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Objective: Defective in cullin neddylation 1 (DCN1) plays a pivotal role in
anticardiac fibrosis by interacting with UBC12 and catalyzing cullin
neddylation, which activates cullin-RING E3 ligases (CRLs). As a key modulator
of anticardiac fibrosis, DCN1 has emerged as an attractive target for therapeutic
intervention. The aim of this study is to design and evaluate novel DCN1 inhibitors
using a combination of three-dimensional quantitative structure-activity
relationship (3D-QSAR) modeling, molecular docking, and molecular dynamics
simulations.

Methods: A dataset of 47 derivatives was employed to construct Comparative
Molecular Field Analysis (COMSIA) model, incorporating steric, electrostatic,
hydrophobic, hydrogen bond donor, and acceptor fields to accurately predict
compound activity. In silico molecular docking studies, selected compounds
were docked with the target protein to evaluate their binding affinity. Additionally,
molecular dynamics simulations were performed to assess the stability of the
compounds, followed by energy decomposition analysis was used to identify key
residues contributing to binding.

Results: The comparative molecular similarity index analysis (COMSIA) model
achieved a cross-validated q2 of 0.553, a non-cross-validated r2 of 0.959, and an
R2
ext value of 0.766, demonstrating good accuracy and stability in predicting the

activity of the compounds. The top compound exhibited a predicted pIC50 of
9.674 and showed strong binding affinity in molecular docking. Molecular
dynamics simulations confirmed the stability of the compound at the binding
site, while energy decomposition analysis identified key residues essential for
binding interaction.

Conclusion: This study successfully designed and evaluated novel
DCN1 inhibitors using an integrated approach that combines 3D-QSAR
modeling, molecular docking, and molecular dynamics simulations. The

OPEN ACCESS

EDITED BY

Manuela Oliverio,
Magna Græcia University, Italy

REVIEWED BY

Li-Ying Ma,
Zhengzhou University, China
Cheng-Hua Jin,
Yanbian University, China

*CORRESPONDENCE

Yaxin Guo,
gyx19971129@163.com

RECEIVED 10 March 2025
ACCEPTED 13 May 2025
PUBLISHED 27 June 2025

CITATION

Bian W and Guo Y (2025) Design and screening
of novel 1,2,4-Triazole-3-thione derivatives as
DCN1 inhibitors for anticardiac fibrosis based on
3D-QSAR modeling and molecular dynamics.
Front. Pharmacol. 16:1590711.
doi: 10.3389/fphar.2025.1590711

COPYRIGHT

© 2025 Bian and Guo. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 27 June 2025
DOI 10.3389/fphar.2025.1590711

https://www.frontiersin.org/articles/10.3389/fphar.2025.1590711/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1590711/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1590711/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1590711/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1590711/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1590711/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1590711&domain=pdf&date_stamp=2025-06-27
mailto:gyx19971129@163.com
mailto:gyx19971129@163.com
https://doi.org/10.3389/fphar.2025.1590711
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1590711


findings provide an effective computational platform for the design of
DCN1 inhibitors and lay a solid foundation for the development of drugs
targeting anticardiac fibrosis.

KEYWORDS

DCN1, 3D-QSAR modeling, molecular docking, molecular dynamics simulation,
anticardiac fibrotic

1 Introduction

Cardiovascular diseases (CVDs) remain the leading cause of
morbidity and mortality worldwide, accounting for approximately
17.9 million deaths annually. According to the World Health
Organization (WHO), this represents 32% of all global deaths,
with ischemic heart disease and stroke being the predominant
contributors (Frangogiannis, 2021). The burden of CVDs is
particularly high in low and middle income countries. Cardiac
fibrosis plays a critical role in the progression of heart failure,
hypertensive heart disease, and cardiomyopathies (Frangogiannis,
2017). About 40%–50% of heart failure patients can be into
myocardial fibrosis. Fibrosis contributes to diastolic dysfunction,
arrhythmias, and impaired contractility, making it a key therapeutic
target in cardiology (Segura et al., 2014).

Protein neddylation is one type of posttranslational
modifications that regulates the activity of the substrate proteins.
Neddylation modification is catalyzed by NEDD8-activating
enzyme (NAE, E1), NEDD8-conjugating enzyme (E2), and
NEDD8 ligase (E3) to attach NEDD8, an ubiquitin-like molecule,
to a lysine residue of a substrate protein (Lu and Yang, 2020).
Targeting protein-protein interactions of the neddylation complexes
has been pursued as a potential strategy to selectively inhibit the
activity of individual cullin-RING ligases (CRLs) (Huang et al.,
2023). Analysis of the co-crystal structures of DCN1, a co-E3 for
neddylation, and its binding partners UBC12 (a neddylation E2)
suggested that it may be amenable for the design of potent, small-
molecule inhibitors. DCN1 and DCN2 share homology but differ in
their interaction networks. DCN1 is critical for cullin1/
3 neddylation, while DCN2 is implicated in cullin4/
5 neddylation. The hydrophobic pocket in DCN1 that
accommodates the N-acetyl-Met residue of UBC12 (a key
E2 enzyme) has structural variations compared to DCN2 (Zheng
et al., 2021). DCN1, a co-E3 ligase, interacts with UBC12 and
activates cullin-RING ligases (CRLs) by catalyzing cullin
neddylation (Paccez et al., 2024). Although DCN1 has been
recognized as an important therapeutic target for human
diseases, its role in the cardiovascular area remains unknown.
DCN1 can upregulate in isolated cardiac fibroblasts (CFs) treated
by angiotensin (Ang) II and in mouse hearts after pressure overload
(Chatzifrangkeskou et al., 2016). Then, structure-based
optimizations for DCN1-UBC12 inhibitors of DN-2 were
performed. DN-2 specifically targeted DCN1 at molecular and
cellular levels as shown by molecular modeling studies, HTRF,
cellular thermal shift and co-immunoprecipitation assays (Fang
et al., 2019). Importantly, DN-2 effectively reversed Ang II-
induced cardiac fibroblast activation, which was associated with
the inhibition of cullin 3 neddylation. Studies indicate a potentially
role of DCN1 inhibition for anticardiac fibrotic effects. There is still

lack of potent DCN1 inhibitor with high selectivity and good
pharmacokinetic property (He et al., 2023). Therefore, novel and
efficient DCN1 inhibitors with drug-like properties remain to be
urgently needed to explore more potential biological functions,
especially anticardiac fibrotic effect in vivo (He Z. et al., 2024).

Three-dimensional quantitative structure-activity relationship
(3D-QSAR) is a powerful computational approach used in drug
design and screening, offering improved predictive capabilities, a
deeper understanding of molecular interactions, and the potential to
accelerate the drug discovery process. 3D-QSAR takes into account
the three-dimensional arrangement of atoms and molecular
interactions. By considering the three-dimensional arrangement
of atoms and molecular interactions, This allows for more precise
predictions about how minor structural modifications to a
compound can impact its biological activity. This work will apply
the 3D-QSAR and molecular dynamics simulation to design new
structures of 1,2,4-Triazole-3-thione derivatives of DCN1 inhibitors
(He Z-X et al., 2024).

2 Materials and methods

2.1 Data sets and biological activity

In this study, a dataset of 47 derivatives from the literature was
utilized for 3D-QSAR model building. The IC50 values of these
compounds were converted into pIC50 values [pIC50 = −log (IC50)
+9] and served as the dependent variable for further analysis. Table 1
shows the structures of all compounds, along with their IC50 and
pIC50 values. The dataset was randomly split into a training set
consisting of 38 compounds which were applied for building 3D-
QSAR model. The test set involves 9 compounds that were used as
independent samples for model validation. The ratio of compounds
in the training set to the test set was approximately 4:1 (Li
et al., 2016).

2.2 Molecular modeling

All computational analyses in this investigation were executed
utilizing the Sybyl-X 2.1 platform. QSAR framework embedded in
Sybyl was applied to delineate associations between structural
derivatives and their inhibitory potency (IC50). Initial compound
architectures were generated via ChemDraw Professional, followed
by geometric refinement within Sybyl’s molecular workspace.
Structural energy optimization was achieved through the Tripos
force field coupled with the Powell conjugate gradient method,
employing a termination criterion of 0.05 kcal/(mol·Å) and a cap
of 10,000 optimization cycles (Buch et al., 2010). This protocol

Frontiers in Pharmacology frontiersin.org02

Bian and Guo 10.3389/fphar.2025.1590711

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1590711


TABLE 1 47 structures and the experiment IC50.

9–12 17–20

Compd R1 IC50 (nM)a pIC50 COMFAa Pred COMSIAb Pred

9 1,460.2 5.7851 5.747 5.839

10 2,321.13 5.6343 5.715 5.737

11c 1,110.14 5.9546 5.547 5.619

12 2,280.24 5.6416 5.647 5.816

17 650.16 6.187 6.13 6.018

18 195.04 6.7099 6.739 6.742

19 329.96 6.4815 6.403 6.438

(Continued on following page)
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TABLE 1 (Continued) 47 structures and the experiment IC50.

9–12 17–20

Compd R1 IC50 (nM)a pIC50 COMFAa Pred COMSIAb Pred

20c 2,170.21 5.6635 5.536 5.487

Compd R1 IC50(nM)a pIC50 COMFA Pred COMSIA Pred

25 545.15 6.2635 6.16 7.09

26 883.62 6.0537 6.055 5.758

27 90.87 7.0416 7.093 6.959

28 77.62 7.11 7.108 7.068

30 50.51 7.2966 7.346 7.09

31 12.82 7.8921 7.869 7.698

32 15.65 7.8055 7.717 8.116

33 8.77 8.057 9.18 8.783

(Continued on following page)
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TABLE 1 (Continued) 47 structures and the experiment IC50.

Compd R1 IC50(nM)a pIC50 COMFA Pred COMSIA Pred

34c 12.31 7.9097 7.535 7.161

35 130.22 6.8853 6.942 6.949

36 69.40 7.1586 7.136 7.098

37c 25.65 7.5909 7.859 7.284

38 22.17 7.6542 7.711 7.615

39 2.96 8.5287 8.317 8.208

40c 10.57 7.9759 7.249 7.166

41 100.11 6.9995 6.974 7.002

42 43.06 7.3659 7.686 7.819

43 208.86 6.6801 6.633 6.591

44 840.33 6.0756 6.034 6.039

(Continued on following page)
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TABLE 1 (Continued) 47 structures and the experiment IC50.

Compd R1 IC50(nM)a pIC50 COMFA Pred COMSIA Pred

45 27.42 7.5619 7.578 7.5

46 45.16 7.3452 7.307 7.237

Compd R1 IC50(nM)a pIC50 COMFA Pred COMSIA Pred

47c 1,630.11 5.7878 5.556 5.014

48 2,203 5.657 5.597 5.675

49 4,114 5.3857 5.352 5.383

50 7,114 5.1479 5.233 5.034

53 15850 4.8 4.912 4.826

(Continued on following page)
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TABLE 1 (Continued) 47 structures and the experiment IC50.

Compd R1 IC50(nM)a pIC50 COMFA Pred COMSIA Pred

54c 7,580 5.1203 5.437 5.142

Compd R1 IC50 (nM)a pIC50 COMFA Pred COMSIA Pred

55 15.27 7.8162 7.707 7.687

56 221.19 6.6552 6.77 6.728

57 32 7.6043 7.649 7.726

58c 18.91 7.7233 7.934 7.058

59 46.17 7.3356 7.175 7.324

60 9.42 8.0259 8.066 8.102

61 7.85 8.1051 8.054 8.042

62 14.06 7.852 7.861 7.868

(Continued on following page)
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guaranteed the selection of the lowest-energy molecular
configuration, which served as the foundational geometry for
subsequent comparative molecular similarity index analysis
(COMSIA) (Putz et al., 2016). To refine electrostatic modeling,
Gasteiger-Hückel partial charge assignments were systematically
applied across all atomic sites.

2.3 Conformational sampling and alignment

The predictive reliability of COMSIA is inherently dependent on
molecular alignment methodologies. In this investigation, ligand
structural alignment was performed using the COMSIA module,
with the analytical cohort comprising compounds featuring a
conserved structural motif (Figure 1). A maximum common
substructure (MCS) driven alignment protocol integrated into
COMSIA was adopted for spatial superposition. Though
compound 33 has the higher inhibitor (Figure 1), it has lower
toxicology. Therefore, this compound was selected as the
reference template for systematic alignment. Subsequent
molecular superimposition of all derivatives was executed within
the Sybyl computational platform, ensuring consistency in spatial

orientation for comparative analysis (Akamatsu, 2002; Lanka
et al., 2023).

2.4 COMSIA model study

The COMSIA simulations were conducted within the Sybyl-X
2.1 suite under predefined settings, incorporating Lennard-Jones
potentials and Coulombic field gradients. Five physicochemical
descriptors steric (S), electrostatic (E), hydrophobic (H),
hydrogen bond donor (D), and hydrogen bond acceptor (A)
were systematically evaluated to characterize ligand-receptor
binding mechanisms. The attenuation coefficient (α) remained
fixed at 0.3 to maintain consistency with prior protocols.

3D-QSAR model was constructed by partial least squares (PLS)
regression (Cramer et al., 1988), correlating structural features with
experimental pIC50 values. Model validation employed leave-one-
out (LOO) cross-validation, interactively excluding individual
compounds to predict their activities using the remaining dataset.
This approach optimized the number of latent components (NLC)
and derived the cross-validated correlation coefficient (q2) by
minimizing the prediction error sum of squares. Subsequently, a

TABLE 1 (Continued) 47 structures and the experiment IC50.

Compd R1 IC50 (nM)a pIC50 COMFA Pred COMSIA Pred

63c 28.84 7.54 7.378 7.373

64 19.92 7.7009 7.659 7.705

65 5.41 8.2668 8.406 8.227

66 9.39 8.0273 7.983 8.113

aComparative molecular field analysis (COMFA).
bComparatie molecular similarity index analysis (COMSIA).
cTest set.
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non cross validated analysis using the finalized NLC yielded the
coefficient of determination (r2), standard error of estimation (SEE),
and F-test statistic, ensuring statistical robustness of the model.

2.5 Molecular docking

Computational ligand-receptor interaction analysis was
executed via the Sybyl-X 2.1 suite to map binding modalities and
identify bioactive conformers. Structural coordinates of DCN1-
specific inhibitory complexes were sourced from the RCSB PDB
repository for molecular docking simulations (PDB ID: 5UFI)
(Morris and Lim-Wilby, 2008). The crystallographic structure
underwent preprocessing by eliminating non-protein components
(including solvent molecules) and retaining only the
macromolecular framework. Protonation states were optimized
by introducing hydrogen atoms at polar sites, followed by charge
parameterization using the Kollman united atom force field to
prepare the system for energy calculations (Fan et al., 2019).

The active site was delineated using the Sybyl-X
2.1 computational suite, with ProtoMol parameters configured to
default settings (expansion coefficient: 0; distance cutoff: 0.5 Å) for
spatial characterization. For each ligand, the top-scoring 20 poses

were retained and prioritized according to docking energy metrics.
Optimal ligand-receptor configurations were subjected to molecular
interaction profiling to map critical binding features, supported by
visual representations of key hydrogen bonding networks,
electrostatic interfaces, and hydrophobic contacts.

2.6 Molecular dynamics simulation

Atomistic conformational dynamics of prioritized protein-
ligand complexes were explored via GROMACS 2023.2 with the
CHARMM36m force field (Huang et al., 2017), enabling nanoscale
resolution of structural transitions. Ligand topology was
parameterized using the CGenFF server (Vanommeslaeghe and
MacKerell, 2012), and charge neutrality was achieved by
incorporating monovalent counterions (Na+/Cl−). Solvation
employed the CHARMM-optimized TIP3P water model, with
terminal residues manually assigned as NH3

+ (N-terminus) and
COO− (C-terminus) to override default settings incompatible with
methionine-initiated polypeptides.

The system underwent potential energy optimization through
sequential steepest descent and conjugate gradient algorithms. Non-
bonded interactions were partitioned into short range (<10Å) and
long range components, the latter resolved via the Particle Mesh
Ewald (PME) method, while LINC constraints managed covalent
bonds. Thermostatic control (300 K) utilized the V-rescale
algorithm, and isotropic pressure coupling (1 bar) was
maintained via the Parrinello-Rahman barostat. Following energy
relaxation, sequential NVT (100 ps) and NPT (100 ps) equilibration

TABLE 2 Statistical parameters of COMSIA models.

Field q2 ONC r2 F value SEE

S, E, H, D and A 0.553 7 0.959 100.859 0.227

FIGURE 1
Regression analysis comparing the model-predicted pIC50 values with the actual pIC50 values, COMFA values, and COMSIA values.
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phases ensured thermodynamic stability, preceding a 100-ns
production simulation with trajectory snapshots recorded at 2-
fs intervals.

Post-simulation analytic included conformational stability
(RMSD), residue flexibility (RMSF), and intermolecular H-bond
dynamics, processed through native GROMACS utilities. Ligand-
binding energetics were quantified via the molecular mechanics-
poisson-boltzmann surface area (MM-PBSA) framework,
decomposing free energy into van der Waals, electrostatic,
solvation, and entropic terms to guide structure-activity
optimization. Computational binding affinities were benchmarked
against experimental data to validate predictive reliability, with
gmx_MMPBSA extracting energy metrics from the terminal 100-
ns trajectory window for 3C protease-ligand systems (Valdés-
Tresanco et al., 2021).

3 Results and discussion

3.1 COMSIA statistical results

The statistical analysis of the optimal COMSIA model identified
five crucial molecular fields: steric, electrostatic, hydrophobic,
hydrogen bond donor, and hydrogen bond acceptor (Klebe and
Abraham, 1999). A total of 16t models were generated based on
these five fields. All the models were evaluated, model 16 includes all
five field parameters is the best overall performance in every analysis
aspect (Table 2). Therefore, model 16 was chosen for further in-
depth study.

Model 16 was constructed using 7 components (ONC = 7) and
we found cross-validated q2 value is 0.553, non-cross-validated r2

value is 0.959, standard error of estimate (SEE) is 0.227, and
F-statistic is 100.859, respectively. All the values show stronger
correlation between the experimental and predicted pIC50 values.
The contributions of each field to the model were quantified as
follows: steric field (15.6%), electrostatic field (10.1%), hydrophobic
field (26.2%), hydrogen bond donor (36.0%), and hydrogen bond
acceptor (12.1%). These field contributions are detailed in Table 3.

3.2 Validation of our COMSIA model

3.2.1 Internal validation
To measure the bias of the original calculations, a bootstrapping

analysis was performed over 100 runs. The results of the
100 bootstrapping analyses include the standard deviation and
average R2 values. If the SEEboot value is smaller than SEE and
the Rboot2 value is greater than R2, it proves that the constructed
model is robust.

Y-randomization is a common external validation method
aimed at testing whether the model’s high fitting performance is
solely due to the randomness in the data by shuffling the order of the
dependent variable (Y) (Király et al., 2022). This helps assess the
reliability of the model (Rücker et al., 2007).

R2
P � R2 − R2

r

R2 is the R2 value of the original model. R2
r is the average R

2 value of
the randomized models. The calculation shows that the original
model’s R2 is 0.9592, indicating a good fit on the training set. The
average R2 of the randomized models is −0.9979, meaning that after
20 rounds of Y-randomization, the models fit the training set very
poorly (close to negative values). R2 is 1.9571, representing the
difference between the original model’s R2 and the average R2 of the
randomized models. Since the R2 value is large, it suggests that the
original model has significant predictive power and that the high
fitting performance is not caused by the randomness in the data.
Therefore, the COMSIA model we constructed is valid and can
provide reliable predictive ability. The randomization test indicates
that randomness did not cause the high fitting performance of the
original model, proving the model’s authenticity and validity.

3.2.2 External validation
This formula is the calculation formula for the external

validation coefficient R2
ext, used to assess the model’s predictive

ability on an external test set (Martinez-Mayorga et al., 2024). The
formula is as follows

R2
ext � 1 − ∑ntest

i�1 yi − ỹi( )2
∑ntest

i�1 yi − �ytr( )2
Where: ntest is the number of compounds in the external test

set, yi is the actual bioactivity or experimental value of the i
compound in the test set, ỹi is the predicted value of the i
compound in the test set, and �ytr is the mean of the actual
values in the training set (Golbraikh et al., 2003).

R2
ext is used to measure the model’s explanatory power on the

external test set. How much variance the model can explain when
predicting the test set. A value close to 1 indicates good predictive
ability on the test set, while a value close to 0 indicates poor
predictive ability. This formula compares the sum of squared
errors between the predicted and actual values on the test set
with the variance of the test set and normalizes it with the
variance of the training set. This coefficient helps determine
whether the model is overfitting the training set and ensures its
generalization ability on unseen data.

Through calculation, the R2
ext value of our COMSIA model is

0.766, meaning the model has good predictive ability on the test set,
explaining about 76.6% of the variability.

TABLE 3 Statistics results of COMSIA model by PLS analysis.

Model q2 ONC r2 SEE F Field contribution %

S E H D A

COMSIA 0.553 7 0.959 0.227 100.859 15.6 10.1 26.2 36.0 12.1
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R2
m(overall) is the overall R2 value, used to measure the model’s

performance and goodness of fit. R2 is the R2 value of the training
set, indicating the correlation between the predicted and actual
values in the training data. R2

0 is the R
2 value of the external test set

(or cross-validation set), used to evaluate the model’s generalization
ability on unseen data.

R2
m overall( ) � R2 × 1 −

�������
R2 − R2

0

√( )
This formula adjusts the overall performance of the model by

combining the R2 of the training set with the R2
0 of the external

validation set, providing a metric that reflects both the goodness of
fit on the training set and the model’s predictive ability on external
data. A higher R2

m(overall) value indicates that the model not only fits
well on the training set but also generalizes well to the external
dataset, meaning it has strong predictive ability. The calculated
R2
m(overall) is 0.530, R2 is 0.9592, and R2

0 is 0.5304. This result
indicates that the model fits well on the training set (high R2),
and although its performance drops on the external test set, the

overall R2
m(overall) value remains above 0.5, suggesting that this is a

robust model.
The experimental and predicted pIC50 values, and the residual

values are in Table 1. Figure 1 shows the correlation between the
predicted and experimental pIC50 values for both the training and
test sets which has strong and consistent relationship between them.
The graphical data validate the predictive accuracy of the framework
and its ability to uncover underlying patterns within the
experimental dataset, thereby reinforcing its effectiveness in
mechanistic pharmacological modeling.

3.3 COMSIA contour maps analysis

The COMSIA contour maps shown in Figure 2 provide valuable
visual insights into the molecular fields influencing the activity of the
most active compound of the 33rd. These maps represent various
molecular fields, each related to specific interactions contributing to
the compound’s biological activity.

FIGURE 2
COMSIA StDev*Coeff contour maps based on the most active compound 33. (A) Steric (B) Hydrophobic (C) Acceptor (D) Electrostatic (E) Donor.
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The steric contours (shown in green and yellow) highlight the
favorable and unfavorable spatial regions around compound 33.
Positive contours (green) represent regions where large steric
interactions, such as van der Waals forces, facilitate binding,
while negative contours (yellow) indicate areas where steric
hindrance would reduce the compound’s activity. The
electrostatic field is visualized in red and blue. The positive
electrostatic contours (blue) denote areas where favorable
electrostatic interactions (such as hydrogen bonding or ionic
interactions) with the target protein are likely to enhance
binding. Conversely, negative electrostatic contours (red)
represent unfavorable regions where repulsive interactions may
hinder binding. Hydrophobic regions are showed in purple and
cyan. Positive contours (purple) suggest regions where hydrophobic
interactions are beneficial to the ligand’s binding affinity, while
negative contours (cyan) represent unfavorable hydrophobic
interactions that might reduce activity. The donor field is shown
in pink, where positive contours (pink) indicate regions where
hydrogen bond donation would be favorable for interactions with
the target protein. This suggests that these regions contribute to a
strong binding interaction by hydrogen bonding. The hydrogen
bond acceptor field is displayed in magenta, with positive contours
(magenta) signifying regions where hydrogen bond acceptance is
favorable for binding to the target, thereby increasing activity.
Unfavorable regions (colored red) suggest where the hydrogen
bond acceptor ability may reduce activity due to poor interactions.

The contour maps provide detailed insights into how molecular
modifications can enhance or impair compound activity. For
compound 33, the steric field indicates opportunities for
optimizing bulkiness, while the electrostatic field emphasizes the
importance of carefully balancing charge distribution. The
hydrophobic field strongly supports the incorporation of non-
polar groups in favorable regions to enhance receptor-ligand
affinity. Finally, the hydrogen bond donor and acceptor fields
offer guidance on where to strategically introduce functional
groups to improve hydrogen bonding interactions. By
systematically applying these findings, researchers can rationally
design derivatives based on compound 33 with improved activity. It
can ensure that molecular modifications align with the favorable
contours while avoiding the unfavorable ones. This approach

underscores the power of COMSIA in guiding targeted
optimization in drug design (Cramer et al., 1988).

3.4 Design details

We designed new structures and selected the best candidates.
The first step in designing new structures involves choosing an
appropriate molecular scaffold that has proven bioactivity, in this
case, the scaffold shown in the image. This scaffold is typically
selected based on its known interaction with the biological target,
and it serves as the backbone of the new structures. The goal is to
modify certain functional groups to enhance the compound’s
biological activity or optimize its pharmacological properties. In
the next step, a thorough analysis of the structure-activity
relationship (SAR) of the current compounds (compound 33) is
conducted. R1 and R2 functional groups were identified based on
their impact on activity. Based on SAR, one might decide to
substitute or modify certain groups (changing R1 from -Cl to
-CH = CH2) to explore whether it improves the compound’s
activity. Withdrawing groups (-NO2, -F) can enhance binding by
polarizing the molecule or stabilizing charge interactions. However,
electron-donating groups (-NH2, -OH) could improve solubility or
participate in hydrogen bonding. Bulky groups (-Br, -CH = CH2)
were evaluated for their impact on binding pocket fit. Smaller groups
(-F) were prioritized in sterically constrained regions. Groups like
-OH and -NH2 were included to exploit hydrogen bond donor/
acceptor interactions with the target. Halogens (-Cl, -F, -Br) in
R1 paired with polar R2 groups (-NH2, -OH) to enhance both
binding affinity and solubility. Conjugated systems (-CH = CH2)
paired with strong electron-withdrawing groups (-NO2) to optimize
resonance effects. When the potential modifications were finished,
all structures were incorporated into virtual screening software to
predict their effects on activity. In Table 4, the compounds 33a, 33b,
33c, 33d, and 33e are the newly designed compounds with different
R1 and R2 substituents. Using our built QSAR model and molecular
docking, the potential biological activity (pIC50) of these
compounds was predicted. The predicted pIC50 values were
provided for each compound. Finally, based on the predictive
models and the actual biological data, the best structures were
selected for further optimization and development. In this case,
the five newly designed compounds (33a, 33b, 33c, 33d, and 33e) are
selected based on their predicted pIC50 values, with compound 33c
having the highest predicted value of 9.674. The compound
represents the optimal candidates for further research.

3.5 The selected new structure
docking result

The molecular docking results for compound 33c (Figure 3)
reveal critical insights into its binding mode and interactions with
the target protein. This score represents the overall binding affinity
of the compound to the protein. A positive value typically indicates
favorable binding, and the magnitude suggests moderate to strong
interaction. This penalizes steric clashes between the ligand and
protein. The slight negative value implies minor unfavorable
collisions, but they are not significant enough to influence

TABLE 4 The design of new structures.

Compd R1 R2 Predict pIC50

33a -CL -NH2 9.191

33b -CH = CH2 -NO2 9.334

33c -F -OH 9.674

33d -NO2 -NH2 9.243

33e -Br -NO2 9.342
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binding. The positive value highlights the contribution of polar
contacts, such as the hydrogen bond with GLN-80, which can
stabilize the ligand in the binding pocket. Therefore, Figure 3
indicates the structural similarity of the docked pose to a
reference conformation. A low value of IC50 suggests flexibility
in the ligand’s binding mode, potentially allowing adaptive
interactions with the protein. The right panel of Figure 3 details

the interactions between compound 33c and residues in the binding
pocket. The interaction with GLN-80 is critical for anchoring the
ligand. The glutamine residue likely donates or accepts a hydrogen
bond from a functional group (-OH, -NH2) on 33c, enhancing
binding specificity and stability. The molecular surface (left panel)
shows that 33c fits into the binding pocket. Non-polar regions of the
ligand may engage in hydrophobic interactions with residues, while

FIGURE 3
Binding interactions and molecular docking analysis of compound 33c with the target protein (PDB ID: 5UFI). The left figure shows the molecular
surface of the protein with the docked compound, while the right figure provides a detailed view of the interactions between compound 33c and key
residues within the binding pocket.

FIGURE 4
Root mean square deviation (rmsd) analysis of compound 33c in complex with target protein (PDB ID: 5UFI) during molecular dynamics simulation.
(A) Root mean square fluctuation over time. (B) Root mean square deviation over time. (C) Solvent accessible surface area over time. (D) Protein-ligand
interaction types (Bar plot showing different interaction types such as H-bonds, hydrophobic, ionic, and water bridges). (E) Protein-ligand contacts over
time. (F) Protein-ligand interaction over time.
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polar/charged groups align with hydrophilic residues. Depending on
the ligand’s structure, aromatic rings or halogen atoms (-Cl, -F)
might interact with aromatic residues.

3.6 Molecular dynamics simulation

The root-mean-square deviation (RMSD) trajectory reveals
distinct phases of conformational behavior (Maiorov and
Crippen, 1994). During the initial equilibration phase
(0–2,000 frames), the RMSD rises sharply to ~2.0 Å, reflecting
structural adjustments as the system settles into a stable
configuration. Between 2,000 and 10,000 frames, the RMSD
oscillates within a moderate range (1.5–2.5 Å), indicating
dynamic exploration of conformational states while maintaining
overall structural integrity. A subtle upward trend in the red
regression line suggests a gradual shift in the complex’s
conformation over time. Toward the simulation’s conclusion, the
RMSD peaks at ~3.0 Å, though fluctuations remain bounded and
non-catastrophic. Critically, the absence of large deviations (>3.0 Å)
confirms that the complex retains its core architecture throughout
the simulation, with no evidence of major destabilization or
unfolding events.

The RMSF profile exhibits significant variations along the atom
index, displaying distinct peaks and troughs. Specific regions
demonstrate elevated RMSF values (>0.2 nm), indicative of
enhanced structural flexibility, while other segments show
relatively lower fluctuations (0.1–0.2 nm), suggesting greater
structural rigidity (Figure 4A). There is no strictly monotonic
trend, suggesting that the fluctuation is uneven across the
different atoms. RMSF is a key indicator of the flexibility of
atoms in a molecular dynamics simulation. Higher RMSF values
typically suggest more movement or flexibility in the system. The
protein regions might correspond to loops, flexible linkers, or areas
involved in conformational changes, which could indicate regions
with more structural flexibility or less interaction with molecule.
Conversely, lower RMSF values indicate regions with more rigidity
or structural constraints which might correspond to the protein core
or structured domains. RMSD analysis with protein-ligand
interaction metrics to evaluate the stability and binding behavior
of compound 33c during a molecular dynamics (MD) simulation.
The RMSD rises sharply from 0 to ~0.3nm, reflecting structural
adjustments as the ligand-protein complex transitions from its
docked pose to a dynamically equilibrated state. This phase
involves reorientation of the ligand within the binding pocket
and minor conformation changes in the protein. RMSD
fluctuates between 0.15 and 0.25 nm indicate that the system
maintains structural integrity. These fluctuations suggest a
balance between flexibility and stability. A gradual upward drift
in RMSD is observed, likely due to minor shifts in ligand positioning
or protein side-chain rearrangements. The hydrogen bond with
GLN-80 persists throughout the simulation, acting as an anchor to
stabilize the ligand. This interaction correlates with periods of lower
RMSD. It roles in maintaining structural coherence (Figure 4B). The
Solvent Accessible Surface Area (SASA) data reflects the solvent
indicate the protein during the simulation. It is used to assess the
structural changes of the protein after ligand binding. SASA
gradually decreases from approximately 117.5 nm2 at the start of

the simulation, which shows the protein begins to contract and the
reducing solvent exposure. Within the first 50 ps, SASA decreases to
about 112.5 nm2, it is the protein initial contraction or
conformational adjustment. The SASA value stabilizes after
150 ps, approximately 110 nm2, which indicate that the protein-
ligand complex has reached a stable state. The SASA data suggests
that ligand binding induces a contraction in the protein structure.
This might be related to conformational changes after ligand
binding. The decrease in SASA typically indicates that the
binding pocket is effectively closed off and reduce solvent
exposure. This suggests that the ligand stabilizes the protein
structure through hydrophobic interactions or hydrogen bonding.
Consistent with previous studies, this reduction in solvent exposure
is usually a marker of the stability of the protein-ligand
complex (Figure 4C).

The protein-ligand interaction types illustrates the distribution
of different interaction types between the protein and its ligand
(Figure 4D). The x-axis lists the individual amino acid residues, and
the y-axis shows the count of interactions. GLN-80 and CYS-81 have
notable hydrogen bond counts, reaching over 300 interactions. It has
significant contributors to ligand binding (green). ILE-49 and ILE-
52 have high hydrophobic interaction counts (purple), so it has
contribute to the stabilization of the protein-ligand complex via
hydrophobic forces. GLU-142 stands out with high number of ionic
interactions, which can be seen by the large pink bar extending far
beyond other residues (pink). CYS-81 also participates in water
bridge interactions, but the count is generally lower than the
hydrogen bond and hydrophobic interactions. They might play a
secondary role in stabilizing the protein-ligand complex (blue). This
chart provides valuable insights into the nature of interactions
between the ligand and the protein. The data highlights that
hydrophobic interactions play a central role in the protein-ligand
binding, with residues such as CYS-81 contributing significantly to
the stability of the complex. These residues are often involved in
non-polar interactions that help to anchor the ligand within the
binding pocket. Hydrogen bonds also contribute significantly to the
stability of the protein-ligand complex, particularly CYS-81, which
are involved in maintaining the ligand in place through polar
interactions. The hydrogen bond interactions likely provide
specificity to the binding. The GLU-142 indicates that
electrostatic interactions are important for stabilizing the binding,
particularly at the surface of the binding site where charged groups
can interact with opposite charges on the ligand. The very high
interaction count for GLU-142 suggests a strong electrostatic
attraction that might be crucial for the stability and affinity of
the ligand. Lastly, water bridges, while less prominent in this
analysis, can also contribute to the fine-tuning of the protein-
ligand interactions by mediating indirect interactions. They may
be important for the overall solvation and flexibility of the binding
site. The combination of these interaction types suggests that the
ligand binds through a diverse array of forces, with a balance
between hydrophobic interactions, hydrogen bonding, ionic
interactions, and water bridges, which together enhance the
binding stability and specificity. It is important for understanding
the mechanisms of ligand binding and can guide the optimization of
1,2,4-Triazole-3-thione derivatives for improved efficacy as
DCN1 inhibitors in therapeutic applications, including
anticardiac fibrosis.
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The total contacts between the protein and ligand over a
100 ns period, with the x-axis representing time (ns) and the
y-axis representing the total contacts (Figure 4E). The protein-
ligand interaction is mostly stable throughout the simulation.
There are sharp decreases in contact counts, particularly at 20 ns,
50 ns, and 80 ns, where the number of contacts briefly dips below
45 contacts before recovering. These dips suggest that the ligand
may undergo temporary loss or disruption of interactions with
the protein during these time intervals. Despite the fluctuations,
the number of contacts remains mostly consistent, with minor
deviations. This indicates that the ligand maintains a relatively
stable interaction with the protein, despite the transient drops in
contact count. The periods of stability may represent times when
the ligand is securely bound to the protein, engaging in
interactions such as hydrogen bonding, hydrophobic
interactions, or ionic contacts. The sharp decreases in contact
counts at several points (20 ns, 50 ns, and 80 ns) could indicate
transient dissociation of the ligand-protein complex. These may
indicate moments when the ligand momentarily rearranges its
binding conformation. The overall trend of maintaining around
50 contacts supports the hypothesis that the ligand binds stably to
the protein for most of the simulation. While occasional
disruptions occur, the ligand remains largely associated with
the protein. This is an indicator of potential high binding
affinity. This dynamic stable interaction is often observed in
drug design, where small molecules engage in temporary
reorganization as they stabilize their interactions over time.

The protein-ligand interactions over time (Figure 4F), where the
x-axis corresponds to time (ns) and the y-axis lists the specific
residues involved in the interactions. Each vertical line represents an
interaction between the ligand and a particular residue at a given
time during the simulation. ILE-49 and ILE-52 show consistently
frequent interactions with the ligand at multiple time points,
particularly in the 0–50 ns range. CYS-81 also shows significant
and frequent interactions, with continuous presence across the
simulation, peaking at multiple intervals. This graph clearly
illustrates the dynamic nature of the protein-ligand interaction
over the 100 ns molecular dynamics simulation. The frequent
interactions observed for residues of ILE-49 and CYS-81 suggest
that these residues are likely involved in hydrophobic interactions or
covalent bonding with the ligand. ILE-49 and CYS-81 play a critical
role in stabilizing the protein-ligand complex. These interactions
indicate a dynamic binding mechanism, where the ligand frequently
repositions itself and interacts with different residues. It is a
flexibility in the binding process. This flexibility is beneficial in
drug design. It allows for better accommodation of the ligand within
the binding site. It can enhance the stability and potential efficacy of
the inhibitor.

Figure 5 shows a stacked bar chart that provides a breakdown
of energy contributions from various components across
different residues of the protein-ligand complex. The energy
components are categorized as electrostatic energy (pink),
hydrogen bonds (yellow), Van der Waals energy (purple) and
solvation energy (blue). The energy contributions for each

FIGURE 5
(A–C) Energetic components analysis of compound 33c in complex with target protein (PDB ID: 5UFI) from molecular dynamics simulation.
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residue helps to identify how much each residue contributes to
the overall stability of the complex. Residues with high energy
contributions in one or more of these categories are play key roles
in stabilizing the ligand within the binding site. We found several
residues with high electrostatic energy contributions (pink).
These residues are involved in strong electrostatic interactions
with the ligand. There were also several peaks in the Van der
Waals energy (purple), which indicates that hydrophobic
interactions are significant for the stability of the complex.
The total energy difference (represented in pink) is
about −29.18 kcal/mol, which show a favorable interaction
between the ligand and protein. The standard deviation (SD)
of 3.93 kcal/mol and the standard error of the mean (SEM) of
0.07 kcal/mol indicate the variability and precision of the energy
values. The negative ΔTOTAL indicates that the ligand binding
stabilizes the system. The protein-ligand interaction is
energetically favorable. Table 5 provides the energy
decomposition analysis for compound 33c bound to the target
protein. It shows the average energy for each component, along
with the associated standard deviation and standard error of the
mean. The per-residue energy contributions (Figure 5) indicates
that several residues play pivotal roles in the protein-ligand
interaction, especially those contributing high values in the
electrostatic and Van der Waals energy categories. These
interactions suggest that electrostatic forces and hydrophobic
interactions are critical for stabilizing the binding of the ligand to
the protein. The identification of residues contributing
significantly to these energy components can guide further
optimization in drug design by focusing on enhancing these
interactions to improve binding affinity. These findings
demonstrate that compound 33c could be a promising
candidate for targeting the protein, as it stabilizes the complex
and is likely to have high binding affinity, which is crucial for
therapeutic efficacy in the context of DCN1 inhibition and
anticardiac fibrosis.

4 Conclusion

In this study, we have successfully employed a combination of
3D-QSAR modeling, molecular docking, and molecular
dynamics simulations to design and screen novel 1,2,4-
Triazole-3-thione derivatives as potential inhibitors of
DCN1 for the treatment of anticardiac fibrosis. Our COMSIA
model, developed using a dataset of 47 derivatives, demonstrated
robust predictive capability, with a cross-validated q2 of
0.553 and a non-cross-validated r2 of 0.959, validating its
accuracy in predicting the biological activity of the
compounds. The top compound 33c from our virtual
screening showed a predicted pIC50 of 9.674 and displayed

strong binding affinity in molecular docking simulations, as
well as excellent stability in molecular dynamics simulations.
Energy decomposition analysis revealed critical residues that play
a pivotal role in stabilizing the ligand-protein complex, providing
valuable insights for future ligand optimization and enhancing
the design of more potent inhibitors. This study found that the
potential of DCN1 can be an attractive therapeutic target for
anticardiac fibrosis and demonstrates the effectiveness of using
integrated computational techniques in the rational design of
drug candidates. This findings also provide a strong foundation
for the development of novel DCN1 inhibitors, which could pave
the way for further research and clinical application in the
treatment of cardiac fibrosis.
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