information and
corresponding normal control samples. As the dataset was derived
from processed expression matrices, no raw sequencing read
filtering was required.

2.2 Identification of m6A-SNPs

As previously mentioned in earlier studies, we identified m6A-
SNPs associated with ER+ breast cancer by examining the
intersection of SNPs with p < 5e-8 between ER+ breast cancer
GWAS datasets and m6A-SNPs listed in the RMVar database
(Xuan et al., 2021). We further filtered for m6A-SNPs that
demonstrated expression quantitative trait loci (eQTL) signals
using the HaploReg database (http://compbio.mit.edu/
HaploReg), which provides information on the regulatory
potential of genetic variants (Ward and Kellis, 2012; Ward and
Kellis, 2016). HaploReg database utilizes linkage disequilibrium
(LD) information from the 1000 Genomes Project to enable SNP
linkage analyses.
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2.3 Interaction between m6A-SNPs and
RNA-Binding proteins

The UCSC Genome Browser (GRCh37/hg19; https://genome.
ucsc.edu/) hosts an extensive compendium of annotations and
components for vertebrate and model organism genomes (Lee
et al., 2020; Nassar et al., 2023). To analyze the potential
functional impacts of m6A-SNPs, we submitted those m6A-SNPs
that exhibited eQTL signals to the UCSC Genome Browser. We used
this platform to systematically predict and visualize the genomic
regions where modifications due to m6A-SNPs are likely to occur,
and to infer the consequential changes in RNA-protein interactions.

2.4 Processing and pretreatment of single
cell transcriptome data

2.4.1 Selection of single-cell samples
The GSE158724 dataset contained single-cell transcriptomic

profiles from 41 estrogen receptor-positive (ER+) breast cancer
patients treated with neoadjuvant endocrine therapy (letrozole)
and/or CDK4/6 inhibitor (ribociclib), totaling 95 samples. For
this analysis, 12 samples with available gene expression data were
selected corresponding to the intermittent high-dose combination
therapy group (letrozole + ribociclib), comprising six responders (R)
and six non-responders (NR) based on their clinical outcomes.

2.4.2 Single-cell RNA-seq quality control and
normalization

Cause this dataset only provided the transcriptomic profiles of
tumor cells, we focused solely on tumor cells, which were
preprocessed as follows. According to the dataset description, all
cells underwent a rigorous preprocessing pipeline that classified
them as tumor cells, so no further cell- or gene-level filtering was
conducted in this study. The raw scRNA-seq data were normalized
using the NormalizeData function in the Seurat R package, which
scales the gene expression counts by total expression per cell,
followed by log transformation (Gribov et al., 2010). To account
for variability in gene expression, the FindVariableFeatures function
was employed to identify the top 3,000 highly variable genes across
all cells using the “vst” method. These genes are critical for
downstream analysis as they capture the biological variation in
the dataset. Data scaling was performed with the ScaleData function.

Principal component analysis (PCA) was performed using the
RunPCA function in Seurat, with the top 30 principal components
(PCs) chosen based on the ElbowPlot visualization. To address
potential batch effects and harmonize the data across samples, the
Harmony algorithm was applied (Korsunsky et al., 2019). Harmony
adjusts for batch-to-batch variability by aligning gene expression
profiles across different patients, ensuring that biological signals are
not confounded by technical artifacts. Following batch correction, a
shared nearest neighbor (SNN) graph was constructed using the
FindNeighbors function with the top 30 PCs. Cells were clustered
into distinct subgroups using the FindClusters function, with a
resolution parameter of 0.05 to define six distinct clusters. The
clusters were visualized using uniform manifold approximation and
projection (UMAP) plots, generated with the RunUMAP function
(with n. neighbors = 30 and dims = 1:30), which provided a low-

dimensional representation of the cellular landscape and allowed for
clear distinction between the cell populations.

2.5 Differential expression and metabolic
pathway analysis

To investigate gene expression differences between resistant
(Tumor_Res) and sensitive (Tumor_Sen) tumor cells, we
performed differential expression analysis using the limma
package. Genes with an absolute log2 fold change greater than
0.8 and an adjusted p-value less than 0.05 were considered
differentially expressed. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were conducted using the clusterProfiler R
package to identify pathways enriched among differentially
expressed genes (Kanehisa and Goto, 2000; Kanehisa et al., 2017;
Wu et al., 2021). Metabolic pathway analysis was performed using
the GSVA R package (Hänzelmann et al., 2013), and metabolic flux
analysis was conducted using single-cell flux estimation analysis
(scFEA), a tool designed to infer the metabolic activity of cells based
on single-cell transcriptomic data (Alghamdi et al., 2021).

2.6 Identification and analysis of drug-
resistant subpopulations

Tumor cells were classified into drug-resistant and sensitive
subpopulations based on the ratio of NR (Non-responder) and R
(Responder) cell sources. The R package oncoPredict was used to
calculate the IC50 value of ribociclib drugs for each tumor cell and
analyze the difference between the IC50 values of drugs in the drug-
resistant vs non-resistant subpopulations (Maeser et al., 2021).
Then, we divided each cluster into the R or NR group according
to whether it contained a significantly higher proportion of R or NR
cells (Ren et al., 2025).

Based on the TCGA-BRCA cohort, the score of resistant
subpopulations was calculated based on GSVA method, and the
samples were grouped according to the score to show the prognostic
Kaplan-Meier survival curve (OS). GSVA quantified each tumor cell
subpopulation to calculate the score of KEGG metabolic pathway,
and the drug-resistant subpopulation vs non-resistant
subpopulation was analyzed comparatively, to identify the
significant metabolic pathway.

Metabolite abundance was calculated for each tumor cell
subpopulation using scFEA to identify the enrichment of
metabolic pathway products in each subpopulation. Spearman
was used to calculate the correlation between the relevant
metabolite levels and the IC50 of ribociclib.

2.7 Pseudotime trajectory and cell
fate analysis

We employed pseudotime trajectory analysis using the monocle
R package to explore the developmental trajectory of tumor cells
from a sensitive to a resistant state (Trapnell et al., 2014). Cells were
ordered along the pseudotime trajectory, and key transition points
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were identified. To further investigate the molecular mechanisms
driving this transition, we performed branch expression analysis
modeling (BEAM) to identify genes with branch-specific expression
patterns. These genes were then subjected to GO and KEGG
pathway enrichment analyses to identify the biological processes
associated with the transition to resistance.

2.8 Protein-protein interaction (PPI)
network analysis

To explore the interactions between differentially expressed
genes and m6A-SNP-associated genes, we constructed a protein-
protein interaction (PPI) network using the STRING database
(Szklarczyk et al., 2023). Cytoscape software was used to visualize
the network and identify hub genes that may play key roles in the
development of endocrine therapy resistance (Doncheva
et al., 2019).

2.9 Statistical analysis

All statistical analyses were conducted using R software (v4.1.2).
Differential expressions were determined using moderated
t-statistics, and significance was defined as p < 0.05. Adjustments

for multiple testing were made using the Benjamini–Hochberg
procedure to control the false discovery rate (FDR).

3 Results

3.1 Identification of m6A-SNPs associated
with breast cancer

The flowchart was shown in Figure 1. To identify m6A-SNPs
associated with breast cancer, we performed an intersection of SNPs
from the GWAS and RMVar databases and screened SNPs that met
the threshold p < 5e-8. Based on the 10,680,257 SNPs in the ER+
breast cancer GWAS data and 133977 m6A-SNPs in RMVar
databases, we identified 24 m6A-SNPs associated with ER+
breast cancer (Figure 2; Supplementary Table S1).

Among the 24 identified m6A-SNPs, 13 exhibited eQTL signals,
corresponding to 10 distinct genes. These SNPs include rs4829 in
TOM1L1, rs244298 and rs2541243 in STXBP4, rs388685 in ZNF45,
rs1017968 in FILIP1L, rs1802212 and rs2267372 and rs9610915 in
MAFF, rs2974935 in MTX1, rs2981428 in FGFR2, rs3104793 in
CASC16, rs4973758 in NEK10, and rs6465348 in CYP51A1
(Supplementary Figure S1). These findings were summarized in
Supplementary Table S2, which detailed the specific eQTL associations
and their potential implications in gene regulation by m6Amodifications.

FIGURE 1
Flowchart of the study.
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3.2 Functional enrichment analysis

GO and KEGG pathway enrichment analyses were conducted
on the 10 genes associated with the identified m6A-SNPs. The
findings indicated significant enrichment in biological functions

such as steroid biosynthesis and positive regulation of protein
autophosphorylation (Figure 3). These results suggested that
m6A-SNPs might modulate biological functions by regulating the
expression levels of corresponding genes, particularly impacting
pathways like steroid biosynthesis.

FIGURE 2
Manhattan plot of ER+ breast cancer-associated m6A-SNPs.

FIGURE 3
Functional enrichment analysis of genes related to m6A-SNPs associated with ER+ breast cancer.
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FIGURE 4
Differential expression and m6A modification sites of m6A-SNPs related genes. Differentially expressed genes between ER+ breast cancer and
normal tissues in TCGA-BRCA cohort (A). M6A modifications near the rs1017968 (FILIP1L, (B), rs1802212 and rs4829 (TOM1L1, (C), and rs2267372 and
rs9610915 (MAFF, (D). In B-D, the x-axis represents the nucleotide sequence containing the target SNP position, while the y-axis indicates the score
assigned by SRAMP for the presence of anm6A peak. In the plot, taller black vertical lines denote a higher predicted probability of m6Amodification
at that specific sequence position.
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3.3 Differential expression analysis and
prediction of m6A modification sites

In the TCGA-BRCA bulk RNA-seq dataset, we identified
differentially expressed genes between ER+ breast cancer
samples and normal control samples. Using a threshold of |
log2FC| > 0.8 and adjusted p < 0.05, a total of
2,526 differentially expressed genes were identified. Notably,
this set includes three genes associated with m6A-SNPs:
FILIP1L, TOM1L1, and MAFF (Figure 4A).

Based on the genomic FASTA sequences of the above three
differentially expressed m6A-SNPs-related genes, we examined the
m6A peak positions in the SRAMP database and compared the m6A
peaks to determine whether there was a “Moderate confidence” or
“High confidence”m6A peak in the vicinity of the SNPs. If there is, it
can be assumed that there is a m6A modification with medium or
high confidence near the SNP site. It was found that rs1017968
(FILIP1L), rs1802212 and rs4829 (TOM1L1), and rs2267372 and

rs9610915 (MAFF) SNPs did have m6A modifications near the SNP
loci (Figures 4B–D).

3.4 m6A-SNPs and interaction with RNA-
Binding proteins

We utilized the UCSC Genome Browser to analyze the potential
roles of m6A-SNPs. As illustrated in Figure, rs1017968 is located in
the intronic region of the FILIP1L gene on chromosome three and
exhibits potential interactions with RNA-binding proteins such as
ELAVL1 and PABPC1 (Figure 5A). Similarly, rs1802212 and
rs4829 are located in the 3′UTR of the TOM1L1 gene on
chromosome 17 and show potential interactions with PABPC1
(Figures 5B,C). Additionally, rs2267372 and rs9610915, situated
in the exon and 3′UTR regions of the MAFF gene on
chromosome 22, also potentially interact with RNA-binding
proteins including PABPC1 (Figures 5D,E).

FIGURE 5
Interaction of m6A-SNPs, rs1017968 (A), rs1802212 (B), rs4829 (C), rs2267372 (D) and rs9610915 (E), and RNA-binding proteins. The x-axis
represents the genomic coordinates. The y-axis, from top to bottom, displays gene expression profiles across 54 tissues from the GTEx database, the
distribution of RNA-binding proteins, transcription levels in various cell lines, DNase I hypersensitive sites, and SNPs located within the genomic region.
The yellow vertical line indicates the genomic position of the target SNP.
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3.5 Identification of resistant cell
subpopulations

In this study, we analyzed 28,495 tumor cells, including
18,948 cells in the Responders (R) group and 9,547 cells in the
non-responders (NR) group. A notable batch effect was identified
within these 12 samples and subsequently removed through the
harmony package before re-clustering, as illustrated by the
comparison in Supplementary Figure S2. We clustered these
tumor cells and stratified them into subpopulations at a
resolution of 0.05, resulting in six distinct cell clusters
(Figure 6A). Based on the proportion of NR cells within each
cluster, clusters 0, 1, and 4 exhibited a significantly higher
proportion of NR cells, while clusters 2 and 3 had a significantly
higher proportion of R cells (Figure 6B). Consequently, we defined
clusters 0, 1, and 4 as Tumor_Resistant (Tumor_Res), clusters 2 and
3 as Tumor_Sensitive (Tumor_Sen), and cluster 5, which showed no
significant differences between NR and R proportions, as Mixed and
excluded it from further analysis.

After calculating the IC50 of ribociclib in tumor cells, we found
that the IC50 values were significantly higher in the Tumor_Res
cells, indicating a lower sensitivity to ribociclib (Figure 6C).
Differential analysis revealed significant upregulation of genes
such as LRP1B and ZNF385B in the Tumor_Res group

(Figure 6D). Functional analysis showed that these genes play
crucial roles in regulatory pathways such as the PI3K-Akt
signaling pathway and the Wnt signaling pathway (Figure 6E).

Gene Set Variation Analysis (GSVA) was employed to assess the
differential expression scores of genes associated with the resistant
subgroups across individual samples in the TCGA-BRCA dataset.
Based on median values, samples were stratified into groups to
evaluate the prognostic impact using Kaplan-Meier survival curves.
These analyses indicate that the resistant subgroups are associated
with poor patient outcomes (Figure 6F). In the multivariate Cox
regression analysis incorporating score, clinical stage, and age, a high
score was also significantly associated with poor prognosis in
patients with ER+ breast cancer (Figure 6G). These Results
highlighted the potential prognostic significance of these gene
expression patterns in ER+ breast cancer.

3.6 Metabolic profiling of cell
subpopulations

We utilized Gene Set Variation Analysis (GSVA) to evaluate the
metabolic characteristics of tumor cells. As depicted in Figure 7A,
there were significant differences in metabolic features between
Tumor_Resistant (Tumor_Res) and Tumor_Sensitive (Tumor_

FIGURE 6
Identification and characterization of resistant subpopulations in tumor cells. (A) UMAP Clustering of Tumor Cell Subpopulations. (B) Distribution of
Resistant and Non-resistant Cells in Clusters. (C) IC50 Values for Ribociclib across Tumor Subpopulations. (D) Differential Gene Expression in Tumor_
Resistant Cells. (E) Pathway Analysis of Upregulated Genes. (F) Kaplan-Meier Survival Curves for Resistant and Sensitive Subgroups. (G)Multivariable Cox
regression analysis of overall survival was performed based on three factors: the score (High vs Low), age, and clinical stage (III/IV vs I/II).

Frontiers in Pharmacology frontiersin.org08

Ming et al. 10.3389/fphar.2025.1590363

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1590363


Sen) groups. Notably, caffeine metabolism activity was significantly
enhanced in the Tumor_Res group. Additionally, scFEA (single-cell
Flux Estimation Algorithm) was used to calculate the abundance of
metabolites in the tumor cell subpopulations, revealing a significant
increase in UMP and phenylalanine levels in the Tumor_Res group
(Figure 7B). The results showed that metabolic pathways such as
folate biosynthesis, caffeine metabolism, and ether lipid metabolism
were upregulated in Tumor_Res group, suggesting that these
elevated pathways may contribute to CDK4/6 inhibitor resistance.
In addition, increased levels of metabolites—including lysine, acetyl-
CoA, and glutamine—were detected in Tumor_Res group,
indicating that their enrichment may further promote resistance
development (Figures 7A,B). Notably, methionine, known as m6A-
related metabolite, was significantly downregulated in Tumor_Res
group, suggesting that aberrant m6A modifications might play a
critical role in the development of resistance to CDK4/6 inhibitor
(Figure 7B). Furthermore, there was a significant positive correlation
between the IC50 of the drug ribociclib and caffeine metabolism
(Figures 7C,D), suggesting that altered metabolic pathways may
influence drug sensitivity in these cells.

3.7 Pseudo-temporal analysis of the Tumor_
Res cell cluster

To explore the transformation process from sensitive to
resistant tumor cells, we constructed a pseudo-temporal

developmental trajectory of tumor cells using single-cell data.
The tumor cells were divided into three developmental states,
with resistant tumor cells occupying the trajectory’s endpoint,
exhibiting a highly differentiated state (Figure 8A). Further
analysis indicated that tumor cells underwent a round of cell
fate selection, with a subset ultimately differentiating into
resistant cells (Figure 8A).

Node 1 represents a critical point in the differentiation trajectory
where tumor cells transition from sensitive to resistant, prompting
us to perform BEAM analysis at this node to explore genes
exhibiting branch-dependent expression. During the
differentiation process, genes in cluster 3 were highly expressed
in cell fate1, while genes in cluster 2 were highly expressed in cell
fate2 (Figure 8B). During the differentiation from sensitive to
resistant cells, the expression levels of the m6A-SNP-related gene
FILIP1L initially decreased and then increased, whereas another
m6A-SNP-related gene, TOM1L1, showed a decrease in expression
as cells became resistant. This suggests that FILIP1L and
TOM1L1 may be part of the mechanism of driving
resistance (Figure 8C).

An enrichment analysis of the genes involved in each cluster
revealed that genes in cluster1 were associated with functions like
circadian entrainment and regulation of GTPase activity
(Figure 9A). Genes in cluster2 played roles in functions such as
oligopeptide transmembrane transporter activity (Figure 9B).
Meanwhile, genes in cluster3 were crucial in regulating the PI3K-
Akt and Wnt signaling pathways (Figure 9C).

FIGURE 7
Metabolic features of cell subpopulations. Metabolic profile differences between Tumor_Resistant and Tumor_Sensitive groups through GSVA (A)
and scFEA (B). (C,D) Correlation Between Ribociclib IC50 and Caffeine Metabolism.
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3.8 Analysis of resistant subgroup
characteristic genes and m6A-SNPs
related genes

To further investigate the association between resistant
subgroup characteristic genes and m6A-SNPs related genes,
we conducted protein-protein interaction (PPI) and
correlation analyses. Utilizing the String database, we explored
the interaction network between characteristic genes of the
resistant subgroup and m6A-SNPs related genes. Notably, the
m6A-SNP related gene FILIP1L interacts with the resistant
subgroup characteristic gene MT-ND4, and MAFF interacts
with NR4A2 and GCLC within the resistant
subgroup (Figure 10A).

Correlation analysis between m6A-SNPs related genes and the
characteristic genes of the resistant subgroup revealed that FILIP1L
shows a significant positive correlation with GNGT1 and RBFOX1,
and a significant negative correlation with BMPR1B (Figure 10B).

These findings suggested that FILIP1L and TOM1L1 might serve as
potential biomarkers for resistance.

4 Discussion

Resistance to endocrine therapy in patients with ER+ breast
cancer represents a significant clinical challenge, often leading to
treatment failure and poor prognostic outcomes (Portman et al.,
2019; Ferro et al., 2024). The role of m6A modification has been
increasingly recognized in ER+ breast cancer, influencing RNA
stability and gene expression that are pivotal in cancer
progression and response to therapy (Yang et al., 2024).

Our study approached this problem by integrating GWAS
data with scRNA-seq analyses to identify m6A-SNPs that
potentially contribute to endocrine therapy resistance. We
pinpointed significant SNPs and their association with gene
expression changes in tumor cells, focusing on their variability

FIGURE 8
Pseudotime trajectory analysis of tumor cell differentiation. (A) Developmental trajectory of tumor cells. (B) BEAM analysis at node 1. (C) Expression
patterns of FILIP1L, MAFF and TOM1L1.
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between sensitive and resistant cell populations. Our findings
highlight the roles of specific m6A-SNPs related genes,
particularly FILIP1L and TOM1L1, which were found involved
in key pathways influencing therapy resistance. Additionally, our
study elucidated the diverse expression patterns within tumor

cell subpopulations, offering insights into the heterogeneity of
response to CDK4/6 inhibitors.

Although there still no studies revealed the roles of FILIP1L and
TOM1L1 in m6A modification, their functions in cancer have been
preliminarily described. FILIP1L is known for its proven ability to

FIGURE 9
Gene enrichment analysis in cell fate clusters. Functional enrichment in cluster 1 (A), cluster 2 (B) and cluster 3 (C).
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inhibit the biological functions of a wide range of tumor cells and has
the potential to be a therapeutic target for cancer (Kwon and Libutti,
2014). It can inhibit the formation of chemoresistance in tumor cells
by suppressing the Wnt signaling pathway (Kwon et al., 2016).
Similarly, upregulated FILIP1L inhibited metastasis of triple-
negative breast cancer cells (Jiang et al., 2024). Moreover, the
upregulated FILIP1L was also able to increase the sensitivity of
breast cancer cells to Topoisomerase II (TOP2) targeting drugs (Lu
and Hallstrom, 2012). Previous studies have identified TOM1L1 as a
gene associated with m6A-SNPs in breast cancer (Xuan et al., 2021).
And TOM1L1 was able to promote ERBB2-induced breast cancer
cell invasion by driving membrane delivery of membrane-type
1 matrix metalloprotease (MT1-MMP) (Chevalier et al., 2016a;
Chevalier et al., 2016b). The mechanisms by which these two
genes regulate m6A modifications that affect drug resistance in
breast cancer have not yet been revealed, and more in-depth studies
are urgently needed to disclosure.

In ER+ breast cancer, the modulation of the PI3K-Akt and
Wnt signaling pathways by m6A-SNPs related genes like FILIP1L
and TOM1L1 is particularly compelling, given the established role
of these pathways in promoting estrogen receptor signaling and
cellular proliferation (Alves and Ditzel, 2023). Our observations
are consistent with literature that connects dysregulated m6A
landscapes with altered signaling pathways, which may enhance
tumor aggressiveness and resistance to endocrine therapy (Tabnak
et al., 2023). Thus, targeting specific m6A modifications offers a
promising strategy to modulate these critical pathways and
improve therapeutic outcomes. Recent findings have highlighted
the role of N6-methyladenosine (m6A) modification in ER+ breast
cancer, particularly its capacity to regulate mRNA dynamics, such

as the expression of CDK6, a critical mediator in cell cycle
progression and a known target of CDK4/6 inhibitors (Xia
et al., 2024).

Recent evidence has further illuminated the interplay between
m6A regulatory enzymes and critical drivers of therapy response in
ERα-positive breast cancer. For example, METTL3-mediated m6A
methylation has been shown to stabilize ESR1 transcripts, thereby
reinforcing ESR1 activity as a key transcription factor (Zhou et al.,
2025). Such a METTL3–ESR1 loop can potentially sustain
estrogen-driven signaling under therapeutic pressure.
Additionally, inhibition of METTL14 has been reported to
overcome CDK4/6 inhibitor resistance by disrupting the
METTL14–m6A–E2F1 axis in ERα-positive cells (Liu et al.,
2025). These findings imply that m6A modifications may act in
parallel with, or even converge upon, established drivers of
endocrine therapy resistance, including ESR1 mutations and
dysregulated cell-cycle regulators (e.g., CDK4/6). Future studies
integrating high-throughput m6A mapping, gene mutation
profiling, and functional assays will be critical for clarifying
whether targeting FILIP1L or TOM1L1 could synergistically
restore CDK4/6 inhibitor sensitivity. Elucidating these
overlapping mechanisms stands to refine combination regimens
against therapy-resistant ER+ breast cancer.

Recent studies suggest that other RNA modifications, such as 5-
methylcytosine (m5C) and 1-methyladenosine (m1A), may likewise
influence progression and therapy resistance in various
malignancies (Wang et al., 2021; Chen et al., 2024). Aberrant
m5C modifications have been reported to impair RNA stability
and alter gene expression, leading to metabolic reprogramming and
ferroptosis, ultimately facilitating tumor resistance to therapy (Hou

FIGURE 10
Analysis of Protein-Protein Interactions and Correlations Between Resistant Subgroup Characteristic Genes and m6A-SNPs Related Genes. (A)
Protein-Protein Interaction Network. (B) Correlation Analysis of m6A-SNPs Related and Resistant Subgroup Characteristic Genes.
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et al., 2025; Shi et al., 2025). Meanwhile, aberrant m1Amodifications
can alter mRNA structure or translation efficiency, potentially
driving tumor cells to evade therapeutic pressure (Li et al., 2024;
Modi et al., 2024). Incorporating these emerging insights into the
epitranscriptomic landscape of ER+ breast cancer will be critical for
pinpointing novel targets and devising more effective, combination-
based treatments aimed at overcoming resistance.

Emerging evidence highlights the critical role of
STAT3 signaling in mediating CDK4/6 inhibitors resistance in
several cancers including breast cancer. Persistent or dysregulated
STAT3 activation has been shown to drive tumor cell proliferation,
apoptosis evasion, and immune modulation, thereby promoting
resistance to CDK4/6 inhibitors (Dong et al., 2024; Wu et al.,
2024). Notably, STAT3 synergizes with PI3K-Akt and Wnt
pathways—central to our findings—to bypass therapy. For
example, STAT3 elevates cyclin D1 expression, circumventing
CDK4/6 inhibition, and stabilizes MCL1 to suppress apoptosis
(Osaki et al., 2022; Wang X. et al., 2023; Yin et al., 2024).
Furthermore, STAT3 modulates RNA metabolism, including
m6A dynamics, by regulating RNA-binding proteins like
METTL3, which may influence mRNA stability of resistance
genes (Liu et al., 2023). These insights align with our observed
pathway dysregulation and suggest combinatorial targeting of
STAT3 and m6A modifiers as a resistance-countering strategy.

While our findings were promising, they were not without
limitations. The reliance on bioinformatic predictions and single-
cell RNA-seq data may introduce biases and limit the
physiological interpretation of m6A-SNPs’ roles without direct
experimental validation. Furthermore, the complexity of m6A
regulatory mechanisms and their context-dependent effects
demand more comprehensive in vivo studies to fully
understand their impact on breast cancer pathology and
treatment outcomes. Additionally, our analysis was based on
GWAS data derived solely from individuals of European
ancestry, reflecting the current lack of large-scale datasets from
other populations, such as Asian cohorts. Given that allele
frequencies and regulatory effects of m6A-SNPs may vary
across ethnic backgrounds, the generalizability of our findings
may be limited. Future studies incorporating ethnically diverse
GWAS and epitranscriptomic data will be essential to validate
these associations and support broader clinical translation.
Furthermore, integrating longitudinal clinical data and
functional assays to validate the influence of identified m6A-
SNPs on therapy resistance and patient outcomes.

5 Conclusion

This study confirms the role of m6A-SNPs in influencing
endocrine therapy resistance in ER+ breast cancer, highlighting
how modifications mediated by specific SNPs, particularly in
FILIP1L and TOM1L1, impact key regulatory pathways and
cellular metabolism. Our findings emphasize the potential of
targeting m6A-related mechanisms to improve therapeutic
strategies and overcome resistance, suggesting a direction for
future research to enhance the precision of breast cancer treatment.
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