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Epigenetic modifications play a critical role in the pathogenesis and progression
of cardiovascular diseases. Among these, DNA hydroxymethylation has garnered
increasing attention in the fields of oncology, hematology, and neurological
disorders, serving as a key mechanism for untangling molecular pathways
underlying disease etiology. Although emerging evidence has begun to
illuminate the role of DNA hydroxymethylation in cardiovascular conditions
such as coronary artery disease and atherosclerosis, its implications in atrial
fibrillation remain underexplored. This review aims to summarize current
understanding and discuss potential mechanisms through which DNA
hydroxymethylation may contribute to the development and progression of
atrial fibrillation.
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1 Overview of atrial fibrillation

Atrial fibrillation (AF) is one of the most common clinical arrhythmias, characterized
by the loss of regular, organized electrical activity and mechanical contraction in the atria,
which are replaced by rapid and disorganized fibrillatory activity. The development of AF is
closely associated with multiple factors, including advanced age, sex, obesity, genetic
predisposition, and unhealthy lifestyle habits. It is also significantly linked to various
comorbidities such as hypertension, coronary artery disease, valvular heart disease, heart
failure, diabetes, hyperthyroidism, chronic kidney disease, chronic obstructive pulmonary
disease, and metabolic syndrome (Schnabel et al., 2009; Tomaszuk-Kazberuk et al., 2020;
Wasmer et al., 2017).

AF poses serious health risks and often leads to severe complications such as heart
failure, angina pectoris, myocardial infarction, ischemic stroke, dementia, and even death. It
contributes to high rates of disability and mortality, making it a condition of major clinical
concern (Benjamin et al., 2019; Alonso et al., 2021).

With the accelerating aging of the global population, the prevalence of AF is increasing
annually. Among individuals aged 80 years and older, the prevalence exceeds 10% (Sagris
et al., 2021). It is estimated that AF affects approximately 2%–3.4% of the global population
(Chugh et al., 2014; Kjerpeseth et al., 2021; Williams et al., 2020; Zoni-Berisso et al., 2014),
significantly impairing patients’ quality of life and imposing a substantial economic burden
on families and society (Lehto et al., 2022; Colilla et al., 2013; Piccini et al., 2012). For
instance, in the United States, the estimated annual medical cost per AF patient ranges
between $2,000 and $14,200, with the total national cost for treating AF and its
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complications exceeding $28 billion per year (Dieleman et al., 2020).
According to the Framingham Heart Study, all-cause mortality is
50%–90% higher in patients with AF compared to those without the
condition (Alonso et al., 2021).

The pathophysiology of AF is complex and closely related to
structural remodeling of the atria, primarily involving loss of cardiac
cells and interstitial fibrosis (Iwasaki et al., 2011). Atrial fibrosis
serves as a key substrate for the initiation and maintenance of
abnormal electrical activity in AF, promoting reentrant arrhythmias
(Heijman et al., 2016; Li et al., 1999). The size of the atria and the
extent of myocardial fibrosis directly influence treatment outcomes
and the risk of complications (Gal andMarrouche, 2017; Zahid et al.,
2016). Additionally, oxidative stress, inflammatory responses,
abnormalities in mitochondrial energy metabolism, and
dysregulation of calcium signaling are recognized as important
pathophysiological mechanisms contributing to the onset and
progression of AF.

Current clinical management strategies for AF primarily
include: restoration and maintenance of sinus rhythm, control of
ventricular rate, and prevention of thromboembolic events. The
main approaches for restoring sinus rhythm are catheter
radiofrequency ablation and antiarrhythmic drug therapy.
However, both methods have limitations. Radiofrequency
ablation carries a risk of recurrence, while antiarrhythmic drugs
may have potential side effects such as pro-arrhythmia. Therefore,
further investigation into the pathological mechanisms of AF, along
with optimization of diagnostic, therapeutic, and preventive
strategies, is essential to provide safer, more effective, and
durable solutions for patients.

2Overview of DNA hydroxymethylation

Epigenetics refers to modifications in gene expression that lead
to phenotypic changes without alterations in the underlying DNA
sequence. Major epigenetic mechanisms include: (1) genomic DNA
methylation; (2) modifications of DNA-associated proteins; and (3)
regulation by non-coding RNAs (Ameer et al., 2020). Among these,
DNA methylation at the 5-position of cytosine has been extensively
studied. This process is catalyzed by DNA methyltransferases
(DNMTs), which transfer a methyl group (-CH3) to the
5′cytosine within CpG islands-regions rich in CpG dinucleotides
often located in promoter areas. Methylation at these sites typically
inhibits the binding of transcription factors, thereby suppressing
gene transcription and influencing phenotypic outcomes.

Closely related to DNA methylation is DNA
hydroxymethylation (DNAhm), another key epigenetic
modification occurring at the DNA level. DNA
hydroxymethylation involves the oxidation of 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC), a reaction catalyzed
by ten-eleven translocation (TET) enzymes in an Fe2+- and α-
ketoglutarate (α-KG)-dependent manner (Guallar et al., 2018;
Tahiliani et al., 2009). 5hmC plays important roles in gene
regulation, particularly in cardiac cells during development and
under pathological conditions such as hypertrophy (Greco et al.,
2016). It is associated with transcriptional activation and can
modulate the activity of transcription start sites (TSS) and active
enhancers (Ficz et al., 2011; Pastor et al., 2011; Tsagaratou et al.,

2014). In the absence of genetic mutations, 5hmC levels are
primarily regulated by TET enzyme activity.

Studies by Olsen et al. indicate that ischemic and inflammatory
processes-common in conditions such as coronary artery disease-
promote oxidative stress, which may lead to oxidative DNA damage
and the accumulation of oxidized DNA bases (Olsen et al., 2017;
Barzilai and Yamamoto, 2004). 5hmC is implicated in DNA repair
mechanisms, particularly the base excision repair (BER) pathway
(He et al., 2011; Krokan and Bjørås, 2013). BER involves the removal
of damaged bases by DNA glycosylases, creating an apurinic/
apyrimidinic (AP) site. This is followed by cleavage by AP
endonucleases or phosphodiesterases, with subsequent gap filling
by DNA polymerases and ligation by DNA ligases. 5hmC can be
further oxidized by TET enzymes to form 5-formylcytosine (5 fC)
and 5-carboxylcytosine (5caC), which may be excised by thymine
DNA glycosylase (TDG) to regenerate unmodified cytosine.
Alternatively, 5hmC can be deaminated by enzymes such as
AID/APOBEC, yielding 5-hydroxymethyluracil (5hmU), which is
then repaired through glycosylase-mediated pathways involving
uracil-DNA glycosylase (UNG) or TDG, ultimately restoring
standard bases (Krokan and Bjørås, 2013).

Using selective chemical labeling followed by low-input whole-
genome sequencing (hmC-Seal), Dong et al. compared 56 individuals
with normal coronary arteries (NCA), 53 with stable coronary artery
disease (sCAD), and 58 with acute myocardial infarction (AMI). They
found that 5hmC-modified SOX9 regulates fibrosis-related genes
activated under ischemic injury, promoting disease progression.
Similarly, 5hmC-marked RUNX2 was associated with vascular
smooth muscle cell calcification, suggesting both may serve as
potential prognostic biomarkers in AMI (Dong et al., 2020).

Notably, 5hmC levels increase absolutely during postnatal
maturation of murine cardiomyocytes, consistent with observations
in neurons (Münzel et al., 2010; Song et al., 2011; Szulwach et al., 2011;
Lister et al., 2013). However, 5hmC content is inversely correlated
with proliferative status across tissues (Bachman et al., 2014). Thus,
high 5hmC levels in adult cardiomyocytes may reflect their low
proliferative capacity and terminally differentiated state.

DNA hydroxymethylation is highly dynamic during cardiac
development and disease (Greco et al., 2016). Although 5hmC
may attract or repel chromatin remodelers, its functional impact
often depends on coexistence with active histone marks-such as
H3K79me2, H3K9ac, H3K27ac, or H3K4me3-thereby amplifying
their effects. For instance, the fetal gene Myh7, encoding α-myosin
heavy chain, undergoes substantial 5hmC loss during cardiac
maturation. In hypertrophic cardiomyocytes, enhancers near
Myh7 become specifically hydroxymethylated, affecting genes
involved in the tricarboxylic acid (TCA) cycle, fatty acid oxidation,
and energy production. This promotes myocardial hypertrophy,
increasing heart weight, enhancing contractility, and elevating
cardiac output-key adaptations supporting heart maturation.

3 Potential mechanisms by which DNA
hydroxymethylation influences atrial
fibrillation

Currently, research on DNA hydroxymethylation in the
cardiovascular system remains limited, with very few studies
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focusing specifically on AF. Existing evidence indicates that
TET2 expression is significantly upregulated in peripheral blood
mononuclear cells and aortic atherosclerotic plaques of elderly
patients with CAD, accompanied by elevated levels of both DNA
methylation and hydroxymethylation, which correlate positively
with the severity of coronary atherosclerosis (Jiang et al., 2019).
A study involving 10 young and 10 elderly healthy women revealed
that age-related changes in DNAhm and genes with high DNAhm
levels are involved in regulating the immune system during aging
(Johnson et al., 2020).

Atrial fibrillation exhibits a strong age-dependent prevalence.
Moreover, CAD, which involves varying degrees of myocardial
ischemia, contributes to both structural and electrical remodeling
of the heart. Consequently, patients with CAD have a higher
likelihood of developing AF compared to the general population.

During the pathogenesis of AF, mitogen-activated protein kinases
(MAPKs)-particularly the extracellular signal-regulated kinase
(ERK) 1/2-play crucial roles in cellular proliferation,
differentiation, and development. Activation of ERK1/2 occurs
through phosphorylation mediated by MAPK/ERK kinase
(MEK). Studies have shown that ERK1/2 is activated in cardiac
cells exposed to neurohormones such as angiotensin II (Pan et al.,
2005; Takahashi et al., 2005; de Jonge et al., 2007). ERK signaling
integrates inputs frommultiple receptor systems and distal signaling
pathways, ultimately promoting cardiac hypertrophy-a finding
consistent with clinical observations that hypertension is a strong
and independent predictor of AF. According to the Framingham
Heart Study, individuals with hypertension have a 1.8-fold higher
risk of developing new-onset AF compared to those with normal
blood pressure (Benjamin et al., 1994).

TABLE 1 Potential molecular mechanisms of 5hmC in atrial fibrillation pathogenesis.

Pathophysiological
module

Key epigenetic
alterations

Major target
genes/
Pathways

Functional outcome and
role in AF

Primary references

Myocardial hypertrophy and
fibrosis

• ↓TET2→ ↓Hspa1b→ ↑p-ERK
• ↑DNMT/↓TET3 →

↑Methylation of RASAL1 →
↑Ras/ERK signaling

• ↑TET2 → ↑5hmC on TGF-β
promoter → Fibroblast
activation

• Altered DNMT/TET expression
by maternal environment or
cAMP

• ERK/MAPK
signaling

• TGF-β/Smad
signaling

• Ras GTPase
pathway

• Fetal gene program
(Nppa, Nppb)

A central mechanism driving
structural remodeling. Epigenetic
dysregulation activates pro-fibrotic
and pro-hypertrophic signaling
pathways, leading to excessive
extracellular matrix deposition and
atrial dilation

Olsen et al. (2017), Tao et al.
(2021), Spearman et al. (2018), Niu
and Tan (2023), Tabish et al.
(2019), Li et al. (2020a), Xu et al.
(2015), Xie et al. (2022), Shi et al.
(2023), Fang et al. (2015)

Oxidative stress response • PARP1-mediated
↑TET1 activity and ↑5hmC

• TET1-dependent
demethylation of SOD1/
SOD2 promoters

• TNF-α-induced ↓TET1 and
↓5hmC↓ → EC-SOD

• SOD1, SOD2, EC-
SOD

• ROS signaling
pathways

Dual role of TET1/5hmC: Can either
increase ROS (via SOD1/2) or reduce
antioxidant defense (via EC-SOD).
Drives SMC phenotypic switching,
endothelial dysfunction, and fibrosis

Zhang et al. (2021), Fan et al.
(2023), Morisawa et al. (2017)

Mitochondrial metabolism and
function

• TCA cycle metabolites
(succinate/fumarate) inhibit
TETs → ↓5hmC

• Hypoxia-induced ↑mtDNMT1
→ ↑mtDNA methylation

• MnSOD deficiency → SDH
dysfunction → succinate
depletion → ↓TET activity →
↓5hmC

• Nuclear genome-
wide expression

• Mitochondrial
DNA-encoded
genes

• Antioxidant
response elements

Establishes a bidirectional crosstalk:
Mitochondrial dysfunction alters
nuclear epigenetics, which further
impairs mitochondrial function. Leads
to bioenergetic deficit, excessive ROS
production, and cardiomyocyte
dysfunction

Xiao et al. (2012), Chouchani et al.
(2014), Mills et al. (2016), Brissot
et al. (2019), Liu et al. (2020a), Liu
et al. (2020b), Pei et al. (2022), Ji
et al. (2018), Shock et al. (2011),
Korantzopoulos et al. (2007),
Melov et al. (1999), Powell and
Jackson (2003), Cramer-Morales
et al (2020), Liu et al. (2022)

Immune-inflammatory
regulation

• ↑5hmC on TNF-α promoter in
macrophages

• ↓5hmC induced by pro-
inflammatory cytokines (IL-1β,
TNF-α)

• TNF-α, IL-6, IL-1β
• Inflammatory

signaling networks

Creates a self-amplifying loop:
Epigenetic changes enhance cytokine
production, which further disrupts the
epigenome. Promotes endothelial
damage, thrombogenesis, and
electrical instability

Watson et al. (2009), Sethi et al.
(2008), Balkwill (2009), Ren et al.
(2015), Li et al. (2017), Li et al.
(2020b), Sun et al. (2019), Haseeb
et al. (2014)

Calcium handling and
electrophysiology

• In diabetic cardiomyopathy:
↑DNMT3B, ↑5mC/5hmC on
calcium signaling pathways

• Potential epigenetic regulation
of key Ca2+ handling genes is
hypothesized but not yet
proven in AF.

• RyR2, NCX1,
SERCA2a, Cav1.2
(inferred)

• Rap1, apelin, PI3K
signaling

Proposed link between epigenetic
changes and sarcoplasmic reticulum
Ca2+ leak, promoting delayed
afterdepolarizations (DADs) and
triggered activity that initiate AF. This
represents a critical knowledge gap.

Hove-Madsen et al. (2004), Wang
et al. (2021), Yao et al. (2018),
Heijman et al. (2020), Dhat et al.
(2023)

Abbreviations: 5hmC, 5-hydroxymethylcytosine; 5mC, 5-methylcytosine; AF, atrial fibrillation; cAMP, cyclic adenosine monophosphate; Cav1.2, L-type calcium channel; DNMT, DNA

methyltransferase; EC-SOD, extracellular superoxide dismutase; ERK, extracellular signal-regulated kinase; IL, interleukin; MAPK, mitogen-activated protein kinase; MnSOD, Manganese

Superoxide Dismutase; mtDNA, mitochondrial DNA; mtDNMT1, mitochondrial DNA methyltransferase 1; NCX1, sodium-calcium exchanger 1; PARP1, poly (ADP-ribose) polymerase 1;

PI3K, phosphoinositide 3-kinase; ROS, reactive oxygen species; RyR2, ryanodine receptor 2; SDH, succinate dehydrogenase; SERCA2a, sarco/endoplasmic reticulum calcium ATPase; SMC,

smooth muscle cell; SOD, superoxide dismutase; TCA, tricarboxylic acid; TET, ten-eleven translocation; TGF-β, transforming growth factor beta; TNF-α, tumor necrosis factor alpha.
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Given these connections, it is plausible that DNA
hydroxymethylation may participate in the pathogenesis of AF.
This review explores potential mechanisms through the following
aspects (Table 1; Figure 1).

3.1 5hmC in cardiac hypertrophy and fibrosis

Cardiac hypertrophy and fibrosis represent key
pathophysiological mechanisms underlying the development and
progression of atrial fibrillation. Cardiac hypertrophy refers to the
enlargement of cardiomyocytes in response to sustained
physiological or pathological stimuli, serving to maintain cardiac
reserve and output. Myocardial fibrosis, a central feature of chronic
ischemic heart disease, often results from atherosclerotic coronary
artery stenosis leading to moderate-to-severe ischemia. This
condition promotes both cardiomyocyte hypertrophy and
collagen fiber proliferation, perpetuating a cycle of ischemic
injury and hypoxia that may ultimately progress to heart failure,
increased mortality, and reduced quality of life.

Studies indicate that TET enzymes and 5hmC play dynamic
roles in postnatal cardiac development, with TET2 being the
predominant dioxygenase in the heart (Tao et al., 2021). Knock
out of TET2 leads to reduced hydroxymethylation in the cardiac
genome, altered transcriptomic profiles, and manifestations of

cardiac dysfunction, progressive hypertrophy, and fibrosis. This
may be attributed to diminished expression of Hspa1b-a
regulator of the ERK pathway-resulting in enhanced ERK
phosphorylation, pathway hyperactivation, and subsequent
induction of cardiomyocyte hypertrophy. Spearman et al.
reported that abnormal maternal conditions lead to decreased
expression of TET1-3 and DNMT3a, promoting myocardial
fibrosis in adult offspring (Spearman et al., 2018). Furthermore,
Niu et al. demonstrated that TET2 upregulates 5hmC modification
in the TGF-β promoter region, enhancing fibroblast proliferation
(Niu and Tan, 2023).

A genome-wide profiling study of DNA hydroxymethylation in
a murine model of dilated cardiomyopathy identified over
2000 genes with differential 5hmC modifications, which were
enriched in pathways related to inflammation, tissue fibrosis, cell
death, cardiac remodeling, cardiomyocyte growth and
differentiation, and sarcomere organization (Tabish et al., 2019).
Given the clinical coexistence of dilated cardiomyopathy and AF,
these pathways may contribute to the pathophysiology of AF,
suggesting a potential mechanistic link mediated by 5hmC.

Li et al. reported that hypermethylation of Ras protein activator-
like 1 (RASAL1) and Ras association domain family 1 (RASSF1)
leads to their downregulation, subsequent activation of the Ras/ERK
pathway, and promotion of cardiac fibrosis (Li et al., 2020a).
Similarly, Xu et al. found that TGFβ1 upregulates

FIGURE 1
Potential molecular mechanisms underlying the role of 5hmC in atrial fibrillation. (NRF1, nuclear respiratory factor 1; PCG1α, peroxisome
proliferator-activated receptor γ coactivator 1α; MnSOD,Manganese SuperoxideDismutase;mtDNMT1,mitochondrial DNAmethyltransferase 1; mtDNA,
mitochondrial DNA; TET, ten-eleven translocation; RyR2, ryanodine receptor 2; NCX1, sodium-calcium exchanger 1; SERCA, sarco/endoplasmic
reticulum calcium ATPase; SOD, superoxide dismutase; EC-SOD, extracellular superoxide dismutase; PARP1, poly(ADP-ribose) polymerase 1; ROS,
reactive oxygen species; IL, interleukin; TNF, tumor necrosis factor; 5hmC, 5-hydroxymethylcytosine).
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RASAL1 promoter methylation, suppresses its expression, increases
Ras-GTP activity and endothelial–mesenchymal transition
(EndMT), thereby exacerbating fibrosis (Xu et al., 2015). Notably,
TET3, an enzyme promoting hydroxymethylation, was significantly
reduced in fibrotic cardiomyocytes. These findings suggest that a
balance between promoter methylation and hydroxymethylation of
RASAL1 plays a critical role in regulating cardiac fibrosis and
remodeling.

Moreover, NEIL3 expression is elevated in cardiomyocytes of
heart failure patients and post-myocardial infarction mice,
particularly in fibroblast-rich regions involved in proliferation,
differentiation, extracellular matrix regulation, and scar formation
(Olsen et al., 2017). NEIL3-dependent DNA methylation and
hydroxymethylation collectively modulate cardiac fibroblast
proliferation and contribute to structural remodeling. Chronic
catecholamine-induced activation of the cAMP pathway also
promotes cardiac hypertrophy and fibrosis. Xie et al. showed that
reduced hydroxymethylation in the miR-3571 promoter
downregulates its expression, upregulates claudin 1 (CLDN1) and
ERK1/2, and facilitates vascular smooth muscle cell proliferation
and migration, thereby contributing to cardiovascular pathogenesis
(Xie et al., 2022).

Under hypoxic conditions, reduced TET2 expression in vascular
endothelial cells impairs its DNA demethylase activity at specific
STAT3 target gene promoters, inhibiting the STAT3 pathway and
angiogenesis, which consequently impedes blood flow recovery,
reduces capillary density, and promotes cardiac fibrosis and
remodeling (Shi et al., 2023). Fang et al. demonstrated that the
stable cAMP analog DBcAMP alters the expression of DNMTs and
TETs, increases DNA methylation in cardiomyocytes, and
upregulates markers of hypertrophy such as Myh6, Myh7,
Myh7b, Tnni3, ANP, BNP, Gata4, Mef2c, Mef2d, Nfatc1,
miR208a, and miR208b (Fang et al., 2015). However, changes in
5hmC levels were not assessed in this study.

Given the interplay between DNA methylation and
hydroxymethylation in regulating myocardial fibrosis, further
investigation using atrial fibrillation animal models may help
elucidate the role of 5hmC in the pathophysiology of atrial
fibrillation. Such studies could enhance our understanding of the
disease and inform novel therapeutic and preventive strategies.

3.2 5hmC in oxidative stress

During the development of atherosclerosis, vascular smooth
muscle cells (SMCs) undergo a phenotypic transition from a
contractile to a synthetic state. Studies have shown that oxidative
stress activates poly (ADP-ribose) polymerase 1 (PARP1), which in
turn promotes the expression of TET1 and increases PARylation-
dependent 5hmC levels, contributing to vascular remodeling (Zhang
et al., 2021). Furthermore, Fan et al. demonstrated that
TET1 downregulates 5mC levels in the promoters of superoxide
dismutase (SOD) 1 and SOD2, thereby enhancing their expression.
This leads to the accumulation of reactive oxygen species (ROS),
induction of G2/M cell cycle arrest, and promotion of inflammation
and fibrosis (Fan et al., 2023).

Extracellular superoxide dismutase (EC-SOD) is a secreted
antioxidant enzyme predominantly localized in the vascular wall,

where it plays a protective role against oxidative stress by
safeguarding vascular endothelial function. Evidence suggests that
tumor necrosis factor-alpha (TNF-α) markedly suppresses
TET1 expression in fibroblasts, thereby altering DNA
hydroxymethylation and significantly reducing EC-SOD levels.
This process exacerbates vascular endothelial injury and
accelerates the progression of cardiovascular diseases (Morisawa
et al., 2017).

3.3 5hmC in mitochondrial energy
metabolism

TCA cycle is central to mitochondrial redox reactions that
generate energy and support cardiac cell function. Key
intermediates of this cycle, fumarate and succinate, act as
competitive inhibitors of α-KG-dependent enzymes that regulate
DNA hydroxymethylation levels (Xiao et al., 2012). Fe(II), α-KG,
fumarate, and succinate play crucial roles in maintaining
mitochondrial function (Chouchani et al., 2014; Mills et al., 2016;
Brissot et al., 2019). Elevated levels of fumarate and succinate in the
TCA cycle inhibit TET enzyme activity, leading to dysregulation of
DNA hydroxymethylation (Liu et al., 2020a; Liu et al., 2020b). On
one hand, the mitochondrial TCA cycle modulates 5hmC levels by
influencing the activity of TET enzymes, thereby affecting cardiac
function (Pei et al., 2022). On the other hand, fumarate, succinate,
and α-KG are vital intermediates for mitochondrial integrity; hence,
mitochondrial dysfunction suppresses TET activity and disrupts
DNA hydroxymethylation (Ji et al., 2018).

Similar to the nuclear genome, mitochondrial DNA (mtDNA)
also undergoes DNA methylation and hydroxymethylation.
Mitochondrial DNA methyltransferase 1 (mtDNMT1), present in
the mitochondrial matrix, binds to mtDNA and facilitates its
methylation. Studies indicate that under hypoxic conditions,
transcription factors nuclear respiratory factor 1 (NRF1) and
peroxisome proliferator-activated receptor γ coactivator (PGC)
1α upregulate mtDNMT1, enhancing mtDNA methylation and
modulating mitochondrial function (Shock et al., 2011).
Manganese superoxide dismutase (MnSOD) catalyzes the
dismutation of superoxide (O2•−) into hydrogen peroxide
(H2O2), protecting mitochondria from oxidative damage. Its
expression correlates positively with oxidative stress levels
(Korantzopoulos et al., 2007). As atrial fibrosis progresses,
MnSOD secretion by atrial cardiac cells decreases. Cells deficient
in MnSOD exhibit elevated O2•− levels, loss of redox homeostasis,
inactivation of iron-sulfur (Fe-S) clusters, and reduced succinate
dehydrogenase (SDH) activity (Melov et al., 1999; Powell and
Jackson, 2003).

Succinate serves as a direct regulator of TET enzyme activity.
Cramer-Morales et al. demonstrated that deficiency in MnSOD
leads to downregulation of SDH activity, resulting in reduced
succinate levels and impaired TET function. This decrease in
genomic DNA hydroxymethylation is accompanied by a
corresponding increase in DNA methylation, ultimately
contributing to abnormalities in cardiac electrical conduction and
contractility (Cramer-Morales et al., 2020). A case-control study by
Liu et al. further reported that MnSOD levels are significantly
elevated in patients with paroxysmal AF compared to both non-
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AF controls and those with persistent AF, suggesting that MnSOD
may serve as an independent risk factor for paroxysmal AF (Liu
et al., 2022).

However, research on mtDNA hydroxymethylation in the
context of AF progression remains limited. In cardiovascular
diseases such as AF and heart failure, mitochondrial function in
cardiac cells is a focal point of investigation. Alterations in
myocardial energy supply directly affect contractility, cardiac
output, and consequently, both systemic and coronary perfusion.
Therefore, exploring dynamic changes in mtDNA
hydroxymethylation may offer novel insights into myocardial
mitochondrial energy metabolism, quality control mechanisms,
and reveal new pathophysiological pathways involved in AF,
potentially informing future therapeutic and preventive strategies.

3.4 5hmC in the regulation of immune-
inflammatory responses

Multiple inflammatory markers and mediators-including
C-reactive protein (CRP), TNF-α, interleukin (IL)-2, IL-6, IL-8,
and monocyte chemoattractant protein (MCP)-1-are implicated in
the pathogenesis of AF. These molecules may contribute to AF
progression by promoting endothelial injury, activating
prothrombin, and enhancing platelet activation (Watson
et al., 2009).

TNF-α, a glycoprotein hormone consisting of 185 amino acids,
is primarily synthesized by monocytes and macrophages. As a key
mediator under pathophysiological conditions, TNF-α can either
induce or suppress the production of various inflammatory
molecules-such as cyclooxygenases, matrix metalloproteinases,
and cytokines-thereby driving inflammatory progression (Sethi
et al., 2008; Balkwill, 2009). Previous studies have demonstrated
that TNF-α is involved in the pathophysiology of AF (Ren et al.,
2015; Li et al., 2017; Li et al., 2020b). Elevated levels of TNF-α are
observed in AF patients and correlate positively with left atrial
diameter and AF duration. Moreover, TNF-α serves as a significant
predictor of adverse outcomes, including ischemic stroke.

Notably, during the differentiation of monocytes into
macrophages and following lipopolysaccharide (LPS) stimulation,
the 5hmC level at the TNF-α promoter region increases specifically,
leading to the upregulation of TNF-α expression (Sun et al., 2019).
Furthermore, studies by Haseeb et al. indicate that proinflammatory
cytokines such as IL-1β and TNF-α can downregulate DNA
hydroxymethylation levels, thereby modulating gene expression
and contributing to immune-inflammatory regulation, which in
turn promotes the development of AF (Haseeb et al., 2014).

3.5 5hmC in calcium signaling

Spontaneous calcium leakage from the sarcoplasmic reticulum
in cardiac cells may underlie triggered electrical activity and
contribute to the pathogenesis of AF (Hove-Madsen et al., 2004).
Abnormal calcium release, often manifested as increased frequency
of calcium sparks and calcium waves (SCaWs), promotes
spontaneous efflux of calcium through ryanodine receptor 2
(RyR2) channels, subsequently activating the sodium–calcium

exchanger (NCX1). The electrogenic exchange of one calcium ion
for three sodium ions via NCX1 generates a transient inward
depolarizing current, which may serve as a trigger for AF (Wang
et al., 2021). Yao et al. demonstrated that AF is associated with
enhanced activation of the NLRP3 inflammasome in atrial
cardiomyocytes, which can lead to ectopic electrical activity,
aberrant sarcoplasmic reticulum calcium release, shortened atrial
effective refractory period, and atrial hypertrophy (Yao et al., 2018;
Heijman et al., 2020).

In diabetic cardiomyocytes, upregulation of DNMT3B, MBD2,
and MeCP2 has been observed, accompanied by accumulation of
both 5mC and 5hmC (Dhat et al., 2023). Calcium signaling was
identified as one of the pathways most significantly affected by these
DNAmethylation and hydroxymethylation modifications. Genomic
regions with hypermethylation were enriched in genes related to
Rap1, apelin, and phosphatidylinositol signaling, whereas metabolic
pathways were most strongly influenced by
hyperhydroxymethylation. Nevertheless, the roles of DNA
hydroxymethylation and methylation in calcium signaling
specifically in the context of AF remain underexplored and
warrant further investigation.

4 Conclusion

Current research on 5hmC in the context of AF remains limited.
However, significant progress has been made in understanding its
role in related cardiovascular and cerebrovascular diseases,
including heart failure, atherosclerosis, coronary artery disease,
cerebrovascular disease, and hypertension. These advances may
provide valuable insights into the epigenetic mechanisms
underlying AF.

The recent development of innovative sequencing technologies
for 5hmC-such as the selective chemical labeling method (hmC-
Seal)-offers powerful tools for elucidating the epigenetic features of
AF. For instance, the application of hmC-Seal to circulating cell-free
DNA (cfDNA) enables precise mapping of hydroxymethylated sites,
facilitating disease diagnosis and prediction. This approach holds
promise for identifying diagnostic biomarkers, thereby reducing the
need for invasive procedures and improving patient convenience.

Furthermore, a deeper understanding of 5hmC dynamics may
contribute to the development of targeted epigenetic therapies
aimed specifically at modulating DNA hydroxymethylation. Such
strategies could potentially inhibit the initiation and progression of
AF, ultimately reducing its incidence, disability, and mortality rates.
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