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Multiomics data integration approaches offer a comprehensive functional
understanding of biological systems, with significant applications in disease
therapeutics. However, the quantitative integration of multiomics data
presents a complex challenge, requiring highly specialized computational
methods. By providing deep insights into disease-associated molecular
mechanisms, multiomics facilitates precision medicine by accounting for
individual omics profiles, enabling early disease detection and prevention,
aiding biomarker discovery for diagnosis, prognosis, and treatment
monitoring, and identifying molecular targets for innovative drug development
or the repurposing of existing therapies. AI-driven bioinformatics plays a crucial
role in multiomics by computing scores to prioritize available drugs, assisting
clinicians in selecting optimal treatments. This review will explain the potential of
AI and multiomics data integration for disease understanding and therapeutics. It
highlight the challenges in quantitative integration of diverse omics data and
clinical workflows involving AI in cancer genomics, addressing the ethical and
privacy concerns related to AI-driven applications in oncology. The scope of this
text is broad yet focused, providing readers with a comprehensive overview of
how AI-powered bioinformatics and integrative multiomics approaches are
transforming precision oncology. Understanding bioinformatics in Genomics,
it explore the integrative multiomics strategies for drug selection, genome
profiling and tumor clonality analysis with clinical application of drug
prioritization tools, addressing the technical, ethical, and practical hurdles in
deploying AI-driven genomics tools.
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1 Introduction

The emergence of advanced and cost-effective high-throughput technologies (Misra
et al., 2018) has generated vast amounts of biological data, ushering in a new era of precision
medicine in oncology (Srivastava, 2023a). Precision medicine offers significant potential for
cancer treatment and management, enabling oncologists to tailor therapies for individual
patients. Precision oncology focuses on treating specific groups of cancer patients by
utilizing population-specific diagnostic or prognostic biomarkers. This information is
crucial for monitoring disease progression and assessing a patient’s response to
treatment. Additionally, it helps identify the molecular mechanisms underlying drug
resistance, allowing for the targeted inhibition of genes or pathways responsible for
resistance. Precision medicine relies on large datasets that must be processed and
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analysed to detect molecular patterns and make patient-specific
treatment decisions. However, handling these extensive datasets is
both costly and time-consuming, a challenge exacerbated by the
continuous growth of data due to high-throughput technologies
(Misra et al., 2018; Ahmed, 2020; Srivastava, 2024a;
Srivastava, 2024b).

Artificial intelligence (AI) and machine learning (ML) provide
solutions to these challenges. AI encompasses a range of machine-
driven functions, including rule-based logic, machine learning (ML),
deep learning (DL), natural language processing (NLP), and
computer imaging (Srivastava, 2023a; Ahmed, 2020). The rapid
advancement of technologies capable of generating vast amounts of
omics data—such as genomic, transcriptomic, proteomic
(phenotypic), and epigenomic data—has underscored the
necessity of AI in medical data analysis. The surge in genomic
and transcriptomic data is primarily attributed to next-generation
sequencing (NGS), while the increase in proteomic data results from
mass spectrometric analysis (Srivastava, 2023a; Srivastava, 2024a;
Srivastava, 2024b). AI can also predict the impact of genetic
mutations on protein structure and function. Treatment efficacy
and adverse effects can vary based on factors such as age, sex,
genetics, and environmental influences, including anthropometric
and metabolic status, dietary patterns, and lifestyle choices (Jaccard
et al., 2018). Precision medicine aims to design the most effective
interventions based on an individual’s biological profile (Tebani
et al., 2016). Clinical data and omics information can be obtained
from databases or collected through screening technologies for
various purposes, including disease diagnosis (Menyhárt and
Gyorffy, 2021), class prediction (Hasin et al., 2017), biomarker
discovery (Sun and Hu, 2016), disease subtyping (Menyhárt and
Gyorffy, 2021), enhanced systems biology insights (Dahal et al.,
2020), and drug repurposing (Srivastava, 2022; Srivastava, 2023b).

Multiomics refers to the comprehensive analysis of multiple
layers of biological data such as genomics (DNA), transcriptomics
(RNA), proteomics (proteins), epigenomics (epigenetic
modifications), and metabolomics (metabolites) to gain a holistic
understanding of biological systems (Chen et al., 2023). Integrating
these diverse omics datasets is crucial for precision oncology because
cancer is a complex, multi-factorial disease involving alterations at
various molecular levels. By combining insights from different omics
layers, researchers and clinicians can uncover more accurate
biomarkers, better understand tumor heterogeneity, and identify
personalized therapeutic targets, ultimately leading to more
effective, tailored cancer treatments (Correa-Aguila et al., 2022).
The current applications of AI in multiomics data analysis,
emphasizes its role in precision oncology and therapeutics.
Transcriptomics research has provided insights into the
molecular mechanisms underlying both physiological processes
(e.g., developmental stages, cell cycle phases) and pathological
conditions, leading to clinical applications such as MammaPrint®,
a 70-gene panel used to predict the risk of relapse and metastasis in
breast cancer (Hamet and Tremblay, 2017). While single-omics
analyses have contributed valuable findings, many prevalent diseases
with high mortality rates, such as type 2 diabetes and cardiovascular
disease, still lack effective therapeutic solutions (Hamet and
Tremblay, 2017). This is partly because the functions of genetic
variants are not always easily interpretable, often limiting the
development of targeted treatments.

The human genome consists of approximately 3 billion base
pairs, encompassing both coding and non-coding regions
(Makałowski, 2001). A key distinction within the genome is the
difference between introns and exons—introns are non-coding
segments of genes, whereas exons represent coding regions
responsible for protein production. Whole Genome Sequencing
(WGS) is a comprehensive technique that sequences an
organism’s entire DNA, allowing for the identification of genetic
variants and providing a complete picture of genomic composition.
As mentioned earlier, genomics research focuses on genetic
variations such as single nucleotide polymorphisms (SNPs) and
larger structural changes that contribute to an organism’s genetic
makeup. SNPs are the most prevalent form of genetic variation,
representing differences in a single nucleotide (Nakagawa et al.,
2015; Nakagawa and Fujita, 2018).

Genomic alterations affecting large DNA segments (≥50 bp) are
classified as structural variations (SVs). These variations arise from
multiple mutational mechanisms, including deletions, insertions,
and duplications, which alter the genomic sequence quantity and are
collectively referred to as copy-number variations (CNVs)
(Escaramıs et al., 2015; Li et al., 2020; Ho et al., 2020). Various
techniques have been employed to study CNVs, with Whole
Genome Sequencing (WGS) increasingly emerging as the
preferred approach due to its declining costs and continuous
improvements in variant detection methods (Pos et al., 2021).

CNVs can be analyzed using WGS by identifying genomic
regions with an abnormal number of sequencing reads compared
to expected levels, a method known as depth of coverage (DOC)
analysis. Given its ability to yield reliable results even at shallow
sequencing depths (0.19–1.09 coverage of the genome), CNV
analysis has become a valuable tool in clinical diagnostics (Dong
et al., 2017) Several tools, such as WISECONDORX, have been
developed to characterize CNVs and assess their clinical and
therapeutic significance (Raman et al., 2019).

WhileWGS sequences all DNA, including both coding and non-
coding regions, Whole Exome Sequencing (WES) specifically targets
protein-coding regions of genes (Lelieveld et al., 2015). WES
selectively sequences these regions along with approximately
20 nucleotides of adjacent intronic sequences to investigate
protein-coding areas in greater detail. The field of genomics was
first introduced by American geneticists in 1986 to study the
composition, structure, function, localization, and editing of
DNA. Today, genomics is used to analyze all genes within an
organism, providing insights into their biological significance.
Advancements in genomic technologies have made it possible to
efficiently analyze whole-genome data, leading to the discovery of
genes, proteins, and biological pathways associated with diseases. In
drug-target screening, genomic technologies compare DNA
sequencing data from tumor and non-malignant tissues to
identify key genetic differences. These differential genes can serve
as potential drug targets and can be further validated using CRISPR-
Cas9 knockout technology, allowing researchers to individually
screen and assess their impact (Chan et al., 2022; Yamamoto
et al., 2019). Genomic research is divided into three primary
areas: structural genomics, functional genomics, and comparative
genomics. Structural genomics focuses on analyzing nucleotide
sequences through whole-genome sequencing to determine
genome composition and gene positioning. Functional genomics
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involves modifying gene sequences or their expression within cells to
observe resulting phenotypic changes, thereby linking genotype to
phenotype and clarifying gene functions. Comparative genomics
examines variations in genome structure and function across
different species to understand their evolutionary and biological
relationships (Haley and Roudnicky, 2020). Functional genomics,
which explores gene functions and networks, has become a crucial
tool for understanding the complex interactions within human
tumors and their microenvironments. Technologies such as RNA
interference (Yin and Kassner, 2016; Adams et al., 2016), small
interfering RNA (siRNA) (Zhang et al., 2007), short hairpin RNA
(shRNA) (Takase et al., 2017), CRISPR interference, and CRISPR
inhibition (le Sage et al., 2017; DePristo et al., 2011) are instrumental
in drug-target discovery and validation. Bioinformatics plays a
critical role in analyzing cancer somatic mutations, as these
mutations are key targets for precision therapies that minimize
damage to healthy cells. However, germline variants, which
influence drug metabolism and substrate interactions, can
significantly impact drug efficacy and toxicity. Therefore,
considering both somatic and germline variations is essential
when developing personalized treatment strategies (Koboldt, 2020).

The performance of different AI algorithms as deep learning
(DL) and traditional machine learning (ML) in multi-omics data
analysis has been extensively evaluated across various studies,
each offering distinct strengths and limitations depending on the
nature of the task and dataset (Wei et al., 2023). Traditional
machine learning algorithms such as random forests, support
vector machines (SVMs), k-nearest neighbors (KNN), and
gradient boosting methods (e.g., XGBoost) have been widely
used due to their robustness, ease of implementation, and
interpretability. These models typically perform well in
structured, relatively low-dimensional, and properly
preprocessed datasets (Sarker, 2021). They are particularly
effective when individual omics layers are analyzed separately
or integrated in a relatively simple manner (e.g., feature
concatenation). However, their performance may plateau when
dealing with complex, high-dimensional multi-omics datasets
due to limited capacity to capture nonlinear relationships and
cross-omics interactions (Subramanian et al., 2020). In contrast,
deep learning algorithms such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), autoencoders,
variational autoencoders (VAEs), and graph neural networks
(GNNs) excel in modeling complex and high-dimensional
multi-omics data (Alzubaidi et al., 2021). DL models are
particularly well-suited for capturing intricate, nonlinear
interactions between various omics layers (genomics,
transcriptomics, proteomics, etc.), making them powerful tools
for tasks such as disease classification, biomarker discovery, and
survival prediction (Nguyen PHD. et al., 2021). For example,
multi-modal deep learning frameworks that use multi-omics
integration techniques like late fusion, intermediate fusion, or
attention mechanisms often outperform traditional ML
approaches in predictive performance (Nakach et al., 2024).
However, deep learning requires large amounts of data to
avoid overfitting and due to its limited interpretability, it
generate significant drawback in clinical contexts. Moreover,
ensemble and hybrid approaches which combine both ML and
DL techniques are increasingly used to leverage the strengths of

each method (Almulihi et al., 2022). For instance, feature
representations extracted from deep learning models can be
fed into ML classifiers for improved performance and
interpretability. Emerging trends also emphasize explainable
AI (XAI) to improve the transparency of deep learning models
in biomedical applications (Mathew et al., 2025).

The effectiveness of different AI algorithms particularly deep
learning (DL) versus traditional machine learning (ML) in
analyzing multiomics data across various types of cancer varies
depending on cancer type, data complexity, and clinical endpoints.
Each algorithm has unique strengths that make it more suitable for
certain scenarios in cancer research (Arjmand et al., 2022). In
breast cancer, where extensive multiomics datasets (e.g., genomics,
transcriptomics, proteomics, and methylation data) are available
from sources like TCGA (Tomczak et al, 2015), DL models such as
autoencoders and multimodal neural networks have demonstrated
superior performance in tasks like subtype classification, survival
prediction, and treatment response modeling (Yang et al., 2024).
DL excels due to its ability to capture complex nonlinear
interactions among heterogeneous data layers. However, ML
algorithms like random forests and SVMs still perform
competitively when applied to well-engineered features, offering
higher interpretability and lower computational costs. In lung
cancer, particularly non-small cell lung cancer (NSCLC), ensemble
ML methods (e.g., XGBoost and random forests) have shown
strong predictive performance in biomarker discovery and
prognosis prediction, especially when integrating genomics with
transcriptomics or imaging data (Li et al., 2022). DL methods,
especially graph neural networks (GNNs), have become effective
in modeling protein–protein interaction networks or pathway-
level features but are limited by smaller cohort sizes in some
datasets. In glioblastoma multiforme (GBM), a highly
heterogeneous brain tumor, DL particularly variational
autoencoders and multi-view DL architectures outperforms
traditional ML in integrating multiomics data (e.g.,
methylation, copy number variation, transcriptomics) for
subtype discovery and survival prediction (Poursaeed et al.,
2024). DL’s capacity to learn latent representations from noisy,
high-dimensional data is especially beneficial in such complex
cancers. For colorectal and prostate cancers, where the multiomics
landscape is less characterized than breast or lung cancer, ML
algorithms are often preferred due to smaller sample sizes.
Random forests and logistic regression are widely used for
classification and feature selection, especially in studies focused
on diagnostic and prognostic biomarker discovery (Wei et al.,
2022; Hachem et al., 2024; Bao et al., 2024). In pan-cancer studies,
where multiomics data across multiple tumor types are analyzed
collectively, DL models like multimodal neural networks and
transformers have emerged as powerful tools for learning
shared and distinct features across cancers, enabling cross-
cancer subtype clustering and drug response prediction.
However, pan-cancer DL models require large, well-curated
datasets and advanced techniques to avoid biases introduced by
imbalanced data distributions across cancer types (Divate et al.,
2022). A hybrid approach, combining the representation power of
DL with the interpretability of ML, is increasingly adopted to
leverage the strengths of both in cancer multiomics research
(Mavaie et al., 2023).
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2 Bioinformatics approaches
in genomics

Genomic data analysis involves examining single nucleotide
polymorphisms (SNPs), copy number variations, gene expression,
microRNA expression, protein expression, and other genetic
alterations. Precision oncology leverages high-throughput
technologies and bioinformatics tools to personalize cancer
treatments based on individual genetic profiles. This approach
enhances the ability to identify and validate biomarkers crucial
for cancer diagnosis, prognosis, and tailored therapeutic
strategies. Successfully integrating bioinformatics into precision
oncology requires expertise in oncology, bioinformatics, and
biostatistics (Li et al., 2018; Szymczak et al., 2009). Whole
Genome Sequencing and Whole Exome Sequencing enable rapid,
comprehensive analysis of genetic mutations, SNPs, and structural
variations within tumors.

Bioinformatics tools play a key role in data integration and
interpretation, particularly in variant annotation and functional
prediction. Tools like ANNOVAR (Wang et al., 2010) facilitate
the identification of actionable mutations by providing scores from
multiple predictive models, including SIFT (Ng and SIFT, 2003),
PolyPhen-2 (Adzhubei et al., 2013), LRT (Chen et al., 2020),
FATHMM (Rogers et al., 2018), MetaSVM and MetaLR (Dong
et al. 2015), VEST3 (Carter et al., 2013), and CADD (Kircher et al.
2014). SIFT (Ng and SIFT, 2003) determines whether a variant is
deleterious by using PSI-BLAST to assess amino acid conservation
across closely related sequences. PolyPhen-2 (Adzhubei et al., 2013)
employs a pipeline combining eight sequence-based and three
structure-based methods to classify mutations as benign,
probably deleterious, or known to be deleterious. The Likelihood
Ratio Test (LRT) (Chen et al., 2020) evaluates conservation across
closely related species to determine the functional impact of
mutations. FATHMM (Rogers et al., 2018) utilizes Hidden
Markov Models and sequence conservation to predict the effects
of missense mutations on protein function. MetaSVM and MetaLR
are ensemble methods that integrate ten predictor scores (SIFT,
PolyPhen-2 HDIV, PolyPhen-2 HVAR, GERP++, MutationTaster,
Mutation Assessor, FATHMM, LRT, SiPhy, and PhyloP) along with
the maximum observed frequency from the 1,000 Genomes Project
to predict deleterious variants. MetaSVM is based on Support Vector
Machines (SVM), while MetaLR employs Logistic Regression (LR)
to generate final variant scores.

Pathway analysis tools, such as Ingenuity Pathway Analysis
(IPA) (Krämer et al., 2014) and Gene Set Enrichment Analysis
(GSEA) (Mootha et al., 2003), play a crucial role in identifying
disrupted biological pathways and networks, offering valuable
insights into tumorigenesis. Bioinformatics has been instrumental
in pinpointing immunotherapy targets like Programmed Death
Ligand 1 (PD-L1) (Han et al., 2020) and in identifying
biomarkers for epidermal growth factor receptor (EGFR)
inhibitors in non-small cell lung cancer (Prabhakar, 2015), as
well as poly (ADP-ribose) polymerase (PARP) inhibitors for
cancers with Breast Cancer Gene 1/2 (BRCA1/2) mutations
(Faraoni and Graziani, 2018). These biomarkers undergo rigorous
validation to ensure their accuracy and clinical relevance.

As biomarker identification techniques improve and genomic
data repositories continue to expand, the sheer complexity and

volume of data necessitate more sophisticated analytical tools.
This growing demand has fueled the increasing reliance on
machine learning (ML) and predictive algorithms. ML techniques
excel at handling large, high-dimensional datasets, uncovering
patterns, and establishing relationships within the data. By
employing dimensionality reduction and feature selection, ML
algorithms enhance the efficiency of biological data analysis,
allowing for the evaluation of disease mechanisms and the
identification of potential biomarkers. To enhance cancer patient
care, precision treatment should include monitoring and managing
Quality of Life (QoL) data collected in the patient’s home
environment, along with its integration and analysis. Recent
advanced technologies has facilitated the development of
smartphone devices that support both patients and clinicians by
consolidating all relevant patient data and assisting with patient-
reported outcomes (Srivastava, 2023b; Srivastava, 2023c). Genome-
wide association studies (GWAS) have also generated vast amounts
of genomic data for cancer research. The successful application of
patient-specific data in precision medicine hinges on the accurate
integration, analysis, and interpretation of these datasets to provide a
comprehensive overview of gene expression changes in individual
cancer patients (Li et al., 2018; Szymczak et al., 2009; Telenti et al.,
2018). Such analyses can reveal alterations in metabolic and
signaling pathways specific to a patient, paving the way for
highly personalized treatment plans. This multidimensional
approach offers significant advantages over traditional single-
layer analyses, which focus on isolated features (Chari et al.,
2010; Wang et al., 2014). However, for AI to effectively interpret
such data, it must first be trained to recognize key features
and patterns.

Over the past decade, large-scale cancer research initiatives have
emerged to streamline the analysis of omics data. Projects such as
The Cancer Genome Atlas (TCGA) [27], the International Cancer
Genome Consortium (ICGC) (ICGC, 2022 Hudson et al., 2010),
COSMIC (Tate et al., 2019), TARGET, and the German Cancer
Consortium (DKTK) (Joos et al., 2019), along with platforms like the
Genomic Data Commons (GDC) [32], cBioPortal (Cerami et al.,
2012), UCSC Genome Browser (Rosenbloom et al., 2013), Array
Express (Parkinson et al., 2007), and Gene Expression Omnibus
(GEO), have significantly contributed to this effort. The list of
various databases, their links and types of data analyses of
human tumors and tumor cell lines are given in Table 1.

For instance, a study on lung adenocarcinoma by Gillette et al.
(2020) [37] refined tumor classification by dividing the proximal-
proliferative cluster using transcriptomic data, deep-scale proteomic
profiling, and post-translational modifications. Despite these
advancements, several challenges persist in integrative analysis,
including (i) the high dimensionality of data, which complicates
inference; (ii) inherent heterogeneity across different technical
platforms, reducing biological signal clarity; (iii) the diversity of
data types, making it unlikely that a single analytical method will be
applicable across all omics layers; and (iv) the difficulty of
interpretation due to the sheer volume of information, which can
obscure meaningful conclusions. To address these challenges,
various integrative approaches have been developed, focusing on
(i) patient stratification, (ii) clinical outcome prediction, and (iii)
identifying molecular mechanisms that operate across different
biological layers (Srivastava, 2024a; Srivastava, 2024b). Recent

Frontiers in Pharmacology frontiersin.org04

Srivastava 10.3389/fphar.2025.1591696

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1591696


TABLE 1 The list of various databases, their links and types of data analyses of human tumors and tumor cell lines.

SN Database Link Types of data/analyses

1. TCGA https://www.cancer.gov/ccg/research/genome-sequencing/
tcga

20,000 primary cancer and matched normal samples spanning 33 cancer
types

2. ICGC-AGRO https://www.icgc-argo.org/ ICGC ARGO will uniformly analyze specimens from 100,000 cancer
patients

3. GDC https://portal.gdc.cancer.gov/ Explore and analyse clinical and genomic data from cancer genomics
studies

4. GEO https://www.ncbi.nlm.nih.gov/geo/ GEO is a public functional genomics data repository supporting MIAME-
compliant data submissions.

5. Array Express https://www.ebi.ac.uk/biostudies/arrayexpress Stores high-throughput genomics data.

6. ENA https://www.ebi.ac.uk/ena/browser/home Stores raw data files in Fastq format.

7. Sequence Read Archive https://www.ncbi.nlm.nih.gov/sra Stores raw data files in SRA format.

8. Dryad Digital Repository https://datadryad.org/stash Open access repository of medical research data

9. Figshare https://figshare.com/ Cross-disciplinary open-access repository for academic research

10. Harvard Dataverse
Network

https://dataverse.harvard.edu/ Multi-disciplinary data storage center

11. Kaggle https://www.kaggle.com/ Platform for data science training, competitions, and datasets

12. Network Data Exchange https://home.ndexbio.org/about-ndex/ Repository for network biology data

13. Open Science
Framework

https://osf.io/ Platform for collaborating on research projects

14. GenoVault https://github.com/bioinformaticscdac/GenoVault Cloud-based repository for NGS data

15. UK Biobank https://www.ukbiobank.ac.uk/ Large-scale biomedical research database

16. cBioPortal https://www.cBioPortal.org/ Visualizations, analysis, cancer genomics projects

17. COSMIC https://cancer.sanger.ac.uk/cosmic Database of somatic mutations in cancer.

18. IGV https://software.broadinstitute.org/software/igv/ High-performance genome browser for visualizing and analyzing large-
scale genomic data.

19. Regulome Explorer https://explorer-cancerregulome.systemsbiology.net/ Exploring and analyzing regulatory elements in the genome.

20. UCSC Genome Browser https://genome.ucsc.edu/ Provides access to a vast collection of genomic data and annotations

21. Bioconductor https://www.bioconductor.org/ Open-source software project for the analysis and comprehension of high-
throughput genomics data.

22. Cytoscape https://cytoscape.org/ Network analysis and visualization tool

23. Gene Ontology http://geneontology.org/ Standardized system for annotating genes and their functions in different
organisms.

24. UALCAN https://ualcan.path.uab.edu/ Web portal for in-depth analysis of cancer transcriptome data.

25. DAVID https://david.ncifcrf.gov/ Functional annotation and enrichment analysis of gene lists

26. HumanBase (GIANT) https://hb.flatironinstitute.org/ Exploring human genomic data and conducting large-scale integrative
analysis.

27. CEDER https://pmc.ncbi.nlm.nih.gov/articles/PMC3488134/ Detection of differentially expressed genes

28. CPTRA https://gdc.cancer.gov/about-gdc/contributed-genomic-
data-cancer-research/clinical-proteomic-tumor-analysis-
consortium-cptac

Package for analyzing transcriptome sequencing data

29. Bioconductor https://www.bioconductor.org/ Open-source software for genomic data analysis

30. LIMMA https://bioconductor.org/packages/release/bioc/html/limma.
html

Statistical package for the analysis of microarray and RNA-seq data.

31. CARET https://cran.r-project.org/web/packages/caret/index.html R package for training and evaluating ML models.

(Continued on following page)
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TABLE 1 (Continued) The list of various databases, their links and types of data analyses of human tumors and tumor cell lines.

SN Database Link Types of data/analyses

32. netClass https://doi.org/10.1093/bioinformatics/btu025 A tool for classifying biological samples using network-based features.

33. WGCNA https://horvath.genetics.ucla.edu/html/
CoexpressionNetwork/Rpackages/WGCNA/

Identifying gene modules and their relationships in high-throughput data.

34. MyCancerGenome https://www.mycancergenome.org/ Understanding cancer genomics and personalized cancer treatment
options.

35. CIViC https://civicdb.org/welcome Treatment options for cancer patients based on their unique tumor DNA
Molecular characterization

36. TARGET https://www.cancer.gov/ccg/research/genome-sequencing/
target

Molecular characterization

37. CGI https://www.genomicinterpretation.org/ Genomic alterations in cancer and their potential clinical relevance

38. ClinicalTrials.gov https://www.clinicaltrials.gov/ An online database that provides information on clinical trials

39. EUCTR https://www.clinicaltrialsregister.eu/ Database containing information on clinical trials conducted in the
European Union

40. OncoKB https://www.oncokb.org/ Mutations, CNVs, fusions

41. DepMap https://depmap.org/portal/ Genetic loss-of-function screening, pharmacologic dependencies, CCLE
omics characterizations

42. canSAR.ai https://cansar.ai/ Integrates biology, chemistry, pharmacology, structural biology, cellular
networks and clinical annotations, and applies machine learning
approaches to develop predictions useful in drug discovery

43. ClinGen https://clinicalgenome.org/ Clinical relevance of genes and variants

44. ClinVar www.ncbi.nlm.nih.gov/clinvar/intro/ Database of genomic variants with public submissions of variant
interpretations and disease relations.

45. Cosmic https://cancer.sanger.ac.uk/cosmic Catalogue Of Somatic Mutations In Cancer

46. dbSNP https://www.ncbi.nlm.nih.gov/snp/ Contains human single nucleotide variations, microsatellites, and small-
scale insertions and deletions

47. Ensembl https://www.ensembl.org/index.html Genome browser for vertebrate genomes that supports research in
comparative genomics, evolution, sequence variation and transcriptional
regulation

48. Find Zebra https://www.findzebra.com/ Tool for helping diagnosis of rare diseases. It uses freely available high
quality curated information on rare diseases

49. Genomics England https://www.genomicsengland.co.uk/ Comprehensive site describing the progress of the UK sequencing
initiative. Site contains usefull overviews over gene panels and diseases.

50. gnomAD https://gnomad.broadinstitute.org Exome and genome sequencing data with allele frequencies from a wide
variety of large-scale sequencing projects

51. GTEX https://gtexportal.org/home/ Comprehensive public resource to study tissue-specific gene expression
and regulation. Samples were collected from 54 non-diseased tissue sites
across nearly 1000 individuals, primarily for molecular assays including
WGS, WES, and RNA-Seq.

52. HGMD https://www.hgmd.cf.ac.uk/ac/index.php Collate all known (published) gene lesions responsible for human
inherited disease

53. Human Phenotype
Ontology (HPO)

https://hpo.jax.org/app/ Provides a standardized vocabulary of phenotypic abnormalities
encountered in human disease

54. Matchmaker Exchange https://www.matchmakerexchange.org Genomic discovery through the exchange of phenotypic and genotypic
profiles

55. MaveDB https://www.mavedb.org/ Collection, distribution, and analysis of variant effect maps

56. MedGen https://www.ncbi.nlm.nih.gov/medgen/ Organizes information related to human medical genetics, such as
attributes of conditions with a genetic contribution

57. NCBI https://www.ncbi.nlm.nih.gov/ The National Center for Biotechnology Information advances science and
health by providing access to biomedical and genomic information

(Continued on following page)
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studies have applied causal inference techniques to either validate
existing biological relationships (Dugourd et al., 2021) or infer stable
connections across multiple experimental conditions without prior
knowledge (Meinshausen et al., 2016). Different classification
frameworks have been proposed based on application type
(unsupervised vs. supervised, with the latter further divided into
predictive and explanatory models), strategy (early, intermediate, or
late integration), and methodology. The literature commonly
categorizes six major families of integrative methods: matrix
factorization, Bayesian approaches, multiple kernel learning,
ensemble learning, deep learning, and network-based methods

(Bersanelli et al., 2016; Huang et al., 2017; Krassowski et al.,
2020; Vahabi and Michailidis, 2022; Picard et al., 2021;
Subramanian et al., 2020; Broad Institute, 2018).

The bioinformatics pipeline developed and implemented at the
Utah Public Health Laboratory (UPHL) consists of eight key steps:
(1) read quality control, (2) reference strain identification, (3) read
mapping to the reference strain, (4) detection of single nucleotide
polymorphisms and small insertions or deletions (INDELs), (5) de
novo genome assembly, (6) genome annotation, (7) phylogenetic
tree construction, and (8) phylogenetic analysis. While these
processes are standard, multiple software tools are available to

TABLE 1 (Continued) The list of various databases, their links and types of data analyses of human tumors and tumor cell lines.

SN Database Link Types of data/analyses

58. OMIM https://www.omim.org/ Compendium of human genes and genetic phenotypes

59. RefSeq https://www.ncbi.nlm.nih.gov/refseq/ A comprehensive, integrated, non-redundant, well-annotated set of
reference sequences including genomic, transcript, and protein.

60. Uniprot https://www.uniprot.org/ Comprehensive and freely accessible resource of protein sequence and
functional information.

61. RefSeq https://www.ncbi.nlm.nih.gov/refseq/ A comprehensive, integrated, non-redundant, well-annotated set of
reference sequences including genomic, transcript, and protein.

Abbreviations: TCGA, The Cancer Genome Atlas Program; ICGCAGRO, The International Cancer Genome Consortium Accelerating Research in Genomic Oncology; GDC, Genomic Data

Commons; GEO, Gene Expression Omnibus; ENA, The European Nucleotide Archive; COSMIC, Catalogue Of Somatic Mutations In Cancer; IGV, Integrative Genome Viewer; UALCAN,

University of Alabama at BirminghamCancer Data Analysis Portal; DAVID, Database for Annotation, Visualization, and Integrated Discovery; CEDER, Cancer Epitope Database and Analysis

Resource; CPTRA, cross-platform transcriptome analysis; Limma, Linear Models for Microarray and Omics Data; CARET, Carotene and Retinol Efficacy TrialCarotene and Retinol Efficacy

Trial; CIViC, Clinical Interpretation of Variants in Cancer; TARGET, Therapeutically Applicable Research to Generate Effective Treatments; WGCNA, Weighted correlation network analysis;

CGI, Cancer Genome Interpreter; EUCTR, EU Clinical Trials Register; GTEx, Genotype-Tissue Expression; HGMD, Human Gene Mutation Database; NCBI, The National Center for

Biotechnology Information, OMIM, Online Mendelian Inheritance in Man; CCLE, Cancer Cell Line Encyclopedia; CNV, copy-number variation; DepMap, Dependency Map.

FIGURE 1
The pre-processing, variants identification, classifications, and comparison to known variants during the raw variant step and sorting of identified
variants on specific criteria. Next, the accuracy of the data is enhanced before the full annotation and evaluation of variants.
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perform each step (Srivastava, 2023b). The first step in genomics-
based drug selection involves identifying clinically relevant
alterations in cancer patients through variant calling analysis.
According to the Genome Analysis Toolkit (GATK) (DePristo
et al., 2011), the general workflow of variant calling includes nine
steps: quality control (QC) and trimming, alignment, marking
duplicates, local realignment of INDELs, base quality score
recalibration (BQSR), variant calling, filtering, and annotation of
variants (Koboldt, 2020). The basic steps for application of
bioinformatics in whole genome sequencing are given in Figure 1.

Following sample QC and trimming, raw sequencing reads are
aligned to the reference genome using tools like BWA-MEM (Li,
2013). Duplicate reads are then removed with PICARD. GATK tools
are employed to minimize alignment artifacts and improve
sequencing quality estimates. Variant calling is performed using
tools such as MUTECT2, HAPLOTYPECALLER (McKenna et al.,
2010), VARSCAN 2 (Koboldt et al., 2012), VARDICT (Lai et al.,
2016), or SOMATICSNIPER (Larson et al., 2012), which identify
short variants, including single nucleotide variants (SNVs) and
insertions or deletions (INDELs) of less than 50 base pairs (bp).
The identified variants undergo filtering to eliminate low-quality
calls, followed by annotation to determine their biological impact,
population frequency, and clinical relevance. This analysis primarily
focuses on somatic variants in coding regions. Nonsynonymous
SNVs are considered more detrimental, as they alter the final protein
sequence, potentially affecting its folding and function (Sun et
at., 2019).

Somatic genomic alterations are classified based on their
population frequency as either rare variants or polymorphisms.
Variants with a high frequency (>1%) are generally deemed
clinically benign. In most patients, at least one detected somatic
alteration holds clinical significance (Bieg-Bourne et al., 2017;
Sanchez-Vega et al., 2018), as it may influence gene function,
suggest preventive surveillance, aid in diagnosis, impact
prognosis, or guide treatment selection. Several automated
variant annotation tools exist to streamline this process. SNPEFF
(Cingolani et al., 2012) assesses the biological impact of candidate
variants, while ANNOVAR (Wang et al., 2021) and the VARIANT
EFFECT PREDICTOR (VEP) (McLaren et al., 2016) provide
additional information on variant population frequency. The
Variant Caller with Multinomial Probabilistic Model (VCMM)
detects SNVs and INDELs from whole exome sequencing (WES)
and whole genome sequencing (WGS) studies by using a
multinomial probabilistic model with quality score and strand
bias filters. VCMM reduces false-positive and false-negative
variant calls compared to GATK and SAMtools, improving the
accuracy of variant detection (Shigemizu et al., 2013).

Public data repositories provide valuable resources for
annotating candidate somatic variants by linking them to drugs
and their interconnections. Some key databases include ClinVar
(Landrum et al., 2018), which catalogs genetic variants and their
clinical significance; the Catalogue of Somatic Mutations in Cancer
(COSMIC) (Tate et al., 2019), which compiles information on the
impact of somatic mutations in cancer; OncoKB (Chakravarty et al.,
2017) and CIViC (Griffith et al., 2017), which associate somatic
cancer variants with clinical and therapeutic implications; and
DGIdb (Cotto et al., 2018), a database of gene–drug interactions.
See Table 1. These patient-centered tools analyze somatic variants in

tumors and can be categorized based on the type of input data
required. For instance, with a list of available variants, resources like
MTB-REPORT (Perera-Bel et al., 2018), the Cancer Genome
Interpreter (CGI) (Tamborero et al., 2018), the Variant
Interpretation for Cancer Consortium Meta-Knowledgebase
(VICC METAKB) (Wagner et al., 2020), PREMEDKB (Yu et al.,
2019), and the SMART Cancer Navigator (Warner et al., 2018) can
be useful. Some tools also accept disease or drug-related queries. If a
variant calling file (VCF) is available, platforms such as MTBP
(Tamborero et al., 2022) and PANDRUGS offer additional support,
with PANDRUGS accommodating both gene and drug queries. In
addition to guiding therapy selection at the individual level, broader
approaches have been developed to analyze treatment trends across
different tumor types at a larger scale (Rubio-Perez et al., 2015).
While most of these methods prioritize drug selection based solely
on somatic variants, germline variants also play a crucial role in drug
metabolism, influencing treatment effectiveness and potential
toxicity (Menden et al., 2018). As a result, patients may exhibit
varied responses to the same therapy, ranging from high efficacy to
ineffectiveness or even adverse drug reactions (ADRs). ADRs are
significant contributors to morbidity and mortality and pose a
financial burden on healthcare systems (Khalil and Huang, 2020).
Variability in drug response primarily stems from genetic
differences in genes encoding drug substrates or those involved
in xenobiotic metabolism and transport (Roden et al., 2019).

To optimize drug selection based on germline variants,
pharmacogenomic databases such as DrugBank (Wishart et al.,
2018), PharmGKB (Whirl-Carrillo et al., 2021), and the Table of
Pharmacogenomic Biomarkers in Drug Labeling (https://www.fda.
gov/media/124784/) can be leveraged to prioritize effective drugs
while avoiding those that may be ineffective or cause ADRs. Tools
like PHARMCAT (Sangkuhl et al., 2020) enable the development of
personalized treatments based on germline variants found in VCF
files. Additionally, some platforms, such as MTBP, integrate both
germline and somatic variant data for a more comprehensive
approach to treatment selection.

Numerous knowledge bases and bioinformatics tools are
available for variant annotation, biomarker identification, drug
prioritization, and response prediction, serving as essential
resources to help clinicians determine the best treatment options
for their patients. One emerging biomarker in this field is tumor
mutational burden (TMB), which has shown promise in identifying
patients most likely to benefit from immunotherapy across various
cancer types (Hellmann and Paz-Ares, 2018). TMB is determined by
calculating the total number of somatic mutations per megabase
(Mbp) of sequenced DNA. However, the lack of standardization in
TMB assessment remains a challenge, limiting its universal
applicability as a biomarker. While high TMB is generally linked
to better immunotherapy responses, its predictive value is not
consistent across all cancer types (McGrail et al., 2021). Tumor
Mutational Burden (TMB) has emerged as a promising genomic
biomarker for identifying patients likely to benefit from
immunotherapy across various cancer types (Hellmann and Paz-
Ares, 2018). However, a lack of standardization in TMB assessment
complicates its use as a universally reliable biomarker. While high
TMB is generally linked to better immunotherapy responses, its
predictive value varies across different cancer types (McGrail et al.,
2021). Advances in bioinformatics now enable in-depth TMB
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analysis, allowing for in silico hypothesis generation that goes
beyond simple TMB-based patient stratification. By leveraging
these insights, targeted therapies can be prioritized based on
mutations with established treatment options. Bioinformatics
advancements now allow for an in-depth analysis of TMB,
generating in silico hypotheses that extend beyond simple TMB-
based patient stratification. These insights can be used to prioritize
targeted therapies based on mutations with known treatment
options. For instance, PANDRUGS [24] is a platform that ranks
drug treatments based on actionable mutations found in TMB,
enabling a more precise approach to therapy selection.

Additionally, numerous bioinformatics tools and AI-based
methodologies have been designed to facilitate the interpretation
of cancer-related variants and suggest potential treatment options
based on prior evidence (Cotto et al., 2018). These patient-centered
resources rely on tumor-specific somatic variants and can be
categorized based on the type of input data they require. For
instance, if a list of variants is available, tools such as MTB-
REPORT (Perera-Bel et al., 2018), the Cancer Genome
Interpreter (CGI) (Tamborero et al., 2018), the Variant
Interpretation for Cancer Consortium Meta-Knowledgebase
(VICC METAKB) (Wagner et al., 2020), PREMEDKB (Yu et al.,
2019), and the SMART Cancer Navigator (Warner et al., 2018) can
provide useful insights. Some tools also accept disease- or drug-
related queries, while those with access to a variant calling file (VCF)
may utilize platforms such as MTBP (Tamborero et al., 2022) or
PANDRUGS (Pineiro-Yanez et al., 2018), with the latter supporting
both gene and drug queries.

Beyond individual patient analysis, large-scale approaches have
been developed to guide treatment selection across various tumor
types and identify broader trends in therapy response (Rubio-Perez
et al., 2015). While many of these methods prioritize drug selection
based on somatic variants alone, germline variants are equally
important, as they play a crucial role in drug metabolism,
effectiveness, and potential toxicity (Menden et al., 2018). This
genetic variability leads to differing patient responses, ranging
from positive therapeutic outcomes to ineffectiveness or even
adverse drug reactions (ADRs). ADRs significantly contribute to
morbidity, mortality, and increased healthcare costs (Khalil and
Huang, 2020).

Differences in drug response are largely attributed to genetic
variations in genes encoding drug substrates or those involved in
xenobiotic metabolism and transport (Roden et al., 2019). By
leveraging pharmacogenomic databases such as DrugBank
(Wishart et al., 2018), PharmGKB (Whirl-Carrillo et al., 2021),
and the Table of Pharmacogenomic Biomarkers in Drug Labeling
(https://www.fda.gov/media/124784/), effective drugs can be
prioritized over those that are ineffective or may cause ADRs.
Tools like PHARMCAT (Sangkuhl et al., 2020) provide tailored
treatment recommendations based on germline variants found in
VCF files. Furthermore, platforms like MTBP integrate both
germline and somatic variant data for a more comprehensive
approach to personalized medicine (Borchert et al., 2021; Yao
et al., 2020).

A crucial aspect of studying mutational events is the ability to
differentiate significant mutations from those commonly found in
the healthy population (Zarrei et al., 2015). Mutation detection
approaches can be categorized into two main types: reference-free

and reference-based methods (Raman et al., 2019). Reference-free
methods normalize samples using inherent genomic features such as
GC content and mappability, while reference-based tools rely on
either a single normal sample matched to the sample of interest or a
Panel of Normals (PON) (PON, 2021). The inclusion of normal
samples helps eliminate variations introduced by experimental
factors such as sample handling, preparation, and sequencing
technology.

structural variants, including those that cause copy-number
variations (CNVs), can be highly complex in their impact on the
genome (Schutte et al, 2019; Baca et al., 2013). Their characterization
depends on various techniques, including paired-read and split-read
analysis, as well as de novo genome assembly of the sample.
However, the short read length of next-generation sequencing
(NGS) imposes limitations on these analyses. The advent of
advanced bioinformatics tools and long-read sequencing
technologies has addressed these challenges, providing deeper
insights into SVs (Cameron et al., 2021). Nanopore-based
sequencers, for example, offer advantages such as portability and
real-time data analysis. Additionally, bioinformatics tools facilitate
the clinical characterization of SVs for diagnostic applications
(Valle-Inclan et al., 2021).

SVs influence both germline and somatic genomic instability,
contributing to disease development and potentially guiding therapy
selection and drug response prediction. Some bioinformatics
platforms designed for drug prioritization based on small
variants also accept CNVs (Perera-Bel et al., 2018) and gene
fusions (Wagner et al., 2020) as inputs. More sophisticated
diagnostic approaches leverage shallow whole-genome sequencing
(sWGS) for CNV analysis, aiming to establish CNV-based
signatures that enable more precise diagnostics and treatment
selection (Macintyre et al., 2018; van Belzen et al., 2021).

Mutational signatures in genomic DNA provide insights into the
mutational processes driving cancer progression (Greenman et al.,
2007; Degasperi et al., 2022). These signatures can be characterized
by different mutation types, including single base substitutions
(SBS), doublet base substitutions (DBS), insertions and deletions
(indels), CNVs, and genomic rearrangements (Alexandrov et al.,
2020. The identification of mutational signatures may aid in
detecting therapeutically actionable biomarkers, supporting their
use in personalized medicine. While over 30 mutational signatures
have been identified, many remain of unknown origin. Some,
however, have clear clinical relevance, such as those linked to
tobacco exposure, ultraviolet (UV) radiation, and defects in DNA
repair mechanisms, including mismatch repair and double-strand
break repair. Studies have shown that tumors with DNA damage
repair deficiencies exhibit therapeutic sensitivity to DNA-damaging
agents and immunotherapy (Waddell et al., 2015; Ma J. et al., 2018;
Ma X. et al., 2018; Connor et al., 2017). For example, a mutational
signature associated with pathogenic BRCA1 and BRCA2 mutations
in breast and ovarian cancers suggests homologous recombination
(HR) deficiency, indicating sensitivity to PARP inhibitors (Lord and
Ashworth, 2016) Conversely, prior exposure to DNA-damaging
chemotherapy agents has been linked to drug resistance (Levatic
et al., 2022). Mutational signatures also serve as molecular footprints
of cancer therapies, helping estimate their contribution to tumor
mutational burden (TMB) and revealing their long-term genomic
effects (Pich et al., 2019). Tumor Mutational Burden (TMB) has
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emerged as a significant biomarker for predicting responses to
immunotherapy across various cancer types. However, the
assessment of TMB has faced challenges due to variability in
measurement techniques, leading to efforts aimed at
standardizing its evaluation. TMB measurement can vary
significantly across different cancer types and sequencing
platforms (Jardim et al., 2021). Various factors including
differences in panel size, gene content, and bioinformatics
pipelines contribute to this variability. For example, certain
cancers like uterine, bladder, and colon cancers exhibit greater
variability in panel TMB values compared to lung and head and
neck cancers. This variability underscores the necessity for
standardized methodologies to ensure consistent and reliable
TMB assessment. To address these challenges, initiatives such as
Friends of Cancer Research (Friends) TMB Harmonization Project
is undertaken in which significant strides are made in unifying TMB
measurement across various laboratories. By identifying approaches
to enhance consistency in evaluating the genetic mutations of
tumors, the initiative aims to improve the reliability of TMB as a
biomarker (Merino et al., 2020) Various guidelines are proposed to
harmonize TMB quantification across different diagnostic
platforms. These recommendations focus on standardizing TMB
reporting, aligning analytical validation studies, and ensuring
consistent methodologies in clinical samples. Consistent
measurement methodologies enable more accurate predictions of
patient responses to immune checkpoint inhibitors, thereby
informing treatment decisions across various cancer types
(Huang et al., 2021). The standardized TMB evaluation facilitates
the comparison of clinical trial results and supports the broader
application of TMB as a predictive biomarker in oncology. (Sha
et al., 2020) Computational methods for mutational signature
analysis vary in their mathematical frameworks and fall into two
main categories: de novo discovery of novel signatures and refitting
methods for detecting known signatures (Baez-Ortega and Gori,
2019; Omichessan et al., 2019). Tools such as SIGPROFILER
(Bergstrom et al., 2019; Islam et al., 2020; Bergstrom et al., 2020;
Kim et al., 2016), previously used in the COSMIC database, and
SIGNATUREANALYZER (Kim et al., 2016; Kasar et al., 2015;
Haradhvala et al., 2018; Degasperi et al., 2020) were instrumental
in analyzing large cancer genome datasets from PCAWG, TCGA,
and ICGC projects. SIGNAL, a web-based tool, not only identifies
mutational signatures but also links them to gene drivers, potentially
revealing novel therapeutic dependencies (Degasperi et al., 2020).
Additionally, HRDETECT predicts HR deficiency, helping to
stratify patients based on their likely response to PARP inhibitors
(Davies et al., 2017). In large-scale genomic studies such as the
100,000 Genomes Project, somatic variant data—including
sequencing coverage, small variants, and structural variations—is
visually represented using a Circos plot, offering an intuitive
overview of genomic alterations (Srivastava, 2024a).
Advancements in high-throughput technologies with ML based
approaches have enabled the generation of large-scale human gut
microbiota profiles, driving growing interest in uncovering the links
between the gut microbiome and complex human diseases. Results
indicated accuracy in identifying individuals at high risk by
extracting and integrating insights from complex microbiome
datasets with challenges in managing the heterogeneity and
sparsity of microbial features and in capturing the underlying

relationships among various human diseases (Huang et al., 2024).
Data-tool such as scPriorGraph is used to construct biosemantic
cell-cell graphs with prior gene set selection for cell type
identification from scRNA-seq data (Cao et al., 2024).

3 Integrative multiomics strategies for
drug selection

Advancements in high-throughput technologies have enabled
the integration of multiple omics layers, providing a deeper
understanding of biological systems (Hasin et al., 2017; do Valle
et al., 2018). Tools such as PANOPLY (Kalari et al., 2018) and
MOalmanac (Reardon et al., 2021) combine genomic and
transcriptomic data to identify and prioritize potential drug
targets. The Cancer Druggable Gene Atlas (TCDA) (Jiang et al.,
2022) database compiles information on genomic alterations,
including short variants, copy-number variations (CNVs), and
gene fusions, along with gene expression, dependencies, and
druggability.

DRUGCOMBOEXPLORER (Huang et al., 2019) incorporates
DNA sequencing, gene copy number, methylation, and gene
expression data from cancer patients to (a) identify key driver
signaling pathways and (b) suggest effective anticancer drug
combinations. Additionally, transcriptomic networks can be
further enhanced with other omics layers, providing broader
functional insights. For example, COSMOS (Dugourd et al.,
2021) integrates phosphoproteomics, transcriptomics, and
metabolomics to infer kinase and transcription factor activity.
Deep learning algorithms are gaining popularity for multi-omics
integration due to their ability to capture complex nonlinear and
hierarchical relationships (Kang et al., 2022). One such tool,
DEEPDRK (Wang et al., 2021), utilizes genomics,
transcriptomics, epigenomics, and chemical compound properties
to predict drug susceptibility in cancer cell lines and patients (Keskin
et al., 2019).

Neoantigen prediction pipelines, such as PVACTOOLS (Hundal
et al., 2020) incorporate computational tools to detect neoantigens
from tumor DNA-seq and RNA-seq data. These tools also estimate
an individual’s HLA class and rank neoantigens based on their
molecular compatibility with the patient’s major histocompatibility
complex (MHC) and other relevant parameters (Hackl et al., 2016).
Furthermore, tools like CIBERSORTX (Newman et al., 2019) and
MCP-COUNTER (Becht et al., 2016) analyze expression data to
infer the presence of immune infiltrates in tumor tissue.
Understanding the immune composition of a tumor, alongside
tumor mutational burden (TMB) values, can aid in treatment
selection. However, only a limited number of these tools
currently prioritize drug treatments or neoantigen selection based
on TMB content in clinical trials (Keskin et al., 2019). Intratumoural
heterogeneity (ITH) within individual tumors is driven by a
combination of somatic single nucleotide variants (SNVs),
structural variations (SVs), transcriptomic and epigenetic
modifications affecting gene expression, the tumor
microenvironment (TME), and the antitumor immune response
(Black and McGranahan, 2021; Nguyen TM. et al., 2021). ITH can
be spatial, occurring in distinct tumor regions, or temporal, evolving
over time through clonal progression. Understanding the extent of
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ITH and characterizing clonal subpopulations based on their unique
mutational or transcriptomic profiles can be valuable for prioritizing
drug treatments and predicting tumor response to therapy. This
section provides an overview of key methodologies for dissecting
ITH to guide drug selection.

A variety of user-friendly, web-based tools, such as Paintomics 4
(Liu et al. 2022), 3Omics (Kuo et al., 2013), and Galaxy (Galaxy,
2024), enable easy analysis with only a basic understanding of the
underlying methodologies. More advanced tools, including
integrOmics (Cao et al., 2009), SteinerNet (Tuncbag et al., 2012),
Omics Integrator (Tuncbag et al., 2016), and MixOmics (Rohart
et al. 2017), require programming expertise and offer customizable
parameters for greater control over data analysis. Metabolomics
datasets can be analyzed using the XCMSOnline (Tautenhahn et al.,
2012) web tool, which integrates metabolomics data with genomic
and proteomic information. A novel equivariant 3D-conditional
diffusion model, called DiffFBDD, has been developed to generate
new pharmaceutical compounds based on the 3D geometric
structure of specific target protein pockets. DiffFBDD addresses
the common underutilization of geometric information by
leveraging an equivariant graph neural network to integrate
detailed atomic-level data from protein pockets down to their
backbone atoms (Zheng et al., 2025). AI-driven drug
prioritization relies on a synergy between predictive modeling,
network analysis, and knowledgebase integration, enabling
personalized and data-driven therapeutic decision-making in
oncology. Supervised learning models are widely used to correlate
genomic alterations with drug response data. These models are
trained on large pharmacogenomics datasets like GDSC (Genomics
of Drug Sensitivity in Cancer) (Cokelaer et al., 2018) and CCLE
(Cancer Cell Line Encyclopedia) to learn patterns between
molecular features (e.g., gene expression, mutations) and drug
sensitivity (Barretina et al., 2012). Deep learning based tools are
particularly effective in integrating multi-layered omics data and
capturing nonlinear interactions between genes, pathways, and
drugs. Such as DeepDR (Jiang and Li, 2024), DeepSynergy
(Preuer et al., 2018), and GraphDRP (Nguyen PHD. et al., 2021)
utilize these architectures to predict drug response or
synergistic drug combinations with higher accuracy. The drug
prioritization scores can be computed using network-based
methods, where biological networks (e.g., protein–protein
interaction networks) are analyzed to identify key driver genes or
pathways affected in a patient. These are then matched with
known drug–target relationships using databases like DrugBank
(https://go.drugbank.com/), DGIdb (Drug–Gene Interaction
database) (https://dgidb.org/), and LINCS (Library of Integrated
Network-Based Cellular Signatures) (Koleti et al., 2018). Other
frameworks, such as OncoKB (Chakravarty et al., 2017), iCAGES
(Dong et al., 2016), and PANOPLY (Mani et al., 2021), combine
multiomics data with curated clinical and molecular
knowledgebases to rank drugs based on patient-specific molecular
alterations, mutation impact, and druggability. These tools not only
improve treatment efficacy but also assist clinicians in identifying
repurposable drugs and novel therapeutic strategies tailored to each
patient’s molecular landscape. AI systems typically generate a drug
prioritization score based on predicted sensitivity (e.g., IC50 or AUC
values), Drug–target interactions and pathway relevance, Molecular
similarity between tumor and drug response signatures and

Integration of clinical trial or approved drug data (Paul et al.,
2021). These scores are then ranked to help clinicians identify
the most promising therapies tailored to an individual’s
molecular cancer profile.

4 Genome profiling for tumor clonality

Tumors contain both clonal mutations, which are present in all
cells, and subclonal mutations, which are restricted to specific
subpopulations. The prevalence of subclonal mutations provides
insight into tumor phylogeny, allowing researchers to identify active
subclones and their evolutionary relationships. Cancer subclones
undergo Darwinian evolution, where each subclone exhibits a
distinct fitness level that can be inherited by daughter cells.
Studies have shown that increased levels of CNVs may confer a
selective advantage to certain subclones, enabling them to
outcompete neighboring populations (Salehi et al., 2021).

Administration of anticancer drugs creates selective pressure
that impacts subclonal fitness. Drug-sensitive cells are eliminated,
but some subclones—often a minority—may acquire resistance
through pre-existing mutations or de novo drug-induced
mutations in drug-tolerant cells. These resistant subclones can
subsequently expand, leading to tumor relapse. For example,
research by Xie et al. identified a subgroup of quiescent
glioblastoma cancer stem cells (CSCs) that survived
antiproliferative chemotherapy, later re-entered the cell cycle, and
contributed to tumor regrowth, ultimately causing treatment failure
and relapse (Xie et al., 2022). Other studies have suggested
combining multiregion sampling to analyze spatial ITH with the
monitoring of circulating tumor DNA (ctDNA) through liquid
biopsies to track clonal evolution in real time and adjust
therapies accordingly (Amirouchene-Angelozzi et al., 2017;
Siravegna et al., 2017). A Bayesian evolutionary framework has
also been applied to investigate the spatiotemporal dynamics of
cancer subclones within individual patients (Alves et al., 2019).

Subclone identification can be performed using various
approaches, including genome profiling and single-cell
sequencing. Genome profiling remains the primary strategy for
studying clonal evolution. Several bioinformatics tools have been
developed to infer cancer subclones based on SNV allele frequencies,
CNV profiles, and tumor purity measures, including PYCLONE-VI
(Gillis and Roth, 2020), PHYLOWGS (Deshwar et al., 2015),
FASTCLONE (Xiao et al., 2020), SCICLONE (Miller et al., 2014),
andMOBSTER (Caravagna et al., 2020). However, this approach has
limitations. It primarily detects mutations present in most or all
tumor cells, while stromal contamination can influence mutation
frequency estimates. Additionally, many prior inference steps in
these tools may introduce errors, which can propagate through
subsequent analyses (Turajlic et al., 2019).

The concept of clonetherapy has emerged, aiming to optimize
treatment regimens that account for ITH by targeting all subclones,
including minor populations with relapse potential (Jiménez-Santos
et al., 2022). Several computational tools support this approach, such
as OmicsTIDE (Harbig, 2023), which enables interactive exploration
of multi-omics data trends; FORALL, (Aswad and Jafari, 2023), an
interactive Shiny/R web portal for navigating high-throughput
multi-omics data in pediatric acute lymphoblastic leukemia;
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MMDRP (Taj and Stein, 2024) which applies multi-modal deep
learning for drug response prediction and biomarker discovery;
and iCluF (Shakyawar et al., 2024), an unsupervised iterative
cluster-fusion method for patient stratification using
multi-omics data.

5 Incorporating drug prioritisation tools
into the clinical practice

Bioinformatics-driven therapy selection remains in its early
stages, with drug prioritization methods still facing significant
technical and biological challenges that hinder their routine
clinical application. However, considerable progress has been
made to integrate these methodologies into medical practice for
patient benefit. Cancer care spans multiple stages, from disease
prevention and early detection to diagnosis, treatment, and follow-
up. To determine the most effective treatment options, physicians
require integrated patient information presented in a clear and

interpretable format through clinical decision support systems.
These systems must efficiently access electronic medical records
containing diverse data types, including genomic information
collected at different stages of a patient’s journey. See Figure 2.

Next-generation sequencing (NGS) data analysis, including
drug prioritization algorithms, will be incorporated into clinical
decision support systems, necessitating broad interoperability across
data, metadata, research software, and computational infrastructure.
This requires standardized nomenclature, well-annotated genomic
datasets linked to clinicopathological information, and efficient
data-sharing mechanisms. To achieve this, multimodal cancer
data must be meaningfully integrated, highlighting the
importance of data harmonization and standardization. Several
initiatives are actively addressing this challenge. The Findable,
Accessible, Interoperable, and Reusable (FAIR) principles
facilitate efficient clinical data exchange (Kush et al., 2020).
Data harmonization efforts include the NIH Data Commons
(https://commonfund.nih.gov/commons) and the Cancer Research
Data Commons (CRDC) (https://datacommons.cancer.gov/).

FIGURE 2
Whole Genome Sequencing (WGS) from Patient to Clinical Report-WGS could provide valuable clinical insights—either by confirming a diagnosis or
suggesting alternative treatment options. After patient consent, a sample of whole blood or tumor tissue is sent to a specialized laboratory equipped for
WGS. The skilled professionals meticulously analyze the sequence data. A multidisciplinary team (MDT) establish a definitive diagnosis and evaluate the
clinical significance of the detected variants. Once finalized, the clinical report is reviewed by attending physician and the results are discussed with
the patient, which includes the implications of the findings, their impact on the patient’s condition, and recommended next steps. If the initial analysis
does not identify a disease-causing variant, the stored WGS data is periodically re-analyzed (inner grey arrow). The continuous process allows for the
incorporation of new scientific discoveries, potentially leading to a diagnosis without requiring further hospitalization or additional sampling. Additionally,
other clinically relevant insights, such as pharmacogenetic data can be extracted from the WGS data to enhance patient care. This figure is adapted from
Bagger, FO. et al. BMC Med Genomics 17, 39 (2024).
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Additionally, ICGC-ARGO (https://platform.icgc-argo.org/) is
working to collect comprehensive cancer genomic datasets
enriched with clinical information, health records, and treatment
response data (ICGC, 2022). The Beyond 1 Million Genomes
(B1MG) initiative is also advancing efforts in this direction. The
integration of multiomics approaches and in silico drug
prioritization tools into routine clinical practice requires
continued development within healthcare systems. These tools
would significantly benefit from extensive, standardized clinical,
pathological, and genomic annotations within a federated data-
sharing model that preserves patient privacy while storing
retrospective treatment response data. Such a framework would
facilitate benchmarking, training, and validation of novel drug
response prediction models and support the identification of new
predictive biomarkers based on historical data (Rajpurkar et al.,
2022). The Global Alliance for Genomics and Health (GA4GH)
provides international policies and standards to ensure responsible
access to genomic and health-related data (Rehm et al., 2021).
Projects such as the GA4GH Genome Beacons have pioneered
bioinformatics frameworks that allow hospitals to query
clinicogenomic datasets while maintaining data privacy and
ownership (Fiume et al., 2019).

Artificial Intelligence (AI)-driven Clinical Decision Support
Systems (CDSS) have been implemented in various real-world
medical settings, demonstrating their potential to enhance
diagnostic accuracy, streamline workflows, and improve patient
outcomes. The notable case studies include Instant Skin Cancer
Diagnosis in NHS Hospitals, at Chelsea and Westminster Hospital
in London, an AI tool named ‘Derm’ is being utilized for rapid,
autonomous skin cancer assessments. Healthcare professionals
use an iPhone equipped with a magnifying lens to capture
images of suspicious moles, which the AI app analyzes within
seconds. The ‘Derm’ system boasts a 99.9% accuracy rate in
ruling out melanoma and has significantly reduced waiting lists
by enabling doctors to focus on more severe cases. Currently
adopted by 20 NHS hospitals, this technology has detected
approximately 13,000 cancer cases to date. (https://www.chelwest.
nhs.uk/about-us/news/chelsea-and-westminster-hospital-leads-the-
way-with-autonomous-ai-technology-to-speed-up-life-saving-skin-
cancer-checks, 2025) In another study, AI Assisted in Radiology
Diagnoses in South Australia, South Australian Medical Imaging
(SAMI) has integrated AI to assist in interpreting chest X-rays across
multiple hospitals. This AI functions as a “spell checker” for
radiologists, highlighting areas of interest and suggesting
potential diagnoses. SAMI performs approximately
700,000 radiological examinations annually (https://www.sahealth.
sa.gov.au/). Enhanced Cancer Detection Rates in General Practices
has been carried out in England, in which the ‘C the Signs’ AI tool
has been deployed in around 1,400 general practices to analyze
patient medical records for hidden patterns indicative of cancer risk.
Its implementation led to an increase in cancer detection rates from
58.7% to 66.0% with identification of over 50 different types of
cancer, ensuring faster and earlier diagnoses (Bakshi et al., 2024). A
regional hospital implemented an AI-based CDSS aimed at reducing
30-day all-cause hospital readmission rates. The AI tool combined
clinical and non-clinical data to predict patients’ risk of readmission
and provided recommendations to mitigate this risk (Romero-
Brufau et al., 2020). Another study involving the Watson for

Oncology (WfO) AI-based CDSS assessed its influence on
treatment decisions for complex breast cancer cases (Xu et al.,
2020). These case studies illustrate the tangible benefits and
effectiveness of AI-driven CDSS in diverse medical environments,
highlighting their role in improving diagnostic accuracy, patient
management, and overall healthcare delivery.

6 Challenges

The process of drug prioritization in cancer research is hindered
by several biological and technical challenges. Amajor obstacle is the
shortage of experts with specialized knowledge in multiomics
analysis, bioinformatics, and clinical interpretation. Furthermore,
the accessibility and availability of clinical samples remain
problematic, exacerbated by the lack of standardized protocols
for sample processing, which can result in inconsistencies in data
quality and reliability. Scalability is another pressing issue, as
translating multiomics findings into clinical applications requires
a robust infrastructure capable of managing large-scale data
generation and analysis. The absence of standardized, high-
quality reference datasets for training and validating genomic
analysis methods further complicates efforts to ensure accuracy
and reproducibility. Additionally, many healthcare institutions
face computational limitations, making it difficult to efficiently
process and integrate large-scale omics data. Strict data privacy
regulations add another layer of complexity, as maintaining patient
data security and confidentiality is crucial. AI-driven genomics
offers powerful tools for precision oncology, but it also faces
several technical and computational challenges. A key concern is
model interpretability. Various deep learning models function as
“black boxes,”making it difficult to understand how specific features
influence predictions, which is critical in clinical settings.
Additionally, data heterogeneity across omics platforms, patient
populations, and sequencing technologies complicates data
integration and can lead to inconsistent results. Biases in AI
models, often stemming from imbalanced training data or
underrepresented subpopulations, can result in skewed
predictions that may not generalize well across diverse patient
groups. Addressing these challenges is essential for building
reliable, equitable, and clinically useful AI tools in genomics
(Dias and Torkamani, 2019).

Moreover, the ethical and legal implications of using omics data
in clinical settings must be carefully addressed to establish a
comprehensive regulatory framework. While implementing AI-
driven genomics tools in precision oncology, several ethical, legal,
and social issues must be addressed to ensure safe, fair, and
responsible use (Farasati, 2023). These issues are the Data
Ownership, Informed Consent, Algorithmic Bias, Transparency
and Accountability, and Data Privacy and Security. The Patients
often do not have direct control over their genomic data once it is
collected, especially when stored in centralized or commercial
databases, due to Institutional vs. personal ownership. Further
lack of standardization around who can access, use, or profit
from genomic data can hinder trust and data-sharing (Gerke
et al., 2020). Patients may not fully understand how their data
will be analyzed, integrated, or reused over time. The one-time
consent forms are not sufficient for evolving AI applications. The
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patients may not have consented to secondary use for unrelated
research or algorithm training. AI models trained on predominantly
western, caucasian, or male genomic datasets which may yield
inaccurate predictions for diverse populations. Sometimes there
are biased outcome predictions (Cross et al., 2024). Algorithms
may perform well in controlled settings but fail in real-world, and
heterogeneous clinical populations. Many models, particularly deep
learning networks lack explainability, making it difficult for
clinicians and patients to trust decisions. The guidelines for
validation, certification, or clinical approval of AI-driven
genomics tools are still emerging. The genomic databases are
high-value targets for breaches, with implications for patient
confidentiality and potential misuse (Bonomi et al., 2020). Even
de-identified genomic data can be re-identified due to its unique
nature. And most importantly, the accountability for errors remains
unclear (Martinez-Martin and Magnus, 2019).

Biologically, a key challenge lies in the incomplete
understanding of inter and intratumor heterogeneity and the
somatic evolutionary processes driving cancer progression. The
relationship between clonal expansion and cancer initiation
remains unclear, as do the intricate topological interactions
between tumors and the tumor microenvironment (TME),
including cell–cell communication. Another critical issue is the
progressive exhaustion of antitumor immunity, which limits
therapeutic efficacy. Furthermore, the mechanisms underlying the
emergence and expansion of drug-resistant subclones have not been
fully elucidated. There is also a lack of comprehensive
characterization of genetic and epigenetic alterations—such as
structural variations, and transcriptional driver mutations—and
their impact on drug response. The interplay between aging,
cellular senescence, and drug efficacy remains poorly understood,
further complicating treatment approaches. Additionally,
information on the influence of germline variants on adverse
drug reactions (ADRs) in many anticancer therapies is still
insufficient.

On the technical side, the use of formalin-fixed, paraffin-
embedded (FFPE) sample preparation can cause DNA
fragmentation and degradation, making it difficult to distinguish
true variants from artifacts in genomic analyses. Another challenge
is the trade-off between sequencing scope and read depth—whole
genome sequencing (WGS) provides a broad view but at lower
coverage, whereas targeted sequencing offers deeper reads but a
narrower scope. Similarly, in single-cell sequencing, increasing the
number of cells analyzed reduces the read depth per cell. Multi-
alignment reads pose difficulties due to repetitive genomic regions,
complicating accurate variant calling. While short-read sequencing
is widely used, it struggles to detect large structural variations,
whereas long-read sequencing, despite its ability to identify these
variations, has a higher error rate. Additionally, the lack of
standardized guidelines for analyzing spatial data in single-cell
technologies presents a significant challenge. Finally, predicting
toxic interactions and synergistic effects in combination therapies
remains a major hurdle in optimizing cancer treatment strategies.
These computational, biological and technical limitations
collectively hinder the accurate prioritization of drugs for cancer
treatment, highlighting the need for continued advancements in
genomics, immunology, and computational biology. Addressing
these challenges is essential for the successful integration of

multiomics approaches into personalized medicine and routine
patient care. Numerous studies have shown that AI can surpass
human capabilities in interpreting the vast amounts of data
associated with complex diseases like cancer. However, AI should
be seen as a tool to enhance human intelligence rather than replace
it. Any analysis conducted by AI must be reviewed and validated by
domain experts. Additionally, machine learning (ML) and deep
learning (DL) models require oversight from specialists in
bioinformatics and programming to ensure their reliability
and accuracy.

One of the primary challenges in applying AI and DL to
cancer diagnosis, prognosis, and treatment is the “black box”
problem. This refers to the lack of transparency regarding how AI
systems process information and arrives at conclusions. When AI
operates autonomously with minimal human oversight, it may
become unclear how it selects features or makes decisions,
potentially leading to skepticism about its predictions. This
uncertainty could force clinicians and researchers to accept
AI-generated results on “blind faith” (Sorell et al., 2021). In
response, researchers have been working to develop AI systems
that provide explainable insights for physicians and clinicians. To
ensure data availability and sharing while protecting patient
privacy in multiomics cancer data, several technical and
strategic approaches are employed such as Federated Learning
(FL) (Saha et al., 2024), Differential Privacy (DP), Secure Multi-
Party Computation (SMPC) (Zhou et al., 2024), Homomorphic
Encryption (Ogburn et al., 2013), Trusted Research
Environments (TREs) (Kavianpour et al., 2022), Data De-
identification and Anonymization (Chevrier et al., 2019),
Synthetic Data Generation, Standardized Data Use Agreements
(DUAs), Dynamic and Informed Consent Models (Wendland
et al., 2022) and Adherence to FAIR and CARE Principles
(Carroll et al., 2021). These approaches collectively support
secure, ethical, and effective sharing of multiomics cancer
data, facilitating advances in research and personalized
medicine. For example, Kwong et al. (2022) designed an AI
model using ML to predict whether prostate cancer patients
would benefit from nerve-sparing radical prostatectomy by
assessing the likelihood of tumor extension beyond the
prostate. The AI’s decision-making process was made
interpretable using a publicly available web application,
Shapley Additive exPlanations (SHAP) (Kwong et al., 2022).
Deep learning also requires vast amounts of data to develop
robust algorithms applicable to new datasets. Consequently,
cancer research studies must collect multiple samples to serve
as training data (Hussain et al., 2017). Furthermore, the use of AI
and big data raises ethical concerns, particularly regarding
patient data privacy. In some cases, patient data is used for
purposes beyond direct medical care, and this may occur
without the patient’s explicit consent (Rigby, 2019). A
significant challenge in multiomics integration is missing data,
as not all biomolecules are measured across all samples. This can
be due to financial constraints, instrument sensitivity, or other
experimental limitations, leading to incomplete datasets for
certain omics technologies. While recent advancements in AI
and statistical learning have greatly improved multiomics data
analysis, many techniques still assume the presence of fully
observed data. However, new approaches are being developed
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to address the issue of missing data, allowing for more effective
utilization of incomplete datasets and paving the way for
improved precision oncology in the future. Handling missing
values in multi-omics data is a critical step for improving the
accuracy and robustness of downstream analysis, as such
datasets often suffer from incomplete measurements across
different omics layers due to technical limitations or sample
variability. Several specific methods and tools have been
developed to address this challenge effectively such as
Statistical Imputation Techniques, Matrix Factorization
Methods, Bayesian and Probabilistic Models, Machine
Learning-Based Imputation and Deep Learning Methods
(Huang et al., 2023). There are various Multi-Omics-Specific
Tools such as MOFA (Multi-Omics Factor Analysis) (Hama
et al., 2023) and MAGIC (Markov Affinity-based Graph
Imputation of Cells (van Dijk et al., 2018) and impute omics
designed for imputing missing values in multiomics datasets
using joint matrix completion and feature correlations across
omics types. Methods like multi-view learning and tensor
factorization integrate data from multiple omics layers
simultaneously, enabling imputation that leverages cross-
omics relationships. Thus selecting an appropriate imputation
method depends on the extent and pattern of missingness, the
data type (e.g., continuous vs. categorical), and the structure of
the dataset. More advanced, multiomics-aware approaches
especially those based on probabilistic modeling and deep
learning are increasingly favored for their ability to preserve
biological signals and improve the accuracy of downstream
analyses such as clustering, classification, and biomarker
discovery (Jadhav et al., 2019).

7 Future prospects

The advancement of bioinformatics tools and platforms will be
essential for the future of multiomics research. These tools must
enable seamless integration and analysis of diverse omics datasets,
including genomics, transcriptomics, proteomics, and
metabolomics. Enhancements in computational power, data
storage, and cloud computing will further support large-scale
multi-omics data processing. Additionally, blockchain technology
presents a promising solution for data management, ensuring
integrity, security, and patient privacy. By providing a
transparent and tamper-proof system for storing and sharing
multi-omics data, blockchain can help build trust and encourage
collaboration within the healthcare community. The future of AI-
driven bioinformatics in cancer treatment will likely involve
increased interdisciplinary collaboration, drawing from
bioinformatics, systems biology, computational biology, and
clinical research. These collaborative efforts will be instrumental
in addressing complex biological questions and developing
comprehensive disease models. Strong partnerships between data
scientists and clinicians will also help bridge the gap between
intricate multi-omics data analysis and its practical applications
in healthcare, ensuring that insights are both clinically relevant and
actionable.

Despite its potential, multi-omics research still faces several
challenges that must be overcome to fully realize its benefits. One

key issue is the standardization of data collection and analysis across
different omics layers and research institutions. Establishing
standardized protocols and quality control measures will be
critical to ensuring the reliability and reproducibility of multi-
omics studies. Additionally, the complexity and high
dimensionality of multi-omics data necessitate the development
of advanced statistical methods and sophisticated algorithms for
accurate interpretation and meaningful conclusions.

Multiomics approaches are expected to play a pivotal role in
the advancement of personalized medicine. By integrating genetic,
transcriptomic, proteomic, and metabolomic data, healthcare
providers can tailor treatments to each patient’s unique
characteristics, improving outcomes and minimizing adverse
effects. Whole genome sequencing (WGS) and whole exome
sequencing (WES) also hold great promise for enhancing our
understanding of complex diseases such as cancer,
cardiovascular conditions, and neurodegenerative disorders. By
uncovering the molecular mechanisms driving these diseases,
multiomics studies can help identify novel biomarkers for early
diagnosis and potential drug targets. Over the next decade,
significant advancements in multiomics integration with other
emerging technologies could lead to the development of
personalized virtual models of patients. These models would
allow for in silico testing of treatments and interventions before
their application in real-life clinical settings. Additionally,
improvements in multiomics data visualization tools will
enhance researchers’ and clinicians’ ability to interpret complex
datasets, facilitating the translation of AI-driven genomic insights
into clinical practice.

The future of AI in genomics is promising, with numerous
emerging trends, technological breakthroughs, and interdisciplinary
approaches driving innovation in precision medicine. Addressing
current challenges and exploring new applications will be essential
for unlocking the full potential of this research. Continued
investment, along with collaborative efforts across various fields,
will ensure that AI-powered genomics remains at the forefront of
scientific and medical progress.

8 Conclusion

The integration of intelligent computing in genomics for cancer
research represents a crucial step toward unlocking the full potential
of precision medicine. With approximately 14 billion laboratory
tests conducted annually, clinical laboratories contribute to nearly
70% of medical decisions, highlighting the necessity for accurate and
comprehensive data. The incorporation of AI in developing health
indices, predicting health trajectories, and combining advanced
statistical modeling with digital twins (DTs) showcases the
transformative potential of these technologies in revolutionizing
healthcare delivery. However, overcoming key challenges—such as
generating actionable and concise metrics from omics data and
establishing meaningful intra-level comparators—is essential for
progress. As these advancements reshape the medical landscape,
ethical considerations remain paramount to ensuring that
technology complements, rather than replaces, the human touch
in healthcare. The future of medicine depends on a deep
understanding of patient journeys and care pathways, ensuring
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that AI-driven innovations align seamlessly with the complexities of
individual wellbeing while enhancing patient-centered care.

Author contributions

RS: Conceptualization, Formal Analysis, Funding acquisition,
Investigation, Methodology, Project administration, Resources,
Supervision, Validation, Visualization, Writing – original draft,
Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. DST/WIDUSHI-B/
CS/2024/35.

Acknowledgments

RS is thankful to her CoInvestigator Prof. Gopalan Rajaraman,
Indian Institute of Technology, Mumbai, India for the support.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author declares that Generative AI was used in the creation
of this manuscript. Generative AI was used for the creation of this
manuscript. Author used ChatGPT 4.0 to grammatically edit this
manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Adams, R., Steckel, M., Nicke, B., and Pohlenz, H.-D. (2016). RNAi as a tool for target
discovery in early pharmaceutical research. Pharm.-Int. J. Pharm. Sci. 71, 35–42.

Adzhubei, I., Jordan, D. M., and Sunyaev, S. R. (2013). Predicting functional effect of
human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 7. doi:10.
1002/0471142905

Ahmed, Z. (2020). Practicing precision medicine with intelligently integrative clinical
and multi-omics data analysis. Hum. Genomics 14, 35. doi:10.1186/s40246-020-00287-z

Alexandrov, L. B., Kim, J., Haradhvala, N. J., Huang, M. N., Tian Ng, A. W., Wu, Y.,
et al. (2020). The repertoire of mutational signatures in human cancer. Nature 578,
94–101. doi:10.1038/s41586-020-1943-3

Almulihi, A., Saleh, H., Hussien, A. M., Mostafa, S., El-Sappagh, S., Alnowaiser, K.,
et al. (2022). Ensemble learning based on hybrid deep learning model for heart disease
early prediction. Diagn. (Basel) 12 (12), 3215. doi:10.3390/diagnostics12123215

Alves, J. M., Prado-Lopez, S., Cameselle-Teijeiro, J. M., and Posada, D. (2019). Rapid
evolution and biogeographic spread in a colorectal cancer. Nat. Commun. 10, 5139.
doi:10.1038/s41467-019-12926-8

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., et al.
(2021). Review of deep learning: concepts, CNN architectures, challenges, applications,
future directions. J. Big Data 8, 53. doi:10.1186/s40537-021-00444-8

Amirouchene-Angelozzi, N., Swanton, C., and Bardelli, A. (2017). Tumor
evolution as a therapeutic target. Cancer Discov. 7, 805–817. doi:10.1158/2159-
8290.CD-17-0343

Arjmand, B., Hamidpour, S. K., Tayanloo-Beik, A., Goodarzi, P., Aghayan, H. R.,
Adibi, H., et al. (2022). Machine learning: a new prospect in multi-omics data analysis of
cancer. Front. Genet. 13, 824451. doi:10.3389/fgene.2022.824451

Aswad, L., and Jafari, R. (2023). FORALL: an interactive shiny/R web portal to
navigate multi-omics high-throughput data of pediatric acute lymphoblastic leukemia.
Bioinform Adv. 3 (1), vbad143. doi:10.1093/bioadv/vbad143

Baca, S. C., Prandi, D., Lawrence, M. S., Mosquera, J. M., Romanel, A., Drier, Y., et al.
(2013). Punctuated evolution of prostate cancer genomes. Cell 153, 666–677. doi:10.
1016/j.cell.2013.03.021

Baez-Ortega, A., and Gori, K. (2019). Computational approaches for discovery of
mutational signatures in cancer. Brief. Bioinform 20, 77–88. doi:10.1093/bib/bbx082

Bakshi, B., Dadhania, S., Holloway, P., Corbett, C., and Payling, M. (2024). Using an
artificial intelligence platform to enhance cancer detection rates in primary care. J. Clin.
Oncol., 42, (16), 1560. doi:10.1200/JCO.2024.42.16_suppl.1560

Bao, X., Li, Q., Chen, D., Dai, X., Liu, C., Tian,W., et al. (2024). Amultiomics analysis-assisted
deep learningmodel identifies amacrophage-orientedmodule as a potential therapeutic target in
colorectal cancer. Cell Rep. Med. 5 (2), 101399. doi:10.1016/j.xcrm.2024.101399

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S.,
et al. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of
anticancer drug sensitivity. Nature 483 (7391), 603–607. doi:10.1038/nature11003

Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., et al.
(2016). Estimating the population abundance of tissue-infiltrating immune and stromal
cell populations using gene expression. Genome Biol. 17, 218. doi:10.1186/s13059-016-
1070-5

Bergstrom, E. N., Barnes, M., Martincorena, I., and Alexandrov, L. B. (2020).
Generating realistic null hypothesis of cancer mutational landscapes using
SigProfilerSimulator. BMC Bioinforma. 21, 438. doi:10.1186/s12859-020-
03772-3

Bergstrom, E. N., Huang, M. N., Mahto, U., Barnes, M., Stratton, M. R., Rozen, S.
G., et al. (2019). SigProfilerMatrixGenerator: a tool for visualizing and exploring
patterns of small mutational events. BMC Genomics 20, 685. doi:10.1186/s12864-
019-6041-2

Bersanelli, M., Mosca, E., Remondini, D., Giampieri, E., Sala, C., Castellani, G., et al.
(2016). Methods for the integration of multi-omics data: mathematical aspects. BMC
Bioinforma. 17, S15. doi:10.1186/s12859-015-0857-9

Bieg-Bourne, C. C., Millis, S. Z., Piccioni, D. E., Fanta, P. T., Goldberg, M. E.,
Chmielecki, J., et al. (2017). Next-generation sequencing in the clinical setting clarifies
patient characteristics and potential actionability. Cancer Res. 77, 6313–6320. doi:10.
1158/0008-5472.CAN-17-1569

Black, J. R. M., and McGranahan, N. (2021). Genetic and non-genetic clonal
diversity in cancer evolution. Nat. Rev. Cancer 21, 379–392. doi:10.1038/s41568-021-
00336-2

Bonomi, L., Huang, Y., and Ohno-Machado, L. (2020). Privacy challenges and
research opportunities for genomic data sharing. Nat. Genet. 52 (7), 646–654.
doi:10.1038/s41588-020-0651-0

Borchert, F., Mock, A., Tomczak, A., Hugel, J., € Alkarkoukly, S., Knurr, A., et al.
(2021). Knowledge bases and software support for variant interpretation in precision
oncology. Brief. Bioinform 22, bbab134. doi:10.1093/bib/bbab134

Broad Institute (2018). Picard toolkit. Available online at: https://github.com/
broadinstitute/picard.

Cameron, D. L., Baber, J., Shale, C., Valle-Inclan, J. E., Besselink, N., van Hoeck, A.,
et al. (2021). GRIDSS2: comprehensive characterisation of somatic structural variation
using single breakend variants and structural variant phasing. Genome Biol. 22, 202.
doi:10.1186/s13059-021-02423-x

Cao, K.-A.Lê, González, I., and Déjean, S. (2009). integrOmics: an R package to
unravel relationships between two omics datasets. Bioinformatics 25 (Issue 21),
2855–2856. doi:10.1093/bioinformatics/btp515

Frontiers in Pharmacology frontiersin.org16

Srivastava 10.3389/fphar.2025.1591696

https://doi.org/10.1002/0471142905
https://doi.org/10.1002/0471142905
https://doi.org/10.1186/s40246-020-00287-z
https://doi.org/10.1038/s41586-020-1943-3
https://doi.org/10.3390/diagnostics12123215
https://doi.org/10.1038/s41467-019-12926-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1158/2159-8290.CD-17-0343
https://doi.org/10.1158/2159-8290.CD-17-0343
https://doi.org/10.3389/fgene.2022.824451
https://doi.org/10.1093/bioadv/vbad143
https://doi.org/10.1016/j.cell.2013.03.021
https://doi.org/10.1016/j.cell.2013.03.021
https://doi.org/10.1093/bib/bbx082
https://doi.org/10.1200/JCO.2024.42.16_suppl.1560
https://doi.org/10.1016/j.xcrm.2024.101399
https://doi.org/10.1038/nature11003
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s12859-020-03772-3
https://doi.org/10.1186/s12859-020-03772-3
https://doi.org/10.1186/s12864-019-6041-2
https://doi.org/10.1186/s12864-019-6041-2
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1158/0008-5472.CAN-17-1569
https://doi.org/10.1158/0008-5472.CAN-17-1569
https://doi.org/10.1038/s41568-021-00336-2
https://doi.org/10.1038/s41568-021-00336-2
https://doi.org/10.1038/s41588-020-0651-0
https://doi.org/10.1093/bib/bbab134
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
https://doi.org/10.1186/s13059-021-02423-x
https://doi.org/10.1093/bioinformatics/btp515
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1591696


Cao, X., Huang, Y. A., You, Z. H., Shang, X., Hu, L., Hu, P. W., et al. (2024).
scPriorGraph: constructing biosemantic cell-cell graphs with prior gene set selection for
cell type identification from scRNA-seq data. Genome Biol. 25 (1), 207. doi:10.1186/
s13059-024-03357-w

Caravagna, G., Sanguinetti, G., Graham, T. A., and Sottoriva, A. (2020). The
MOBSTER R package for tumour subclonal deconvolution from bulk DNA whole-
genome sequencing data. BMC Bioinforma. 21, 531. doi:10.1186/s12859-020-
03863-1

Carroll, S. R., Herczog, E., Hudson, M., Russell, K., and Stall, S. (2021).
Operationalizing the CARE and FAIR principles for indigenous data futures. Sci.
Data 8, 108. doi:10.1038/s41597-021-00892-0

Carter, H., Douville, C., Stenson, P. D., Cooper, D. N., and Karchin, R. (2013).
Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genomics
14 (Suppl. 3), S3. doi:10.1186/1471-2164-14-S3-S3

Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012).
The cBio cancer genomics portal: an open platform for exploring multidimensional
cancer genomics data. Cancer Discov. 2 (5), 401–404. doi:10.1158/2159-8290.CD-12-
0095

Chakravarty, D., Gao, J., Phillips, S. M., Kundra, R., Zhang, H., Wang, J., et al. (2017).
OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. 2017, 1–16. doi:10.
1200/PO.17.00011

Chan, Y.-T., Lu, Y., Wu, J., Zhang, C., Tan, H.-Y., Bian, Z.-X., et al. (2022). CRISPR-
Cas9 library screening approach for anti-cancer drug discovery: overview and
perspectives. Theranostics 12, 3329–3344. doi:10.7150/thno.71144

Chari, R., Coe, B. P., Vucic, E. A., Lockwood, W. W., and Lam, W. L. (2010). An
integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes
and pathways in cancer. BMC Syst. Biol. 4, 67. doi:10.1186/1752-0509-4-67

Chen, C., Wang, J., Pan, D., Wang, X., Xu, Y., Yan, J., et al. (2023). Applications
of multi-omics analysis in human diseases. MedComm 4 (4), e315. doi:10.1002/
mco2.315

Chen, Y., Moustaki, I., and Zhang, H. (2020). A note on likelihood Ratio tests for
models with latent variables. Psychometrika 85 (4), 996–1012. doi:10.1007/s11336-020-
09735-0

Chevrier, R., Foufi, V., Gaudet-Blavignac, C., Robert, A., and Lovis, C. (2019). Use and
understanding of anonymization and de-identification in the biomedical literature:
scoping review. J. Med. Internet Res. 21 (5), e13484. doi:10.2196/13484

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., et al. (2012). A
program for annotating and predicting the effects of single nucleotide polymorphisms,
SnpEff: SNPs in the genome ofDrosophila melanogaster strain w1118; iso-2; iso-3. Fly 6,
80–92. doi:10.4161/fly.19695

Cokelaer, T., Chen, E., Iorio, F., Menden, M. P., Lightfoot, H., Saez-Rodriguez, J., et al.
(2018). GDSCTools for mining pharmacogenomic interactions in cancer.
Bioinformatics 34 (7), 1226–1228. doi:10.1093/bioinformatics/btx744

Connor, A. A., Denroche, R. E., Jang, G. H., Timms, L., Kalimuthu, S. N., Selander, I.,
et al. (2017). Association of distinct mutational signatures with correlates of increased
immune activity in pancreatic ductal adenocarcinoma. JAMA Oncol. 3, 774–783. doi:10.
1001/jamaoncol.2016.3916

Correa-Aguila, R., Alonso-Pupo, N., and Hernández-Rodríguez, E. W. (2022). Multi-
omics data integration approaches for precision oncology.Mol. Omics 18 (6), 469–479.
doi:10.1039/d1mo00411e

Cotto, K. C., Wagner, A. H., Feng, Y.-Y., Kiwala, S., Coffman, A. C., Spies, G., et al.
(2018). DGIdb 3.0: a redesign and expansion of the drug-gene interaction database.
Nucleic Acids Res. 46, D1068–D1073. doi:10.1093/nar/gkx1143

Cross, J. L., Choma, M. A., and Onofrey, J. A. (2024). Bias in medical AI: implications
for clinical decision-making. PLOS Digit. Health 3 (11), e0000651. doi:10.1371/journal.
pdig.0000651

Dahal, S., Yurkovich, J. T., Xu, H., Palsson, B. O., and Yang, L. (2020). Synthesizing
systems biology knowledge from omics using genome-scale models. Proteomics 20,
e1900282. doi:10.1002/pmic.201900282

Davies, H., Glodzik, D., Morganella, S., Yates, L. R., Staaf, J., Zou, X., et al. (2017).
HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational
signatures. Nat. Med. 23, 517–525. doi:10.1038/nm.4292

Degasperi, A., Amarante, T. D., Czarnecki, J., Shooter, S., Zou, X., Glodzik, D., et al.
(2020). A practical framework and online tool for mutational signature analyses show
intertissue variation and driver dependencies. Nat. Cancer 1, 249–263. doi:10.1038/
s43018-020-0027-5

Degasperi, A., Zou, X., Dias Amarante, T., MartinezMartinez, A., Koh, G. C. C., Dias,
J. M. L., et al. (2022). Substitution mutational signatures in whole-genome–sequenced
cancers in the UK population. Science 376. doi:10.1126/science.abl9283

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., et al.
(2011). A framework for variation discovery and genotyping using next-generation
DNA sequencing data. Nat. Genet. 43, 491–498. doi:10.1038/ng.806

Deshwar, A. G., Vembu, S., Yung, C. K., Jang, G. H., Stein, L., and Morris, Q. (2015).
PhyloWGS: reconstructing subclonal composition and evolution from whole-genome
sequencing of tumors. Genome Biol. 16, 35. doi:10.1186/s13059-015-0602-8

Dias, R., and Torkamani, A. (2019). Artificial intelligence in clinical and genomic
diagnostics. Genome Med. 11, 70. doi:10.1186/s13073-019-0689-8

Divate, M., Tyagi, A., Richard, D. J., Prasad, P. A., Gowda, H., and Nagaraj, S. H.
(2022). Deep learning-based pan-cancer classification model reveals tissue-of-origin
specific gene expression signatures. Cancers (Basel) 14 (5), 1185. doi:10.3390/
cancers14051185

Dong, C., Guo, Y., Yang, H., He, Z., Liu, X., andWang, K. (2016). iCAGES: integrated
CAncer GEnome Score for comprehensively prioritizing driver genes in personal cancer
genomes. Genome Med. 8 (1), 135. doi:10.1186/s13073-016-0390-0

Dong, C., Wei, P., Jian, X., Gibbs, R., Boerwinkle, E., Wang, K., et al. (2015).
Comparison and integration of deleteriousness prediction methods for
nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 24,
2125–2137. doi:10.1093/hmg/ddu733

Dong, Z., Xie, W., Chen, H., Xu, J., Wang, H., Li, Y., et al. (2017). Copy-number
variants detection by low-pass wholegenome sequencing. Curr. Protoc. Hum. Genet. 94
(8.17), 1–16. doi:10.1002/cphg.43

do Valle, I. F., Menichetti, G., Simonetti, G., Bruno, S., Zironi, I., Durso, D. F., et al.
(2018). Network integration of multi-tumour omics data suggests novel targeting
strategies. Nat. Commun. 9, 4514. doi:10.1038/s41467-018-06992-7

Dugourd, A., Kuppe, C., Sciacovelli, M., Gjerga, E., Gabor, A., Emdal, K. B.,
et al. (2021). Causal integration of multi-omics data with prior knowledge to
generate mechanistic hypotheses. Mol. Syst. Biol. 17, e9730. doi:10.15252/msb.
20209730

Escaramıs, G., Docampo, E., and Rabionet, R. (2015). A decade of structural variants:
description, history and methods to detect structural variation. Brief. Funct. Genomics
14, 305–314. doi:10.1093/bfgp/elv014

Faraoni, I., and Graziani, G. (2018). Role of BRCAmutations in cancer treatment with
poly(ADP-ribose) polymerase (PARP) inhibitors. Cancers (Basel) 10 (12), 487. doi:10.
3390/cancers10120487

Farasati, F. B. (2023). Artificial intelligence ethics in precision oncology: balancing
advancements in technology with patient privacy and autonomy. Explor Target
Antitumor Ther. 4 (4), 685–689. doi:10.37349/etat.2023.00160

Fiume, M., Cupak, M., Keenan, S., Rambla, J., de la Torre, S., Dyke, S. O. M., et al.
(2019). Federated discovery and sharing of genomic data using Beacons. Nat.
Biotechnol. 37, 220–224. doi:10.1038/s41587-019-0046-x

Galaxy (2024). The Galaxy platform for accessible, reproducible, and collaborative
data analyses: 2024 update. Nucleic Acids Res. 52 (W1), W83–W94. doi:10.1093/nar/
gkae410

Gerke, S., Minssen, T., and Cohen, G. (2020). Ethical and legal challenges of artificial
intelligence-driven healthcare. Artif. Intell. Healthc., 295–336. doi:10.1016/B978-0-12-
818438-7.00012-5

Gillette, M. A., Satpathy, S., Cao, S., Dhanasekaran, S. M., Carr, S. A., Krug, K., et al.
(2020). Proteogenomic characterization reveals therapeutic vulnerabilities in lung
adenocarcinoma. Cell 182 (1), 200–225.e35. doi:10.1016/j.cell.2020.06.013

Gillis, S., and Roth, A. (2020). PyClone-VI: scalable inference of clonal population
structures using whole genome data. BMC Bioinforma. 21, 571. doi:10.1186/s12859-
020-03919-2

Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., et al.
(2007). Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158.
doi:10.1038/nature05610

Griffith, M., Spies, N. C., Krysiak, K., McMichael, J. F., Coffman, A. C., Danos, A. M.,
et al. (2017). CIViC is a community knowledgebase for expert crowdsourcing the
clinical interpretation of variants in cancer. Nat. Genet. 49, 170–174. doi:10.1038/ng.
3774

Hachem, S., Yehya, A., El Masri, J., Mavingire, N., Johnson, J. R., Dwead, A. M., et al.
(2024). Contemporary update on clinical and experimental prostate cancer biomarkers:
a multi-omics-focused approach to detection and risk stratification. Biol. (Basel). 13
(10), 762. doi:10.3390/biology13100762

Hackl, H., Charoentong, P., Finotello, F., and Trajanoski, Z. (2016). Computational
genomics tools for dissecting tumourimmune cell interactions. Nat. Rev. Genet. 17,
441–458. doi:10.1038/nrg.2016.67

Haley, B., and Roudnicky, F. (2020). Functional genomics for cancer drug target
discovery. Cancer Cell 38, 31–43. doi:10.1016/j.ccell.2020.04.006

Hama, H., Seymen, N., Gerlevik, S., Kaya, D. E., Napolitani, G., Ogawa, S., et al.
(2023). Multi-omics factor analysis (MOFA) identifies transposable element expression
as a risk factor and inflammaging as a protective factor in myelodysplastic syndromes.
Blood 142 (Suppl. 1), 6450. doi:10.1182/blood-2023-177683

Hamet, P., and Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism
69s, S36–s40. doi:10.1016/j.metabol.2017.01.011

Han, Y., Liu, D., and Li, L. (2020). PD-1/PD-L1 pathway: current researches in cancer.
Am. J. Cancer Res. 10 (3), 727–742. PMID: 32266087.

Haradhvala, N. J., Kim, J., Maruvka, Y. E., Polak, P., Rosebrock, D., Livitz, D., et al.
(2018). Distinct mutational signatures characterize concurrent loss of polymerase
proofreading and mismatch repair. Nat. Commun. 9, 1746. doi:10.1038/s41467-018-
04002-4

Frontiers in Pharmacology frontiersin.org17

Srivastava 10.3389/fphar.2025.1591696

https://doi.org/10.1186/s13059-024-03357-w
https://doi.org/10.1186/s13059-024-03357-w
https://doi.org/10.1186/s12859-020-03863-1
https://doi.org/10.1186/s12859-020-03863-1
https://doi.org/10.1038/s41597-021-00892-0
https://doi.org/10.1186/1471-2164-14-S3-S3
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1200/PO.17.00011
https://doi.org/10.1200/PO.17.00011
https://doi.org/10.7150/thno.71144
https://doi.org/10.1186/1752-0509-4-67
https://doi.org/10.1002/mco2.315
https://doi.org/10.1002/mco2.315
https://doi.org/10.1007/s11336-020-09735-0
https://doi.org/10.1007/s11336-020-09735-0
https://doi.org/10.2196/13484
https://doi.org/10.4161/fly.19695
https://doi.org/10.1093/bioinformatics/btx744
https://doi.org/10.1001/jamaoncol.2016.3916
https://doi.org/10.1001/jamaoncol.2016.3916
https://doi.org/10.1039/d1mo00411e
https://doi.org/10.1093/nar/gkx1143
https://doi.org/10.1371/journal.pdig.0000651
https://doi.org/10.1371/journal.pdig.0000651
https://doi.org/10.1002/pmic.201900282
https://doi.org/10.1038/nm.4292
https://doi.org/10.1038/s43018-020-0027-5
https://doi.org/10.1038/s43018-020-0027-5
https://doi.org/10.1126/science.abl9283
https://doi.org/10.1038/ng.806
https://doi.org/10.1186/s13059-015-0602-8
https://doi.org/10.1186/s13073-019-0689-8
https://doi.org/10.3390/cancers14051185
https://doi.org/10.3390/cancers14051185
https://doi.org/10.1186/s13073-016-0390-0
https://doi.org/10.1093/hmg/ddu733
https://doi.org/10.1002/cphg.43
https://doi.org/10.1038/s41467-018-06992-7
https://doi.org/10.15252/msb.20209730
https://doi.org/10.15252/msb.20209730
https://doi.org/10.1093/bfgp/elv014
https://doi.org/10.3390/cancers10120487
https://doi.org/10.3390/cancers10120487
https://doi.org/10.37349/etat.2023.00160
https://doi.org/10.1038/s41587-019-0046-x
https://doi.org/10.1093/nar/gkae410
https://doi.org/10.1093/nar/gkae410
https://doi.org/10.1016/B978-0-12-818438-7.00012-5
https://doi.org/10.1016/B978-0-12-818438-7.00012-5
https://doi.org/10.1016/j.cell.2020.06.013
https://doi.org/10.1186/s12859-020-03919-2
https://doi.org/10.1186/s12859-020-03919-2
https://doi.org/10.1038/nature05610
https://doi.org/10.1038/ng.3774
https://doi.org/10.1038/ng.3774
https://doi.org/10.3390/biology13100762
https://doi.org/10.1038/nrg.2016.67
https://doi.org/10.1016/j.ccell.2020.04.006
https://doi.org/10.1182/blood-2023-177683
https://doi.org/10.1016/j.metabol.2017.01.011
https://doi.org/10.1038/s41467-018-04002-4
https://doi.org/10.1038/s41467-018-04002-4
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1591696


Harbig, T. A., Fratte, J., Krone, M., and Nieselt, K. (2023). OmicsTIDE: interactive
exploration of trends in multi-omics data. Bioinforma. Adv. 3 (1), vbac093. doi:10.1093/
bioadv/vbac093

Hasin, Y., Seldin, M., and Lusis, A. (2017). Multi-omics approaches to disease.
Genome Biol. 18, 83. doi:10.1186/s13059-017-1215-1

Hellmann, M. D., Paz-Ares, L., and Costa, D. B. (2018). Lung cancer with a high
tumor mutational burden.N. Engl. J. Med. 379, 1093–1094. doi:10.1056/NEJMc1808566

Ho, S. S., Urban, A. E., and Mills, R. E. (2020). Structural variation in the sequencing
era. Nat. Rev. Genet. 21, 171–189. doi:10.1038/s41576-019-0180-9

Huang, L., Brunell, D., Stephan, C., Mancuso, J., Yu, X., He, B., et al. (2019). Driver
network as a biomarker: systematic integration and network modeling of multi-omics
data to derive driver signaling pathways for drug combination prediction.
Bioinformatics 35, 3709–3717. doi:10.1093/bioinformatics/btz109

Huang, L., Song, M., Shen, H., Hong, H., Gong, P., Deng, H. W., et al. (2023). Deep
learning methods for omics data imputation. Biol. (Basel). 12 (10), 1313. doi:10.3390/
biology12101313

Huang, S., Chaudhary, K., and Garmire, L. X. (2017). More is better: recent progress in
multi-omics data integration methods. Front. Genet. 8, 84. doi:10.3389/fgene.2017.
00084

Huang, T., Chen, X., Zhang, H., Liang, Y., Li, L., Wei, H., et al. (2021). Prognostic role
of tumor mutational burden in cancer patients treated with immune checkpoint
inhibitors: a systematic review and meta-analysis. Front. Oncol. 11, 706652. doi:10.
3389/fonc.2021.706652

Huang, Z. A., Hu, P., Hu, L., You, Z. H., Tan, K. C., and Huang, Y. A. (2024).
Toward multilabel classification for multiple disease prediction using gut microbiota
profiles. IEEE Trans. Neural Netw. Learn Syst. 12, 1–14. doi:10.1109/TNNLS.2024.
3453967

Hudson, C. T. J., Anderson, W., Aretz, A., Artez, A., Barker, A. D., Bell, C., et al.
(2010). International network of cancer genome projects. Nature 464, 993–998. doi:10.
1038/nature08987

Hundal, J., Kiwala, S., McMichael, J., Miller, C. A., Xia, H., Wollam, A. T., et al. (2020).
pVACtools: a computational toolkit to identify and visualize cancer neoantigens. Cancer
Immunol. Res. 8, 409–420. doi:10.1158/2326-6066.CIR-19-0401

Hussain, Z., Gimenez, F., Yi, D., and Rubin, D. (2017). Differential data
Augmentation techniques for medical imaging classification tasks. AMIA Annu.
Symp. Proc. 2017, 979–984.

ICGC (2022). ARGO data platform. Available online at: https://platform.icgc-argo.
org/215ELIXIREurope.Beyond1milliongenomes.

Islam, S. M. A., Dıaz-Gay, M., Wu, Y., Barnes, M., Vangara, R., Bergstrom, E. N., et al.
(2020). Uncovering novel mutational signatures by de novo extraction with
SigProfilerExtractor. bioRxiv. doi:10.1101/2020.12.13.422570

Jaccard, E., Cornuz, J., Waeber, G., and Guessous, I. (2018). Evidence-based precision
medicine is needed to move toward general internal precision medicine. J. Gen. Intern
Med. 33, 11–12. doi:10.1007/s11606-017-4149-0

Jadhav, A., Pramod, D., and Ramanathan, K. (2019). Comparison of performance of
data imputation methods for numeric dataset. Appl. Artif. Intell. 33 (10), 913–933.
doi:10.1080/08839514.2019.1637138

Jardim, D. L., Goodman, A., de Melo Gagliato, D., and Kurzrock, R. (2021). The
challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39
(2), 154–173. doi:10.1016/j.ccell.2020.10.001

Jiang, J., Yuan, J., Hu, Z., Zhang, Y., Zhang, T., Xu, M., et al. (2022). Systematic
illumination of druggable genes in cancer genomes. Cell Rep. 38, 110400. doi:10.1016/j.
celrep.2022.110400

Jiang, Z., and Li, P. (2024). DeepDR: a deep learning library for drug response
prediction. Bioinformatics 40 (12), btae688. doi:10.1093/bioinformatics/btae688

Jiménez-Santos, M. J., García-Martín, S., Fustero-Torre, C., Di Domenico, T., Gómez-
López, G., and Al-Shahrour, F. (2022). Bioinformatics roadmap for therapy selection in
cancer genomics. Mol. Oncol. 16 (21), 3881–3908. doi:10.1002/1878-0261.13286

Joos, S., Nettelbeck, D. M., Reil-Held, A., Engelmann, K., Moosmann, A., Eggert, A.,
et al. (2019). German Cancer Consortium (DKTK) - a national consortium for
translational cancer research. Mol. Oncol. 13 (3), 535–542. doi:10.1002/1878-0261.
12430

Kalari, K. R., Sinnwell, J. P., Thompson, K. J., Tang, X., Carlson, E. E., Yu, J., et al.
(2018). PANOPLY: omics-guided drug prioritization method tailored to an individual
patient. JCO Clin. Cancer Inf. 2, 1–11. doi:10.1200/CCI.18.00012

Kang, M., Ko, E., and Mersha, T. B. (2022). A roadmap for multiomics data
integration using deep learning. Brief. Bioinform 23, bbab454. doi:10.1093/bib/bbab454

Kasar, S., Kim, J., Improgo, R., Tiao, G., Polak, P., Haradhvala, N., et al. (2015).
Whole-genome sequencing reveals activation-induced cytidine deaminase signatures
during indolent chronic lymphocytic leukaemia evolution. Nat. Commun. 6, 8866.
doi:10.1038/ncomms9866

Kavianpour, S., Sutherland, J., Mansouri-Benssassi, E., Coull, N., and Jefferson, E.
(2022). Next-generation capabilities in trusted research environments: interview study.
J. Med. Internet Res. 24 (9), e33720. doi:10.2196/33720

Keskin, D. B., Anandappa, A. J., Sun, J., Tirosh, I., Mathewson, N. D., Li, S., et al.
(2019). Neoantigen vaccine generates intratumoral T cell responses in phase Ib
glioblastoma trial. Nature 565, 234–239. doi:10.1038/s41586-018-0792-9

Khalil, H., and Huang, C. (2020). Adverse drug reactions in primary care: a scoping
review. BMC Health Serv. Res. 20, 5. doi:10.1186/s12913-019-4651-7

Kim, J., Mouw, K. W., Polak, P., Braunstein, L. Z., Kamburov, A., Kwiatkowski, D. J.,
et al. (2016). Somatic ERCC2mutations are associated with a distinct genomic signature
in urothelial tumors. Nat. Genet. 48, 600–606. doi:10.1038/ng.3557

Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M., and Shendure, J.
(2014). A general framework for estimating the relative pathogenicity of human genetic
variants. Nat. Genet. 46, 310–315. doi:10.1038/ng.2892

Koboldt, D. C. (2020). Best practices for variant calling in clinical sequencing. Genome
Med. 12, 91. doi:10.1186/s13073-020-00791-w

Koboldt, D. C., Zhang, Q., Larson, D. E., Shen, D., McLellan, M. D., Lin, L., et al.
(2012). VarScan 2: somatic mutation and copy number alteration discovery in cancer by
exome sequencing. Genome Res. 22, 568–576. doi:10.1101/gr.129684.111

Koleti, A., Terryn, R., Stathias, V., Chung, C., Cooper, D. J., Turner, J. P., et al. (2018).
Data Portal for the Library of Integrated Network-based Cellular Signatures (LINCS)
program: integrated access to diverse large-scale cellular perturbation response data.
Nucleic Acids Res. 46 (D1), D558–D566. doi:10.1093/nar/gkx1063

Krämer, A., Green, J., Pollard, J., Jr., and Tugendreich, S. (2014). Causal analysis
approaches in ingenuity pathway analysis. Bioinformatics 30 (4), 523–530. doi:10.1093/
bioinformatics/btt703

Krassowski, M., Das, V., Sahu, S. K., andMisra, B. B. (2020). State of the field in multi-
omics research: from computational needs to data mining and sharing. Front. Genet. 11,
610798. doi:10.3389/fgene.2020.610798

Kuo, T. C., Tian, T. F., and Tseng, Y. J. (2013). 3Omics: a web-based systems biology
tool for analysis, integration and visualization of human transcriptomic, proteomic and
metabolomic data. BMC Syst. Biol. 7, 64. doi:10.1186/1752-0509-7-64

Kush, R. D., Warzel, D., Kush, M. A., Sherman, A., Navarro, E. A., Fitzmartin, R., et al.
(2020). FAIR data sharing: the roles of common data elements and harmonization.
J. Biomed. Inf. 107, 103421. doi:10.1016/j.jbi.2020.103421

Kwong, J. C. C., Khondker, A., Tran, C., Evans, E., Cozma, A. I., Javidan, A., et al.
(2022). Explainable artificial intelligence to predict the risk of sidespecific extraprostatic
extension in pre-prostatectomy patients. Can. Urol. Assoc. J. 16, 213–221. doi:10.5489/
cuaj.7473

Lai, Z., Markovets, A., Ahdesmaki, M., Chapman, B., Hofmann, O., McEwen, R., et al.
(2016). VarDict: a novel and versatile variant caller for next-generation sequencing in
cancer research. Nucleic Acids Res. 44, e108. doi:10.1093/nar/gkw227

Landrum, M. J., Lee, J. M., Benson, M., Brown, G. R., Chao, C., Chitipiralla, S., et al.
(2018). ClinVar: improving access to variant interpretations and supporting evidence.
Nucleic Acids Res. 46, D1062–D1067. doi:10.1093/nar/gkx1153

Larson, D. E., Harris, C. C., Chen, K., Koboldt, D. C., Abbott, T. E., Dooling, D. J., et al.
(2012). SomaticSniper: identification of somatic point mutations in whole genome
sequencing data. Bioinformatics 28, 311–317. doi:10.1093/bioinformatics/btr665

Lelieveld, S. H., Spielmann, M., Mundlos, S., Veltman, J. A., and Gilissen, C. (2015).
Comparison of exome and genome sequencing technologies for the complete capture of
protein-coding regions. Hum. Mutat. 36 (8), 815–822. doi:10.1002/humu.22813

le Sage, C., Lawo, S., Panicker, P., Scales, T. M., Rahman, S. A., Little, A. S., et al.
(2017). Dual direction CRISPR transcriptional regulation screening uncovers gene
networks driving drug resistance. Sci. Rep. 7, 17693. doi:10.1038/s41598-017-18172-6

Levatic, J., Salvadores, M., Fuster-Tormo, F., and Supek, F. (2022). Mutational
signatures are markers of drug sensitivity of cancer cells. Nat. Commun. 13, 2926.
doi:10.1038/s41467-022-30582-3

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv:13033997v2 [q-bioGN]. doi:10.48550/arXiv.1303.3997

Li, Y., Roberts, N. D., Wala, J. A., Shapira, O., Schumacher, S. E., Kumar, K., et al.
(2020). Patterns of somatic structural variation in human cancer genomes. Nature 578,
112–121. doi:10.1038/s41586-019-1913-9

Li, Y., Shi, W., and Wasserman, W. W. (2018). Genome-wide prediction of cis-
regulatory regions using supervised deep learning methods. BMC Bioinf 19 (1), 202.
doi:10.1186/s12859-018-2187-1

Li, Y., Wu, X., Yang, P., Jiang, G., and Luo, Y. (2022). Machine learning for lung
cancer diagnosis, treatment, and prognosis. Genomics Proteomics Bioinforma. 20 (5),
850–866. doi:10.1016/j.gpb.2022.11.003

Liu, T., Salguero, P., Petek, M., Martinez-Mira, C., Balzano-Nogueira, L., Ramšak, Ž.,
et al. (2022). PaintOmics 4: new tools for the integrative analysis of multi-omics datasets
supported by multiple pathway databases. Nucleic Acids Res. 50 (W1), W551–W559.
doi:10.1093/nar/gkac352

Lord, C. J., and Ashworth, A. (2016). BRCAness revisited. Nat. Rev. Cancer 16,
110–120. doi:10.1038/nrc.2015.21

Ma, J., Setton, J., Lee, N. Y., Riaz, N., and Powell, S. N. (2018a). The therapeutic
significance of mutational signatures from DNA repair deficiency in cancer. Nat.
Commun. 9, 3292. doi:10.1038/s41467-018-05228-y

Frontiers in Pharmacology frontiersin.org18

Srivastava 10.3389/fphar.2025.1591696

https://doi.org/10.1093/bioadv/vbac093
https://doi.org/10.1093/bioadv/vbac093
https://doi.org/10.1186/s13059-017-1215-1
https://doi.org/10.1056/NEJMc1808566
https://doi.org/10.1038/s41576-019-0180-9
https://doi.org/10.1093/bioinformatics/btz109
https://doi.org/10.3390/biology12101313
https://doi.org/10.3390/biology12101313
https://doi.org/10.3389/fgene.2017.00084
https://doi.org/10.3389/fgene.2017.00084
https://doi.org/10.3389/fonc.2021.706652
https://doi.org/10.3389/fonc.2021.706652
https://doi.org/10.1109/TNNLS.2024.3453967
https://doi.org/10.1109/TNNLS.2024.3453967
https://doi.org/10.1038/nature08987
https://doi.org/10.1038/nature08987
https://doi.org/10.1158/2326-6066.CIR-19-0401
https://platform.icgc-argo.org/215ELIXIREurope.Beyond1milliongenomes
https://platform.icgc-argo.org/215ELIXIREurope.Beyond1milliongenomes
https://doi.org/10.1101/2020.12.13.422570
https://doi.org/10.1007/s11606-017-4149-0
https://doi.org/10.1080/08839514.2019.1637138
https://doi.org/10.1016/j.ccell.2020.10.001
https://doi.org/10.1016/j.celrep.2022.110400
https://doi.org/10.1016/j.celrep.2022.110400
https://doi.org/10.1093/bioinformatics/btae688
https://doi.org/10.1002/1878-0261.13286
https://doi.org/10.1002/1878-0261.12430
https://doi.org/10.1002/1878-0261.12430
https://doi.org/10.1200/CCI.18.00012
https://doi.org/10.1093/bib/bbab454
https://doi.org/10.1038/ncomms9866
https://doi.org/10.2196/33720
https://doi.org/10.1038/s41586-018-0792-9
https://doi.org/10.1186/s12913-019-4651-7
https://doi.org/10.1038/ng.3557
https://doi.org/10.1038/ng.2892
https://doi.org/10.1186/s13073-020-00791-w
https://doi.org/10.1101/gr.129684.111
https://doi.org/10.1093/nar/gkx1063
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.3389/fgene.2020.610798
https://doi.org/10.1186/1752-0509-7-64
https://doi.org/10.1016/j.jbi.2020.103421
https://doi.org/10.5489/cuaj.7473
https://doi.org/10.5489/cuaj.7473
https://doi.org/10.1093/nar/gkw227
https://doi.org/10.1093/nar/gkx1153
https://doi.org/10.1093/bioinformatics/btr665
https://doi.org/10.1002/humu.22813
https://doi.org/10.1038/s41598-017-18172-6
https://doi.org/10.1038/s41467-022-30582-3
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.1038/s41586-019-1913-9
https://doi.org/10.1186/s12859-018-2187-1
https://doi.org/10.1016/j.gpb.2022.11.003
https://doi.org/10.1093/nar/gkac352
https://doi.org/10.1038/nrc.2015.21
https://doi.org/10.1038/s41467-018-05228-y
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1591696


Ma, X., Yu, L., Liu, Y., Alexandrov, L. B., Edmonson, M. N., Gawad, C., et al. (2018b).
Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and
solid tumours. Nature 555:371–376. doi:10.1038/nature25795

Macintyre, G., Goranova, T. E., De Silva, D., Ennis, D., Piskorz, A. M., Eldridge, M.,
et al. (2018). Copy number signatures and mutational processes in ovarian carcinoma.
Nat. Genet. 50, 1262–1270. doi:10.1038/s41588-018-0179-8

Makałowski, W. (2001). The human genome structure and organization. Acta
Biochim. Pol. 48, 587–598. doi:10.18388/abp.2001_3893

Mani, D. R., Maynard, M., Kothadia, R., Krug, K., Christianson, K. E., Heiman, D.,
et al. (2021). PANOPLY: a cloud-based platform for automated and reproducible
proteogenomic data analysis. Nat. Methods 18 (6), 580–582. doi:10.1038/s41592-021-
01176-6

Martinez-Martin, N., and Magnus, D. (2019). Privacy and ethical challenges in next-
generation sequencing. Expert Rev. Precis. Med. Drug Dev. 4 (2), 95–104. doi:10.1080/
23808993.2019.1599685

Mathew, D. E., Ebem, D. U., Ikegwu, A. C., Ukeoma, P. E., and Dibiaezue, N. F.
(2025). Recent emerging techniques in explainable artificial intelligence to enhance the
interpretable and understanding of AI models for human. Neural Process Lett. 57, 16.
doi:10.1007/s11063-025-11732-2

Mavaie, P., Holder, L., and Skinner, M. K. (2023). Hybrid deep learning approach to
improve classification of low-volume high-dimensional data. BMC Bioinforma. 24, 419.
doi:10.1186/s12859-023-05557-w

McGrail, D. J., Pilie, P. G., Rashid, N. U., Voorwerk, L., Slagter, M., Kok, M., et al.
(2021). High tumor mutation burden fails to predict immune checkpoint blockade
response across all cancer types. Ann. Oncol. 32, 661–672. doi:10.1016/j.annonc.2021.
02.006

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., et al.
(2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing
nextgeneration DNA sequencing data. Genome Res. 20, 1297–1303. doi:10.1101/gr.
107524.110

McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R. S., Thormann, A., et al.
(2016). The Ensembl variant effect predictor. Genome Biol. 17, 122. doi:10.1186/s13059-
016-0974-4

Meinshausen, N., Hauser, A., Mooij, J. M., Peters, J., Versteeg, P., and
Bühlmann, P. (2016). Methods for causal inference from gene perturbation
experiments and validation. Proc. Natl. Acad. Sci. 113, 7361–7368. doi:10.
1073/pnas.1510493113

Menden, M. P., Casale, F. P., Stephan, J., Bignell, G. R., Iorio, F., McDermott, U., et al.
(2018). The germline genetic component of drug sensitivity in cancer cell lines. Nat.
Commun. 9, 3385. doi:10.1038/s41467-018-05811-3

Menyhárt, O., and Gyorffy, B. (2021). Multi-omics approaches in cancer research
with applications in tumor subtyping, prognosis, and diagnosis. Comput. Struct.
Biotechnol. J. 19, 949–960. doi:10.1016/j.csbj.2021.01.009

Merino, D. M., McShane, L. M., Fabrizio, D., Funari, V., Chen, S. J., White, J. R., et al.
(2020). Establishing guidelines to harmonize tumor mutational burden (TMB): in silico
assessment of variation in TMB quantification across diagnostic platforms: phase I of
the Friends of cancer research TMB harmonization project. J. Immunother. Cancer 8
(1), e000147. doi:10.1136/jitc-2019-000147

Miller, C. A., White, B. S., Dees, N. D., Griffith, M., Welch, J. S., Griffith, O. L., et al.
(2014). SciClone: inferring clonal architecture and tracking the spatial and temporal
patterns of tumor evolution. PLoS Comput. Biol. 10, e1003665. doi:10.1371/journal.pcbi.
1003665

Misra, B. B., Langefeld, C. D., Olivier, M., and Cox, L. A. (2018). Integrated omics:
tools, advances, and future approaches. J. Mol. Endocrinol. 62, R21–R45. doi:10.1530/
JME18-0055

Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J.,
et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are
coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273. doi:10.1038/
ng1180

Nakach, F. Z., Idri, A., and Goceri, E. (2024). A comprehensive investigation of
multimodal deep learning fusion strategies for breast cancer classification. Artif. Intell.
Rev. 57, 327. doi:10.1007/s10462-024-10984-z

Nakagawa, H., and Fujita, M. (2018). Whole genome sequencing analysis for
cancer genomics and precision medicine. Cancer Sci. 109, 513–522. doi:10.1111/cas.
13505

Nakagawa, H., Wardell, C. P., Furuta, M., Taniguchi, H., and Fujimoto, A. (2015).
Cancer whole-genome sequencing: present and future.Oncogene 34, 5943–5950. doi:10.
1038/onc.2015.90

Newman, A. M., Steen, C. B., Liu, C. L., Gentles, A. J., Chaudhuri, A. A., Scherer, F.,
et al. (2019). Determining cell type abundance and expression from bulk tissues with
digital cytometry. Nat. Biotechnol. 37, 773–782. doi:10.1038/s41587-019-0114-2

Ng, P. C., and Sift, H. S. (2003). Predicting amino acid changes that affect protein
function. Nucleic Acids Res. 31 (13), 3812–3814. doi:10.1093/nar/gkg509

Nguyen, P. H. D., Ma, S., Phua, C. Z. J., Kaya, N. A., Lai, H. L. H., Lim, C. J., et al.
(2021a). Intratumoural immune heterogeneity as a hallmark of tumour evolution and

progression in hepatocellular carcinoma. Nat. Commun. 12, 227. doi:10.1038/s41467-
020-20171-7

Nguyen, T., Nguyen, G. T. T., Nguyen, T., and Le, D. H. (2022). Graph convolutional
networks for drug response prediction. IEEE/ACM Trans. Comput. Biol. Bioinform 19
(1), 146–154. doi:10.1109/TCBB.2021.3060430

Nguyen, T. M., Kim, N., Kim, D. H., Le, H. L., Piran, M. J., Um, S. J., et al. (2021b).
Deep learning for human disease detection, subtype classification, and treatment
response prediction using epigenomic data. Biomedicines 9 (11), 1733. doi:10.3390/
biomedicines9111733

Ogburn, M., Turner, C., Dahal, P., and Encryption, H. (2013). Homomorphic
encryption. Procedia Comput. Sci. 20, 502–509. doi:10.1016/j.procs.2013.09.310

Omichessan, H., Severi, G., and Perduca, V. (2019). Computational tools to detect
signatures of mutational processes in DNA from tumours: a review and empirical
comparison of performance. PLoS One 14, e0221235. doi:10.1371/journal.pone.0221235

Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, N., Coulson, R.,
Farne, A., et al. (2007). ArrayExpress-a public database of microarray experiments and
gene expression profiles. Nucleic Acids Res. 35 (Database issue), D747–D750. doi:10.
1093/nar/gkl995

Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., and Tekade, R. K. (2021).
Artificial intelligence in drug discovery and development. Drug Discov. Today 26 (1),
80–93. doi:10.1016/j.drudis.2020.10.010

Perera-Bel, J., Hutter, B., Heining, C., Bleckmann, A., Frohlich, M., Fr € ohling, S.,
et al. (2018). From somatic variants € towards precision oncology: evidence-driven
reporting of treatment options in molecular tumor boards. Genome Med. 10, 18. doi:10.
1186/s13073-018-0529-2

Picard, M., Scott-Boyer, M.-P., Bodein, A., Périn, O., and Droit, A. (2021). Integration
strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol.
J. 19, 3735–3746. doi:10.1016/j.csbj.2021.06.030

Pich, O., Muinos, F., Lolkema, M. P., Steeghs, N., ~ Gonzalez-Perez, A., and Lopez-
Bigas, N. (2019). The mutational footprints of cancer therapies. Nat. Genet. 51,
1732–1740. doi:10.1038/s41588-019-0525-5

Pineiro-Yanez, E., Reboiro-Jato, M., G ~ omez-L opez, G., Perales-Paton, J., Troul, e
K., Rodrıguez, J. M., et al. (2018). PanDrugs: a novel method to prioritize anticancer
drug treatments according to individual genomic data. Genome Med. 10, 41. doi:10.
1186/s13073-018-0546-1

PON (2021). Panel of normals (PON). Available online at: https://gatk.broadinstitute.
org/hc/enus/articles/360035890631-Panel-of-Normals-PON.

Pos, O., Radvanszky, J., Styk, J., P € os, Z., Bugly, € o G., Kajsik, M., et al. (2021). Copy
number variation: methods and clinical applications. NATO Adv. Sci. Inst. Ser. E Appl.
Sci. 11, 819. doi:10.3390/app11020819

Poursaeed, R., Mohammadzadeh, M., and Safaei, A. A. (2024). Survival prediction of
glioblastoma patients using machine learning and deep learning: a systematic review.
BMC Cancer 24 (1), 1581. doi:10.1186/s12885-024-13320-4

Prabhakar, C. N. (2015). Epidermal growth factor receptor in non-small cell lung
cancer. Transl. Lung Cancer Res. 4 (2), 110–118. doi:10.3978/j.issn.2218-6751.2015.
01.01

Preuer, K., Lewis, R. P. I., Hochreiter, S., Bender, A., Bulusu, K. C., and Klambauer, G.
(2018). DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.
Bioinformatics 34 (9), 1538–1546. doi:10.1093/bioinformatics/btx806

Rajpurkar, P., Chen, E., Banerjee, O., and Topol, E. J. (2022). AI in health and
medicine. Nat. Med. 28, 31–38. doi:10.1038/s41591-021-01614-0

Raman, L., Dheedene, A., De Smet, M., Van Dorpe, J., and Menten, B. (2019).
WisecondorX: improved copy number detection for routine shallow whole-genome
sequencing, Nucleic Acids Res., 47, 4, 1605–1614. doi:10.1093/nar/gky1263

Reardon, B., Moore, N. D., Moore, N. S., Kofman, E., AlDubayan, S. H., Cheung, A. T.
M., et al. (2021). Integrating molecular profiles into clinical frameworks through the
Molecular Oncology Almanac to prospectively guide precision oncology. Nat. Cancer 2
(10), 1102–1112. doi:10.1038/s43018-021-00243-3

Rehm, H. L., Page, A. J. H., Smith, L., Adams, J. B., Alterovitz, G., Babb, L. J., et al.
(2021). GA4GH: international policies and standards for data sharing across genomic
research and healthcare. Cell Genom 1, 100029. doi:10.1016/j.xgen.2021.100029

Rigby, M. J. J. (2019). Ethical dimensions of using artificial intelligence in health care.
A.J.o. E. 21 (2), 121–124.

Roden, D. M., McLeod, H. L., Relling, M. V., Williams, M. S., Mensah, G. A., Peterson,
J. F., et al. (2019). Pharmacogenomics. Lancet. 394, 521–532. doi:10.1016/S0140-
6736(19)31276-0

Rogers, M. F., Shihab, H. A., Mort, M., Cooper, D. N., Gaunt, T. R., and Campbell, C.
(2018). FATHMM-XF: accurate prediction of pathogenic point mutations via extended
features. Bioinformatics 34 (3), 511–513. doi:10.1093/bioinformatics/btx536

Rohart, F., Gautier, B., Singh, A., and Lê Cao, K. A. (2017). mixOmics: an R package
for ’omics feature selection and multiple data integration. PLoS Comput. Biol. 13 (11),
e1005752. doi:10.1371/journal.pcbi.1005752

Romero-Brufau, S., Wyatt, K. D., Boyum, P., Mickelson, M., Moore, M., and
Cognetta-Rieke, C. (2020). Implementation of artificial intelligence-based clinical

Frontiers in Pharmacology frontiersin.org19

Srivastava 10.3389/fphar.2025.1591696

https://doi.org/10.1038/nature25795
https://doi.org/10.1038/s41588-018-0179-8
https://doi.org/10.18388/abp.2001_3893
https://doi.org/10.1038/s41592-021-01176-6
https://doi.org/10.1038/s41592-021-01176-6
https://doi.org/10.1080/23808993.2019.1599685
https://doi.org/10.1080/23808993.2019.1599685
https://doi.org/10.1007/s11063-025-11732-2
https://doi.org/10.1186/s12859-023-05557-w
https://doi.org/10.1016/j.annonc.2021.02.006
https://doi.org/10.1016/j.annonc.2021.02.006
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1073/pnas.1510493113
https://doi.org/10.1073/pnas.1510493113
https://doi.org/10.1038/s41467-018-05811-3
https://doi.org/10.1016/j.csbj.2021.01.009
https://doi.org/10.1136/jitc-2019-000147
https://doi.org/10.1371/journal.pcbi.1003665
https://doi.org/10.1371/journal.pcbi.1003665
https://doi.org/10.1530/JME18-0055
https://doi.org/10.1530/JME18-0055
https://doi.org/10.1038/ng1180
https://doi.org/10.1038/ng1180
https://doi.org/10.1007/s10462-024-10984-z
https://doi.org/10.1111/cas.13505
https://doi.org/10.1111/cas.13505
https://doi.org/10.1038/onc.2015.90
https://doi.org/10.1038/onc.2015.90
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1093/nar/gkg509
https://doi.org/10.1038/s41467-020-20171-7
https://doi.org/10.1038/s41467-020-20171-7
https://doi.org/10.1109/TCBB.2021.3060430
https://doi.org/10.3390/biomedicines9111733
https://doi.org/10.3390/biomedicines9111733
https://doi.org/10.1016/j.procs.2013.09.310
https://doi.org/10.1371/journal.pone.0221235
https://doi.org/10.1093/nar/gkl995
https://doi.org/10.1093/nar/gkl995
https://doi.org/10.1016/j.drudis.2020.10.010
https://doi.org/10.1186/s13073-018-0529-2
https://doi.org/10.1186/s13073-018-0529-2
https://doi.org/10.1016/j.csbj.2021.06.030
https://doi.org/10.1038/s41588-019-0525-5
https://doi.org/10.1186/s13073-018-0546-1
https://doi.org/10.1186/s13073-018-0546-1
https://gatk.broadinstitute.org/hc/enus/articles/360035890631-Panel-of-Normals-PON
https://gatk.broadinstitute.org/hc/enus/articles/360035890631-Panel-of-Normals-PON
https://doi.org/10.3390/app11020819
https://doi.org/10.1186/s12885-024-13320-4
https://doi.org/10.3978/j.issn.2218-6751.2015.01.01
https://doi.org/10.3978/j.issn.2218-6751.2015.01.01
https://doi.org/10.1093/bioinformatics/btx806
https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1093/nar/gky1263
https://doi.org/10.1038/s43018-021-00243-3
https://doi.org/10.1016/j.xgen.2021.100029
https://doi.org/10.1016/S0140-6736(19)31276-0
https://doi.org/10.1016/S0140-6736(19)31276-0
https://doi.org/10.1093/bioinformatics/btx536
https://doi.org/10.1371/journal.pcbi.1005752
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1591696


decision support to reduce hospital readmissions at a regional hospital. Appl. Clin. Inf.
11 (4), 570–577. doi:10.1055/s-0040-1715827

Rosenbloom, K. R., Sloan, C. A., Malladi, V. S., Dreszer, T. R., Learned, K., Kirkup, V.
M., et al. (2013). ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic
Acids Res. 41 (Database issue), D56–D63. doi:10.1093/nar/gks1172

Rubio-Perez, C., Tamborero, D., Schroeder, M. P., Antolın, A. A., Deu-Pons, J., Perez-
Llamas, C., et al. (2015). In silico prescription of anticancer drugs to cohorts of 28 tumor
types reveals targeting opportunities. Cancer Cell 27, 382–396. doi:10.1016/j.ccell.2015.
02.007

Saha, S., Hota, A., Chattopadhyay, A. K., Nag, A., and Nandi, S. (2024). Amultifaceted
survey on privacy preservation of federated learning: progress, challenges, and
opportunities. Artif. Intell. Rev. 57, 184. doi:10.1007/s10462-024-10766-7

Salehi, S., Kabeer, F., Ceglia, N., Andronescu, M., Williams, M. J., Campbell, K. R.,
et al. (2021). Clonal fitness inferred from time-series modelling of single-cell cancer
genomes. Nature 595, 585–590. doi:10.1038/s41586-021-03648-3

Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., et al.
(2018). Oncogenic signaling pathways in the cancer genome atlas. Cell 173,
321–337.e10. doi:10.1016/j.cell.2018.03.035

Sangkuhl, K., Whirl-Carrillo, M., Whaley, R. M., Woon, M., Lavertu, A., Altman, R.
B., et al. (2020). Pharmacogenomics clinical annotation tool (PharmCAT). Clin.
Pharmacol. Ther. 107, 203–210. doi:10.1002/cpt.1568

Sarker, I. H. (2021). Machine learning: algorithms, real-world applications and
research directions. SN Comput. Sci. 2, 160. doi:10.1007/s42979-021-00592-x

Schutte, J., Reusch, J., Khandanpour, C., and Eisfeld, C. (2019). Structural variants as a
basis for targeted therapies in hematological malignancies. Front. Oncol. 9, 839. doi:10.
3389/fonc.2019.00839

Sha, D., Jin, Z., Budczies, J., Kluck, K., Stenzinger, A., and Sinicrope, F. A. (2020).
Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 10
(12), 1808–1825. doi:10.1158/2159-8290.CD-20-0522

Shakyawar, S. K., Sajja, B. R., Patel, J. C., and Guda, C. (2024). iCluF: an unsupervised
iterative cluster-fusion method for patient stratification using multiomics data.
Bioinform Adv. 4 (1), vbae015. doi:10.1093/bioadv/vbae015

Shigemizu, D., Fujimoto, A., Akiyama, S., Abe, T., Nakano, K., Boroevich, K. A., et al.
(2013). A practical method to detect SNVs and indels from whole genome and exome
sequencing data. Sci. Rep. 3, 2161. doi:10.1038/srep02161

Siravegna, G., Marsoni, S., Siena, S., and Bardelli, A. (2017). Integrating liquid biopsies
into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548. doi:10.1038/
nrclinonc.2017.14

Sorell, T., Rajpoot, N., and Verrill, C. (2021). Ethical issues in computational
pathology. J. Med. Ethics 48, 278–284. doi:10.1136/medethics-2020-107024

Srivastava, R. (2022). Role of transcriptomics in precision oncology. Rep. Radiother.
Oncol. 9 (1), e142195. doi:10.5812/rro-142195

Srivastava, R. (2023a). Applications of artificial intelligence multiomics in precision
oncology. J. Cancer Res. Clin. Oncol. 149, 503–510. doi:10.1007/s00432-022-04161-4

Srivastava, R. (2023b). Role of smartphone devices in precision oncology. J. Cancer
Res. Clin. Oncol. 149 (1), 393–400. doi:10.1007/s00432-022-04413-3

Srivastava, R. (2023c). Multiomics analysis on the clinical treatment for multiple
myeloma (MM). J. Hematol. Mult. Myeloma 6 (1), 1028.

Srivastava, R. (2024a). Applications of artificial intelligence in medicine. Explor Res.
Hypothesis Med. 9 (2), 138–146. doi:10.14218/ERHM.2023.00048

Srivastava, R. (2024b). Artificial intelligence multiomics in precision oncology.
Cambridge Scholars Publishing Newcastle upon Tyne, United Kingdom.

Subramanian, I., Verma, S., Kumar, S., Jere, A., and Anamika, K. (2020). Multi-omics
data integration, interpretation, and its application. Bioinf Biol. Insights 14,
1177932219899051. doi:10.1177/1177932219899051

Sun, H., and Yu, G. (2019). New insights into the pathogenicity of non-synonymous
variants through multi-level analysis. Sci. Rep. 9, 1667. doi:10.1038/s41598-018-38189-9

Sun, Y. V., and Hu, Y.-J. (2016). Integrative analysis of multi-omics data for discovery
and functional studies of complex human diseases. Adv. Genet. 93, 147–190. doi:10.
1016/bs.adgen.2015.11.004

Szymczak, S., Biernacka, J. M., Cordell, H. J., González-Recio, O., König, I. R., Zhang,
H., et al. (2009). Machine learning in genome-wide association studies. Genet.
Epidemiol. 33 (Suppl. 1), S51–S57. doi:10.1002/gepi.20473

Taj, F., and Stein, L. D. (2024). MMDRP: drug response prediction and biomarker
discovery using multi-modal deep learning. Bioinform Adv. 4 (1), vbae010. doi:10.1093/
bioadv/vbae010

Takase, S., Kurokawa, R., Arai, D., Kanemoto Kanto, K., Okino, T., Nakao, Y., et al.
(2017). A quantitative shRNA screen identifies ATP1A1 as a gene that regulates
cytotoxicity by aurilide B. Sci. Rep. 7, 2002. doi:10.1038/s41598-017-02016-4

Tamborero, D., Dienstmann, R., Rachid, M. H., Boekel, J., Lopez-Fernandez, A.,
Jonsson, M., et al. (2022). The Molecular Tumor Board Portal supports clinical
decisions and automated reporting for precision oncology. Nat. Cancer 3, 251–261.
doi:10.1038/s43018-022-00332-x

Tamborero, D., Rubio-Perez, C., Deu-Pons, J., Schroeder, M. P., Vivancos, A., Rovira,
A., et al. (2018). Cancer Genome Interpreter annotates the biological and clinical
relevance of tumor alterations. Genome Med. 10, 25. doi:10.1186/s13073-018-0531-8

Tate, J. G., Bamford, S., Jubb, H. C., Sondka, Z., Beare, D. M., Bindal, N., et al. (2019).
COSMIC: the Catalogue of somatic mutations in cancer. Nucleic Acids Res. 47 (D1),
D941–D947. doi:10.1093/nar/gky1015

Tautenhahn, R., Patti, G. J., Rinehart, D., and Siuzdak, G. (2012). XCMS Online: a
web-based platform to process untargeted metabolomic data. Anal. Chem. 84 (11),
5035–5039. doi:10.1021/ac300698c

Tebani, A., Afonso, C., Marret, S., and Bekri, S. (2016). Omics-based strategies in
precision medicine: toward a paradigm shift in inborn errors of metabolism
investigations. Int. J. Mol. Sci. 17, 1555. doi:10.3390/ijms17091555

Telenti, A., Lippert, C., Chang, P. C., and DePristo, M. (2018). Deep learning of
genomic variation and regulatory network data. Hum. Mol. Genet. 27 (R1), R63–r71.
doi:10.1093/hmg/ddy115

Tomczak, K., Czerwinska, P., andWiznerowicz, M. (2015). Review the cancer genome
atlas (TCGA): an immeasurable source of knowledge. Contemp. oncology/Współczesna
Onkol. 2015: 68–77. doi:10.5114/wo.2014.47136

Tuncbag, N., Gosline, S. J., Kedaigle, A., Soltis, A. R., Gitter, A., and Fraenkel, E.
(2016). Network-based interpretation of diverse high-throughput datasets through the
Omics Integrator software package. PLoS Comput. Biol. 12, e1004879. doi:10.1371/
journal.pcbi.1004879

Tuncbag, N., McCallum, S., Huang, S. S., and Fraenkel, E. (2012). SteinerNet: a web
server for integrating ’omic’ data to discover hidden components of response pathways.
Nucleic Acids Res. 40 (Web Server issue), W505–W509. doi:10.1093/nar/gks445

Turajlic, S., Sottoriva, A., Graham, T., and Swanton, C. (2019). Resolving genetic
heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416. doi:10.1038/s41576-019-
0114-6

Vahabi, N., and Michailidis, G. (2022). Unsupervised multi-omics data integration
methods: a comprehensive review. Front. Genet. 13, 854752. doi:10.3389/fgene.2022.
854752

Valle-Inclan, J. E., Stangl, C., de Jong, A. C., van Dessel, L. F., van Roosmalen, M. J.,
Helmijr, J. C. A., et al. (2021). Optimizing nanopore sequencing-based detection of
structural variants enables individualized circulating tumor DNA-based disease
monitoring in cancer patients. Genome Med. 13, 86. doi:10.1186/s13073-021-00899-7

van Belzen, IAEM, Schonhuth, A., Kemmeren, P., and Hehir- € Kwa, J. Y. (2021).
Structural variant detection in cancer genomes: computational challenges and
perspectives for precision oncology. NPJ Precis. Oncol. 5, 15. doi:10.1038/s41698-
021-00155-6

van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A. J., et al. (2018).
Recovering gene interactions from single-cell data using data diffusion. Cell 174,
716–729.e27. doi:10.1016/j.cell.2018.05.061

Waddell, N., Pajic, M., Patch, A.-M., Chang, D. K., Kassahn, K. S., Bailey, P., et al.
(2015). Whole genomes redefine the mutational landscape of pancreatic cancer. Nature
518, 495–501. doi:10.1038/nature14169

Wagner, A. H., Walsh, B., Mayfield, G., Tamborero, D., Sonkin, D., Krysiak, K., et al.
(2020). A harmonized metaknowledgebase of clinical interpretations of somatic
genomic variants in cancer. Nat. Genet. 52, 448–457. doi:10.1038/s41588-020-0603-8

Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., et al. (2014).
Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods
11 (3), 333–337. doi:10.1038/nmeth.2810

Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of
genetic variants from highthroughput sequencing data. Nucleic Acids Res. 38, e164.
doi:10.1093/nar/gkq603

Wang, Y., Yang, Y., Chen, S., and Wang, J. (2021). DeepDRK: a deep learning
framework for drug repurposing through kernel-based multi-omics integration. Brief.
Bioinform 22, bbab048. doi:10.1093/bib/bbab048

Warner, J. L., Prasad, I., Bennett, M., Arniella, M., BeeghlyFadiel, A., Mandl, K. D.,
et al. (2018). SMART Cancer Navigator: a framework for implementing ASCO
workshop recommendations to enable precision cancer medicine. JCO Precis. Oncol.
2018, 1–14. doi:10.1200/PO.17.00292

Wei, L., Niraula, D., Gates, E. D. H., Fu, J., Luo, Y., Nyflot, M. J., et al. (2023). Artificial
intelligence (AI) and machine learning (ML) in precision oncology: a review on
enhancing discoverability through multiomics integration. Br. J. Radiol. 96 (1150),
20230211. doi:10.1259/bjr.20230211

Wei, Z., Han, D., Zhang, C., Wang, S., Liu, J., Chao, F., et al. (2022). Deep learning-
based multi-omics integration robustly predicts relapse in prostate cancer. Front. Oncol.
12, 893424. doi:10.3389/fonc.2022.893424

Wendland, P., Birkenbihl, C., Gomez-Freixa, M., Sood, M., Kschischo, M., and
Fröhlich, H. (2022). Generation of realistic synthetic data using multimodal neural
ordinary differential equations. NPJ Digit. Med. 5 (1), 122. doi:10.1038/s41746-022-
00666-x

Whirl-Carrillo, M., Huddart, R., Gong, L., Sangkuhl, K., Thorn, C. F., Whaley, R., et al.
(2021). An evidence-based framework for evaluating pharmacogenomics knowledge for
personalized medicine. Clin. Pharmacol. Ther. 110, 563–572. doi:10.1002/cpt.2350

Frontiers in Pharmacology frontiersin.org20

Srivastava 10.3389/fphar.2025.1591696

https://doi.org/10.1055/s-0040-1715827
https://doi.org/10.1093/nar/gks1172
https://doi.org/10.1016/j.ccell.2015.02.007
https://doi.org/10.1016/j.ccell.2015.02.007
https://doi.org/10.1007/s10462-024-10766-7
https://doi.org/10.1038/s41586-021-03648-3
https://doi.org/10.1016/j.cell.2018.03.035
https://doi.org/10.1002/cpt.1568
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.3389/fonc.2019.00839
https://doi.org/10.3389/fonc.2019.00839
https://doi.org/10.1158/2159-8290.CD-20-0522
https://doi.org/10.1093/bioadv/vbae015
https://doi.org/10.1038/srep02161
https://doi.org/10.1038/nrclinonc.2017.14
https://doi.org/10.1038/nrclinonc.2017.14
https://doi.org/10.1136/medethics-2020-107024
https://doi.org/10.5812/rro-142195
https://doi.org/10.1007/s00432-022-04161-4
https://doi.org/10.1007/s00432-022-04413-3
https://doi.org/10.14218/ERHM.2023.00048
https://doi.org/10.1177/1177932219899051
https://doi.org/10.1038/s41598-018-38189-9
https://doi.org/10.1016/bs.adgen.2015.11.004
https://doi.org/10.1016/bs.adgen.2015.11.004
https://doi.org/10.1002/gepi.20473
https://doi.org/10.1093/bioadv/vbae010
https://doi.org/10.1093/bioadv/vbae010
https://doi.org/10.1038/s41598-017-02016-4
https://doi.org/10.1038/s43018-022-00332-x
https://doi.org/10.1186/s13073-018-0531-8
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1021/ac300698c
https://doi.org/10.3390/ijms17091555
https://doi.org/10.1093/hmg/ddy115
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1371/journal.pcbi.1004879
https://doi.org/10.1371/journal.pcbi.1004879
https://doi.org/10.1093/nar/gks445
https://doi.org/10.1038/s41576-019-0114-6
https://doi.org/10.1038/s41576-019-0114-6
https://doi.org/10.3389/fgene.2022.854752
https://doi.org/10.3389/fgene.2022.854752
https://doi.org/10.1186/s13073-021-00899-7
https://doi.org/10.1038/s41698-021-00155-6
https://doi.org/10.1038/s41698-021-00155-6
https://doi.org/10.1016/j.cell.2018.05.061
https://doi.org/10.1038/nature14169
https://doi.org/10.1038/s41588-020-0603-8
https://doi.org/10.1038/nmeth.2810
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1093/bib/bbab048
https://doi.org/10.1200/PO.17.00292
https://doi.org/10.1259/bjr.20230211
https://doi.org/10.3389/fonc.2022.893424
https://doi.org/10.1038/s41746-022-00666-x
https://doi.org/10.1038/s41746-022-00666-x
https://doi.org/10.1002/cpt.2350
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1591696


Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., et al.
(2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids
Res. 46, D1074–D1082. doi:10.1093/nar/gkx1037

Xiao, Y., Wang, X., Zhang, H., Ulintz, P. J., Li, H., and Guan, Y. (2020). FastClone is a
probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples.
Nat. Commun. 11, 4469. doi:10.1038/s41467-020-18169-2

Xie, X. P., Laks, D. R., Sun, D., Ganbold, M., Wang, Z., Pedraza, A. M., et al. (2022).
Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and
recurrence following chemotherapy. Dev. Cell 57, 32–46.e8. doi:10.1016/j.devcel.2021.
12.007

Xu, F., Sepúlveda, M. J., Jiang, Z., Wang, H., Li, J., Liu, Z., et al. (2020). Effect of
an artificial intelligence clinical decision support system on treatment decisions for
complex breast cancer. JCO Clin. Cancer Inf. 4, 824–838. doi:10.1200/CCI.20.
00018

Yamamoto, T. N., Kishton, R. J., and Restifo, N. P. (2019). Developing neoantigen-
targeted T cell–based treatments for solid tumors. Nat. Med. 25, 1488–1499. doi:10.
1038/s41591-019-0596-y

Yang, S., Wang, Z., Wang, C., Li, C., and Wang, B. (2024). Comparative evaluation of
machine learning models for subtyping triple-negative breast cancer: a deep learning-
based multi-omics data integration approach. J. Cancer 15 (12), 3943–3957. doi:10.
7150/jca.93215

Yao, H., Liang, Q., Qian, X., Wang, J., Sham, P. C., and Li, M. J. (2020). Methods and
resources to access mutation-dependent effects on cancer drug treatment. Brief.
Bioinform 21, 1886–1903. doi:10.1093/bib/bbz109

Yin, H., and Kassner, M. (2016). “In vitro high-throughput RNAi screening to accelerate
the process of target identification and drug development,” in High-throughput RNAi
screening: methods and protocols (Berlin/Heidelberg, Germany: Springer), 137–149.

Yu, Y., Wang, Y., Xia, Z., Zhang, X., Jin, K., Yang, J., et al. (2019). PreMedKB: an integrated
precision medicine knowledgebase for interpreting relationships between diseases, genes,
variants and drugs. Nucleic Acids Res. 47, D1090–D1101. doi:10.1093/nar/gky1042

Zarrei, M., MacDonald, J. R., Merico, D., and Scherer, S. W. (2015). A copy number
variation map of the human genome.Nat. Rev. Genet. 16, 172–183. doi:10.1038/nrg3871

Zhang, Q., Major, M. B., Takanashi, S., Camp, N. D., Nishiya, N., Peters, E. C., et al.
(2007). Small-molecule synergist of theWnt/beta-catenin signaling pathway. Proc. Natl.
Acad. Sci. U. S. A. 104, 7444–7448. doi:10.1073/pnas.0702136104

Zheng, J., Yi, H. C., and You, Z. H. (2025). Equivariant 3D-conditional diffusion
model for de novo drug design. IEEE J. Biomed. Health Inf. 29 (3), 1805–1816. doi:10.
1109/JBHI.2024.3491318

Zhou, F. T., Piccardi, M., Abolhasan, M., Franklin, D., and Lipman, J. (2024). Secure
multi-party computation for machine learning: a survey. IEEE Access 12, 53881–53899.
doi:10.1109/ACCESS.2024.3388992

Frontiers in Pharmacology frontiersin.org21

Srivastava 10.3389/fphar.2025.1591696

https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1038/s41467-020-18169-2
https://doi.org/10.1016/j.devcel.2021.12.007
https://doi.org/10.1016/j.devcel.2021.12.007
https://doi.org/10.1200/CCI.20.00018
https://doi.org/10.1200/CCI.20.00018
https://doi.org/10.1038/s41591-019-0596-y
https://doi.org/10.1038/s41591-019-0596-y
https://doi.org/10.7150/jca.93215
https://doi.org/10.7150/jca.93215
https://doi.org/10.1093/bib/bbz109
https://doi.org/10.1093/nar/gky1042
https://doi.org/10.1038/nrg3871
https://doi.org/10.1073/pnas.0702136104
https://doi.org/10.1109/JBHI.2024.3491318
https://doi.org/10.1109/JBHI.2024.3491318
https://doi.org/10.1109/ACCESS.2024.3388992
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1591696

	Advancing precision oncology with AI-powered genomic analysis
	1 Introduction
	2 Bioinformatics approaches in genomics
	3 Integrative multiomics strategies for drug selection
	4 Genome profiling for tumor clonality
	5 Incorporating drug prioritisation tools into the clinical practice
	6 Challenges
	7 Future prospects
	8 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


