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Trimethylamine N-oxide (TMAQ), a metabolite derived from gut microbiota, has
been implicated in the pathogenesis of various chronic diseases, including
cardiovascular, digestive, neurological, and renal disorders. This review
explores the complex mechanisms by which TMAO contributes to disease
progression, including its role in inflammation, oxidative stress, and metabolic
disorders. The study focused on the potential of traditional Chinese medicine
(TCM) to regulate TMAO levels and mitigate its adverse effects. TCM
interventions, through modulation of gut microbiota and inhibition of key
enzymes like flavin-containing monooxygenase 3 (FMO3), offer promising
therapeutic avenues. Despite the positive outcomes observed in preliminary
studies, further research is needed to fully elucidate the mechanisms by which
TCM interacts with TMAO and to establish its efficacy in clinical settings.
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1 Introduction

Trimethylamine N-oxide (TMAO) is a bioactive molecule derived from metabolites of
the gut microbiota, which is converted from trimethylamine (TMA) by the flavin containing
monooxygenase 3 (FMO3) in the host liver. Studies have indicated a positive correlation
between TMAO levels and various chronic non-communicable diseases, including insulin
resistance, atherosclerotic plaque formation, diabetes, cancer, heart failure, hypertension,
chronic kidney disease, liver disease, neurodegeneration, and Alzheimer’s disease
(Coutinho-Wolino et al.,, 2021). Dietary choline is associated with increased plasma
TMAO concentrations, thereby raising the likelihood of adverse cardiovascular events,
metabolic disorders, neurological diseases, and renal diseases (Agus et al., 2021). Traditional
Chinese Medicine (TCM) is a holistic medical system that utilizes natural plant or animal-
based substances as methods for treating diseases and has a history of over five thousand
years. With increased international exchange, TCM has also been adopted in many other

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fphar.2025.1592524/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1592524/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1592524/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1592524/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1592524&domain=pdf&date_stamp=2025-07-24
mailto:wangmq@njucm.edu.cn
mailto:wangmq@njucm.edu.cn
mailto:shenshuang@njucm.edu.cn
mailto:shenshuang@njucm.edu.cn
mailto:zhuboran@njucm.edu.cn
mailto:zhuboran@njucm.edu.cn
https://doi.org/10.3389/fphar.2025.1592524
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1592524

Qin et al.

10.3389/fphar.2025.1592524

Colorectal

GRAPHICAL ABSTRACT
Overview of Gut Microbiota Metabolite TMAO.

countries, such as the United States, Canada, Finland, Australia, the
United Kingdom, and others, and encompasses a variety of
TCM herbal
moxibustion, dietary therapy
(medicinal cuisine), tuina (therapeutic massage), and other

therapeutic  practices.  Specifically, includes

preparations,  acupuncture,
traditional approaches. In this review, “TCM” primarily refers to
these modalities, with particular emphasis on herbal interventions
and dietary therapy, while also acknowledging the important role of
practices such as acupuncture in the prevention and treatment of
diseases related to TMAO (Wu et al., 2012).

1.1 Sources of TMAO

In the human body, TMA is a significant precursor of TMAO.
TMA is primarily formed in the gut through the enzymatic metabolism
of certain dietary compounds present in foods such as peanuts, dairy
products, liver, egg yolks, and other full-fat dietary items, which all
characterized by high levels of choline and carnitine, being both
important precursors of TMA and TMAO (Wu K. et al, 2020).
Choline, a trimethylamine-containing compound, as part of the
phosphatidylcholine head group, can be found in various foods.
Phosphatidylcholine, also known as lecithin, is a fundamental
component of membranes and the neurotransmitter acetylcholine.
Phospholipase D can catalyze the conversion of lecithin to choline,
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which is a reversible transformation (Fennema et al., 2016). Human
milk and soy-derived infant formula contain substantial amounts of free
choline, while beef liver, cauliflower, and peanuts (Zeisel et al., 2003)
contain  several  choline compounds  (phosphatidylcholine,
phosphocholine, sphingomyelin, efc.). Studies have shown that the
key enzyme responsible for producing TMA is choline TMA-lyase
(CutC), which is a glycyl radical enzyme requiring the activating protein
CutD to assist its function. These two components work together to
catalyze the cleavage of choline, generating TMA and acetaldehyde
(Yoo et al,, 2021). The process of TMA production through the choline
TMA-lyase complex, namely, CutC and CutD (often collectively
referred to as CUTC), represents the primary pathway by which gut
microbiota convert dietary choline into TMA (Craciun and
Balskus, 2012).

L-carnitine is present in red meat and dairy products (Feller and
Rudman, 1988). Serratia bacteria and Acinetobacter calcoaceticus that
found in the human gut can cleave the 3-hydroxybutyryloxy group of
L-carnitine to directly produce TMA (Meadows and Wargo, 2015).
Certain gut microbial communities possess two enzyme systems,
namely, the CNTA/B systems, which are composed of the Rieske-
type oxygenase CntA and the electron transfer reductase CntB. These
two subunits collaborate to degrade L-carnitine in vitro, thereby
generating TMA (Zhu et al, 2014). Moreover, within the body,
carnitine can  be y-butyrobetaine  and

action of L-carnitine

metabolized into

crotonobetaine through the enzymatic
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dehydrogenase (Meadows and Wargo, 2015) and y-butyrobetaine CoA
transferase (Koeth et al., 2014), while choline can be oxidized into
betaine by choline dehydrogenase and betaine aldehyde dehydrogenase.
Betaine itself is a substance abundant in wheat bran, wheat germ, and
spinach (Zeisel et al, 2003). These compounds can also serve as
precursors for the formation of TMA and TMAO (Wang et al,
2019). Betaine can be reduced and cleaved into TMA and acetate in
a coupled redox process (Stickland reaction) by betaine reductase
(Naumann et al., 1983). In addition to these common sources, TMA
can also be derived from dietary ergothioneine found in foods such as
legumes, mushrooms, and liver (Cheah and Halliwell, 2012).
Ergothionase catalyzes the degradation of ergothioneine to produce
TMA and the by-product thiosulfonate (Muramatsu et al., 2013). Once
the above precursors are converted into TMA through complex actions
by gut microbiota and enzymes, a small portion of TMA can be directly
metabolized into TMAO and dimethylamine (DMA) by bacteria in the
gut. The remainder can be transported to the liver via the portal vein
circulation, and in there it would be oxidized into TMAO by the host
liver flavin monooxygenases (FMO1 and FMO3) (Lang et al., 1998;
Descamps et al,, 2019). Finally, TMAO and TMA can also be directly
acquired from fish and other seafood (Tang and Hazen, 2017).
Compared to freshwater fish, the concentration of TMA in marine
fish (Bain et al,, 2005) (such as cod, halibut, herring, and skate) is higher.

1.2 Metabolism of TMAO

After being produced in the body, the majority of TMA is absorbed
via passive diffusion across the intestinal cell membrane. Subsequently,
almost 95% of TMA is oxidized to TMAOQ in the liver. Before excretion,
TMAO—and any unmetabolized TMA—enters the plasma and is
transported to body tissues (such as the lungs, liver, kidneys,
muscles, and heart) where it accumulates as an osmolyte compound.
Relatively, TMA and TMAO are most likely to accumulate in the lungs
and kidneys, followed by the liver, then muscles, with the heart being the
least likely organ for accumulation (Smith et al., 1994). Eventually, both
TMA and TMAO are mixed with urine in the kidneys via the
circulatory system and excreted from the body. Organic cation
transporter 2 (OCT?2), situated on the basolateral membrane of renal
tubular cells, serves as a crucial uptake transporter for TMAO, with over
90% of TMAO being excreted in the urine after renal metabolism
(Bennett et al.,, 2013; Canyelles et al., 2018). Approximately 4% of the
remaining TMAO is excreted via faeces, and less than 1% is expelled
through respiration. Research indicates that most orally ingested
TMAO can be absorbed by extrahepatic tissues without microbial or
hepatic processing. Under the action of TMAO reductase, some TMAO
can be reduced back to TMA in the intestine. Additionally, certain
bacteria have the ability to convert TMA and TMAO into DMA and
formaldehyde through trimethylamine dehydrogenase (TMADH) and
TMAO demethylase.

2 Treatment approaches related
to TMAO

The above content suggests that the majority of TMA is
absorbed into the hepatic portal venous circulation via passive
diffusion across the intestinal cell membrane and subsequently
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converted to TMAO by hepatic FMO3, and TMAO elimination
can be achieved by targeting specific pathways, including inhibition
of TMA precursor production, suppression of TMA production, and
blocking the conversion of TMA to TMAO.

2.1 Inhibition of TMA and TMAO production

By supplementing with broad-spectrum antibiotics (e.g.,
ciprofloxacin and metronidazole) (Tang et al., 2013), it is possible to
inhibit microbial groups that can convert choline, betaine, and
L-carnitine into TMA (Wang et al, 2011). Although antibiotics
initially suppress TMAO levels, the long-term persistence of this
effect remains unknown. Unlike this mechanism, Meldonium is an
anti-ischaemic and anti-atherosclerotic drug that can competitively
inhibit not only butyrobetaine hydroxylase but also the reabsorption
of L-carnitine in the kidneys via the carnitine/organic cation transporter
protein (OCTN2). Moreover, it also reduces TMAO concentration in
human plasma by increasing urinary excretion (Dambrova et al., 2013).
In terms of the microbial metabolic regulation, a structural analogue of
choline, 3,3-dimethyl-1-butanol (DMB), does not impede choline
uptake into cells. However, it can restrain the formation of TMA by
microorganisms through inhibiting the activity of microbial TMA
lyases, such as CutC (Yang Y. et al, 2022), and reducing the
formation of TMA in various human microbiomes. Irreversible
covalent inhibitors targeting CutC lyase also exert analogous effects.
Previous studies have demonstrated that fluoromethylcholine (FMC), a
non-lethal, microbe-friendly inhibitor of CutC lyase, significantly
reduces plasma TMAO levels by irreversibly modifying the
enzymatic pair CutC/D within gut microbiota harboring the
corresponding gene cluster (Benson et al, 2023). The research by
Nilaksh Gupta and colleagues found that iodomethylcholine (IMC)
can inhibit the production of microbial TMA in hosts and reduce
plasma TMAO levels, demonstrating over 10,000-fold greater potency
(sub-nanomolar IC50) compared to previously reported microbial
choline TMA lyase inhibitors (Gupta et al., 2020). In addition, the
reversible competitive inhibitor betaine aldehyde can lower plasma
TMAO levels by specifically targeting the gut microbial enzyme CutC
(Orman et al, 2019). DMB treatment significantly lowers plasma
TMAO levels and prevents cardiac dysfunction (Wang et al., 2015),
without affecting body weight and dyslipidemia (Chen K. et al,, 2017). It
is worth noting that in addition to the strategies of directly intervening
in metabolic pathways mentioned above, Enalapril, an angiotensin-
converting enzyme inhibitor (ACE-I), represents a new method of
reducing plasma TMAO levels, although the underlying mechanism has
not been discovered (Konop et al., 2018). Additionally, recent studies
have confirmed that inhibiting host enzyme FMO3 has a positive
impact on reducing circulating TMAO levels and diet-enhanced
atherosclerosis. However, adverse side effects may be brought by
FMO3,
trimethylaminuria (fish odour syndrome) (Wang et al., 2015).

inhibiting including  liver  inflammation  and

2.2 Microbiota-based treatments to
reduce TMAO

TMAO represents a critical microbial metabolite derived from
the gut microbiota’s metabolism of dietary nutrients. Consequently,
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reducing TMAO levels via microbiota-targeted approaches has
emerged as a significant research focus for treating associated
diseases. Wang et al. demonstrated that berberine (BBR) reduces
gut microbial TMA biosynthesis, ultimately lowering plasma TMAO
levels, by decreasing the abundance of CutC/D-expressing bacterial
group,
Lachnoclostridium, and

taxa, including Lachnospira,
group, Clostridia,

Ruminococcus (Wang et al, 2024). In contrast, puerarin (PU)

Lachnospiraceae
Lachnospiraceae

acts by targeting specific TMA-producing species. It specifically
inhibits the membrane function of Prevotella copri, thereby
diminishing its capacity to generate TMA and subsequently
reducing TMAO levels (Authors, 2024). Furthermore, remodeling
the gut microbiota structure can reduce the colonization and
metabolic activity of bacteria that produce TMA precursors,
leading to decreased TMAO concentrations. Recent research
revealed that Akkermansia muciniphila, a mucin-degrading
bacterium with probiotic properties, secretes the antimicrobial
peptide Amuc. This peptide inhibits the growth of TMA-
producing bacteria such as Anaerococcus hydrogenalis, resulting
in reduced TMAO levels (Li et al., 2024). The bioactive xanthone
mangiferin lowers plasma TMAO by reshaping gut microbial
composition; it promotes the growth of beneficial taxa including
Akkermansia, Parabacteroides, and Bifidobacteriaceae, while
concurrently reducing the relative abundance of the pathobiont
genus Helicobacter (He Z. et al, 2023). Additionally,
Lactiplantibacillus plantarum ZDY04 achieves therapeutic effects
by modulating gut microbiota structure, significantly decreasing
serum TMAOQO content and cecal TMA levels (Qiu et al., 2018).
Collectively, these findings indicate that microbiota-targeted
therapy offers a promising therapeutic paradigm for the precise
intervention of TMAO-related diseases.

2.3 Negative effects

TMAO is a stable, non-volatile and odourless oxidised product
(Wang et al., 2011), whereas TMA is a volatile gas with a fishy odour.
Mutations or inhibitions of human FMO3 that prevent TMAO
production can lead to the accumulation of TMA, which is
excreted in excess in urine, sweat, and breath, smelling like rotten
fish (Zeisel and Warrier, 2017). Thus, inhibiting the conversion of
TMA to TMAO by reducing FMO3 expression could result in fish
odour syndrome. Moreover, while antibiotic treatment can suppress
plasma TMAO levels, such as with metronidazole and ciprofloxacin,
continued use of antibiotics to lower TMAO concentrations can lead
to resistance in bacterial strains. Moreover, antibiotics can kill
beneficial bacteria as well as harmful ones, leading to gut dysbiosis,
and after stopping antibiotics, TMAO levels rise again. Long-term use
of Meldonium may cause side effects such as hypoxia, dizziness, and
reduced blood supply (Benedetto et al., 2008). Taking ACE-Is may
impair kidney function, potentially resulting in renal failure and
electrolyte imbalance, and enalapril treatment may cause increased
water intake (Konop et al., 2018). Additionally, the accumulation of
TMA and its unpleasant odour in individuals with FMO3 gene
defection who suffer from fish odour syndrome diminishes the
potential of FMO3 as an inhibitory therapeutic target. Therefore,
this paper will analyze the advantages of Traditional Chinese
Medicine in treating diseases related to TMAO.
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3 The role of TMAO in various diseases
and the therapeutic effects of
traditional Chinese medicine

Multiple studies have shown that TMAO is involved in the
occurrence and development of various chronic diseases, including
cardiovascular, digestive, neurological, kidney diseases, and
metabolic disorders. Modern medical drugs have been widely
used for treatment, but there are various side effects. At the same
time, TCM has been proven to have significant potential and
remarkable effects in improving and treating chronic diseases.
Based on its multi-component and multi-target characteristics,
TCM offers a unique therapeutic approach for regulating TMAO
levels and mitigating the progression of related diseases. In this
review, herbal medicine is identified as one of the primary modalities
of TCM for treating TMAO-related conditions, demonstrating
strong potential in modulating the gut microbiota, inhibiting key
enzymes such as FMO3, and reducing systemic inflammation and
oxidative stress. For example, berberine, baicalin, and curcumin can
lower serum TMAO by altering gut microbial composition or
intervening in metabolic pathways (Liu et al., 2020; Wang et al,,
2024). Dietary and nutritional interventions can influence TMAO
production by promoting a healthier gut microbiota. Studies have
shown that dietary fiber, a nutrient digested and absorbed in the
colon, can significantly lower TMAO levels in human peripheral
blood (Xie et al., 2025). Other modalities, such as acupuncture and
moxibustion, are believed to improve organ function and overall
regulation by modulating neuroimmune pathways and reducing
inflammatory responses, although their specific impact on TMAO
requires further investigation (Sun et al., 2024). The combination
and individualized use of these TCM approaches provide both
theoretical and clinical foundations for the comprehensive
prevention and treatment of TMAO-related chronic diseases. The
subsequent sections of this review will further explore the
therapeutic potential and mechanisms of TCM in addressing
TMAO-related conditions.

3.1 Digestive system and metabolic diseases

Numerous studies indicate that TMAOQ is closely associated with
digestive system diseases such as colorectal cancer (CRC) and non-
alcoholic fatty liver disease (NAFLD). TMAO activates its
R-like
endoplasmic reticulum kinase (PERK), which further activates

intracellular ~ potential  receptors, protein  kinase
NLRP3 and NF-kB that mediate pro-inflammatory responses.
TMAO also induces reactive oxygen species through oxidative
stress, altering the invasion and migration of tumour cells,
thereby affecting CRC progression (Duizer and de Zoete, 2023).
Moreover, TMAO can directly enhance the onset of NAFLD
through oxidative stress or, due to disorders in hepatic lipid
metabolism and inflammation, affect bile acid production, alter
liver TG levels, influence cholesterol transport and glucose and
energy balance, thus exacerbating hepatic steatosis. Metabolic
disorders are an increasingly severe global health issue, closely
linked to changes in the intestinal microbiome. TMAO is an
important regulator of lipid metabolism and is closely related to

the pathogenesis of metabolic diseases such as hypercholesterolemia
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and diabetes (Agus et al., 2021). TMAO inhibits reverse cholesterol
transport (RCT), reduces hepatic bile acid transporters, and alters
bile acid synthesis, leading to impaired cholesterol elimination and
hypercholesterolemia, thereby increasing cardiovascular disease risk
(Koeth et al,, 2013). Furthermore, TMAO promotes diabetes by
elevating fasting insulin, increasing insulin resistance (HOMA-IR),
and inducing adipose tissue inflammation, contributing to glucose
metabolism dysfunction and heightened cardiovascular event risks
in diabetic patients (Subramaniam and Fletcher, 2018).

3.1.1 Colorectal cancer

Beginning from abnormal crypts, they evolve into precancerous
lesions (polyps), eventually progressing to colorectal cancer over an
estimated 10-15 years. Currently, most colorectal cancers are
supposed to originate from stem cells or stem cell-like cells
(Medema, 2013; Nassar and Blanpain, 2016). These cancer stem
cells are the result of accumulating genetic and epigenetic changes
that inactivate tumor suppressor genes and activate oncogenes.
Located at the base of colonic crypts, these cancer stem cells are
crucial for tumor initiation and maintenance (Medema, 2013;
Nassar and Blanpain, 2016). Studies have found that TMAO may
share numerous gene pathways, including immune system, cell
cycle, and Wnt signaling pathways, with CRC, indicating a clear
link between TMAO concentration and CRC (Xu et al., 2015),
however, its specific mechanism requires further investigation.
suggests TMAO influences CRC through
inflammation induction, oxidative stress, and DNA damage. One

Existing research

way TMAO promotes colorectal cancer is by inducing
inflammation. In a long-term choline-fed mouse experiment,
TMAO administration leds to NF-kB-mediated pro-inflammatory
responses (Seldin et al., 2016). Enhanced TMAO levels can promote
the initiation of the NF-kB pathway and improve the expression of pro-
inflammatory genes, including chemokines, adhesion molecules, and
inflammatory cytokines. The NLRP3 inflammasome, closely related to
CRC, is activated by TMAO-induced endothelial inflammation
mediated by mitochondrial reactive oxygen species (ROS) (Chen M.
L. et al, 2017). Another study showed that TMAO promotes IBD
progression by inhibiting ATG16L1-induced autophagy in colonic
epithelial cells, thereby activating the NLRP3 inflammasome (Yue
et al, 2017). Moreover, a potential receptor for TMAO may be
PERK, which was identified in hepatocytes (Chen S. et al, 2019).
Activation of PERK may subsequently lead to the activation of
NLRP3 and NF-kB (Chen S. et al,, 2019). Specifically, in CRC cells,
TMAO has been proved to promote proliferation and potential
angiogenesis by upregulating vascular endothelial growth factor A
(Yang S. et al, 2022). Therefore, TMAO affects CRC by activating
PERK, subsequently activating NLRP3 and NF-kB (Figure 1). In
systemic circulation, increased TMAO levels are associated with
oxidative stress and induce the production of superoxide, a type of
ROS (Li T. et al, 2017). Oxidative stress can render tumor cells
insensitive to anti-proliferative signals, apoptosis, and anchorage-
independent growth, which alters tumor cell invasion and migration
through epigenetic and metabolic mechanisms, further contributing to
colorectal cancer development and progression (Zinczuk et al., 2020).
Consequently, TMAO also participates in the formation of NOCs,
leading to DNA damage and epigenetic changes, indicating a potential
role of DNA damage in TMAOQO’s carcinogenic effects (Oellgaard
et al., 2017).
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Regarding TCM treatment, there are currently no definitive

research conclusions about specific TCM components or
compounds treating CRC by affecting TMAO. However, as
mentioned above, TMAO influences CRC development through
the induction of inflammation, oxidative stress, and DNA damage,
with NLRP3 inflammasomes being noteworthy in the context of
inflammation induction. Clinical studies have demonstrated that
curcumin inhibits NLRP3 inflammasome activation via NF-kB-
induced P2X7R signalling in macrophages (Kong et al, 2016),
and apigenin significantly reduces the mRNA and protein
expression of TMAO-induced NLRP3 (Yamagata et al., 2019),
which suggests that TCM could potentially treat CRC by
NLRP3 inflammasome,

impacting  the providing a

potential pathway.

3.1.2 Non-alcoholic fatty liver disease

A key characteristic of NAFLD is hepatic steatosis, mainly
driven by obesity, insulin resistance (IR), and adipose tissue (AT)
dysfunction. Unhealthy lifestyles and diets high in sugar and fat
contribute to obesity and increased liver fat, directly leading to
steatosis (Boden, 2006; Powell et al., 2021). IR is characterized by a
poor response to insulin whereby glucose uptake is impaired
regardless of insulin levels (Boucher et al.,, 2014). Dysfunctional
AT leads to low adiponectin and high leptin levels, causing hepatic
insulin resistance and increased lipolysis, further accelarating the
development and progression of NAFLD. Studies show that NAFLD
patients have higher serum TMAO levels, which correlate positively
with steatosis severity (Chen Y. M. et al., 2016; Le6n-Mimila et al.,
2021). TMAO is believed to promote NAFLD through four
pathways: enhancing oxidative stress (Li X. 2021),
impairing glucose tolerance in the liver (Wong et al., 2016; Tang

et al,

and Hazen, 2017), increasing the expression of proteins related to
the unfolded protein response (GRP78, XBP1, Derlin-1) and
triggering hepatic lipid metabolism disorders and inflammation
(Shi C. et al.,, 2022), and disrupting bile acid cycling. Specifically,
TMAO blocks bile acid-activated farnesoid X receptor (FXR)
signaling and reduces key bile acid synthesis enzymes (Cyp7al,
Cyp27al), limiting bile acid production and increasing fatty liver
risk (Koeth et al., 2013; Tan et al.,, 2019) (Figure 2).

A pivotal aspect of TMAO’s influence on the NAFLD
development is bile acid circulation, which provides a new
perspective on TCM. Clinical studies have shown that berberine
(BBR), a natural plant alkaloid and major pharmacological
component in the Chinese herb Coptis chinensis Franch,
significantly increases secondary or total bile acid content and
activates intestinal FXR signalling by accumulating taurocholic
acid (TCA) (Tian et al, 2019). Quercetin significantly lowers
caecal total bile acid levels (Nie et al., 2019), and Rubus idaeus L
can promote the expression of bile acid synthesis genes
2016).
medicine to regulate bile acid metabolism to treat NAFLD holds

(Matziouridou et al., Therefore, applying Chinese

substantial promise for the future.

3.1.3 Hypercholesterolemia

Hypercholesterolemia is a systemic metabolic disease

characterized by abnormal lipid metabolism due to genetic
factors, high-fat intake, lack of exercise, efc. Relevant studies
that TMAO levels are

indicate abnormally high in
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hypercholesterolemia patients, suggesting a close link between
TMAO and the pathogenesis of hypercholesterolemia (Dehghan
et al, 2020). Previous research shows that TMAQ’s impact on
hypercholesterolemia is strongly associated with changes in BA
metabolism (Duval et al., 2006; Khan et al., 2014; Chen M. L.
et al.,, 2016; Ding et al., 2018). TMAO reduces hepatic bile acid
transporter proteins and BA synthesis, effectively decreasing the bile
CHO
synthesis, thereby inducing
hypercholesterolemia. Studies have shown that TMAO impacts

acid pool and promoting a primary pathway for
elimination—altering bile acid

CHO elimination through various mechanisms, leading to
hypercholesterolemia. TMAO promotes
formation through scavenger receptors in macrophages and

Initially, foam cell
downregulates main BA synthesizing enzymes cyp7al and
cyp27al, reducing intracellular BA levels and affecting hepatic
CHO, BA production, and bile leading to
hypercholesterolemia. TMAO also decreases the mRNA
expression of Niemann-Pick C1 (NPCIL1) and ATP-binding
cassette (ABC) Gb5/G8, inhibiting intestinal CHO absorption
(Koeth et al., 2013). Other studies found that TMAO induces
by CHO
accumulation—enhancing macrophage cholesterol accumulation

secretion,

hypercholesterolemia promoting  intracellular
via microbiota-dependent pathways involving the increased
expression of pro-atherogenic scavenger receptor proteins

CD36 and SRA on the cell surface (Wang et al, 2011).
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Additionally, FMO3 1is a negative regulator of macrophage
reverse cholesterol transport and a major pathway for TMAO
production. FMO3 also contributes to metabolic anomalies by
affecting CHO. Experiments that knocking down hepatic
FMO3 in LDL that
FMO3 knockdown can alter bile secretion, intestinal absorption,

receptor-deficient mice demonstrate
and constrains hepatic oxysterol and cholesterol ester production in
cholesterol-fed mice (Shih et al., 2015; Warrier et al, 2015).
FMO3 also impairs cholesterol flux into the TICE pathway,
These

critical

triggering  hypercholesterolemia. studies
FMO3 and TMAO targets

hypercholesterolemia (Canyelles et al, 2018), and inhibiting

suggest that

are for treating
TMAO generation is a crucial treatment method. There are two
possible mechanisms to inhibit TMAO production: inhibiting TMA
production and reducing FMO3 expression or activity (Figure 3).

Modern research indicates that antibiotics, choline analogues
such as DMB, probiotics, plant sterols, and statins have
demonstrated effectiveness in treating hypercholesterolemia.
These treatments employ different mechanisms, with some
targeting the TMA/FMO3/TMAO pathway and others working
through alternative routes. Antibiotics, for instance, reduce
TMAO levels by inhibiting the microbial production of TMA
like
ciprofloxacin and metronidazole can almost completely suppress

from dietary precursors. Broad-spectrum antibiotics

TMAO levels by targeting microbial populations responsible for
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Mechanism of TMAO inducing NAFLD. TMAO causes NAFLD through four pathways: by affecting oxidative stress, by affecting bile acid production,
by promoting increased protein expression, and by directly acting on the liver to reduce glucose tolerance.

converting choline, betaine, and L-carnitine into TMA (Wang et al.,
2011; Tang et al.,, 2013). Despite their initial effectiveness, the long-
term impact of antibiotics on TMAO levels remains uncertain.
Prolonged antibiotic use can lead to the emergence of resistant
bacterial strains, increased risks of obesity and cardiovascular events,
and intestinal dysbiosis, which disrupts the balance of gut
microbiota. Once antibiotics are discontinued, TMAO levels
often rise again. Furthermore, antibiotics not only kill harmful
bacteria but also affect beneficial ones, further complicating their
use as a long-term solution. In contrast, the choline analogue DMB
functions as a non-lethal inhibitor of TMA production. It suppresses
microbial TMA lyase activities, such as the biological choline TMA
lyase CutC (Yang Y. et al., 2022), without interfering with choline
uptake into cells. This inhibition reduces TMA formation in
cultured microbes, lowers TMA production across various
microbial communities in the human body (Wang et al., 2015),
and decreases levels of TMA, TMAO, acetate, and propionate in
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vivo. Although promising, DMB’s chemical structure requires
further refinement to enhance its effectiveness and safety
(Korpela et al., 2016; Heianza et al., 2019). In addition, specific
probiotic strains, including Escherichia coli ZDYO01 and Lactobacillus
plantarum ZDYO04, also demonstrate promising capabilities in
2018).
Despite potential benefits, probiotic applications in disease

reducing circulating TMAO concentrations (Qiu et al,

management remain contentious. Critical research gaps persist in
elucidating gut colonization mechanisms and complex interactions
between probiotic strains and existing gut microbiota, necessitating
comprehensive scientific exploration (Seguro et al., 2021). Unlike
the aforementioned treatments, plant sterols and statins do not
target the TMA/FMO3/TMAO pathway. Plant sterols, natural
molecules derived from plants, offer a non-pharmacological
approach to managing abnormal blood lipid levels. While they
can help prevent or control hypercholesterolemia, they are not a
substitute for pharmaceutical interventions in more severe cases. On
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Mechanism of TMAQO inducing hypercholesterolemia. TMAO leads to Hypercholesterolemia by affecting cholesterol (CHO) levels and reducing the

FMO content.

the other hand, statins are widely used drugs that inhibit serum
cholesterol levels by suppressing 3-hydroxy-3-methylglutaryl-CoA
2014), thereby reducing the synthesis of
mevalonate and cholesterol. Despite their clinical effectiveness,

reductase (Sirtori,

statins are associated with several adverse effects, including
myopathy, hyperglycemia, abnormal liver enzymes, and cognitive
impairments, which can limit their long-term use.

Traditional Chinese medicine also shows significant efficacy in
treating hypercholesterolemia through the TMAO pathway, with
superior advantages. Ligustrum lucidum W.T.Aiton (LR), also
known as kudingcha, is a flavonoid-rich tea-like plant. LR not
only prevents the formation of choline-induced TMA and
TMAO but also lowers serum TMAO levels by affecting the gut
microbiome (Liu S. et al., 2021), thereby modifying the prevalence of
specific their
characteristics. Concurrently, LR may influence the molecular
mechanisms of cholesterol and BA metabolism. As mentioned

microbial taxa and modulating functional

earlier, TMAO is closely related to changes in BA metabolism.
Studies indicate that LR extract reduces liver and serum cholesterol,
increases faecal cholesterol and BA excretion, thus effectively
alleviating hypercholesterolemia. LR has historically served as a
traditional tea in China, characterized by its
accessibility, ubiquitous availability, simple preparation method,
and minimal adverse reactions, akin to several natural products
(Wang et al., 2015; Chen M. L. et al.,, 2016). Therefore, LR may have

economic
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greater potential in the prevention of hypercholesterolemia.
Resveratrol, an anthraquinone terpene compound, is mainly
obtained from the TCM Reynoutria japonica Houtt. Studies
suggest that resveratrol reduces TMA production by reshaping
the gut microbiome in mice and modifying the microbial
communities in ApoE, thus inhibiting TMAO synthesis and
TMAO TMAO-induced
hypercholesterolemia. As previously mentioned, TMAO affects

lowering levels to  mitigate
cholesterol metabolism by influencing BA biosynthesis pathways
(Koeth et al.,, 2013), and research by Chen et al. showed that
resveratrol significantly decreases ileal FGF15 mRNA and protein
levels, leading to increased BA synthesis. This indicates that
resveratrol can induce hepatic BA synthesis via the gut-liver
FXR-FGF15  axis, thereby  mitigating =~ TMAO-induced

hypercholesterolemia (Chen M. L. et al., 2016).

3.1.4 Diabetes

Diabetes is a metabolic disorder characterized by persistent
hyperglycemia due to impaired insulin secretion or cellular
responsiveness. The gut microbiota plays a critical role in type
2 diabetes (T2D) pathogenesis, with T2D patients showing
dysbiosis, disrupted intestinal barriers, and abnormal TMAO
production and absorption (Wang et al., 2011; Tang et al., 2013).
Elevated circulating TMAO is significantly linked to higher T2D risk

(Fang et al., 2021b). Mechanistically, TMAO promotes T2D by

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1592524

Qin et al. 10.3389/fphar.2025.1592524
\
. ‘) Sugar tolerance
e
Insulin J
resistanci
9 Insulin
TMAO y signaling
cascade
£
Diabetes
Liver
glycogen
Adipose tissue
inflammation
FIGURE 4

Mechanism of TMAQO inducing diabetes. TMAO leads to T2D by increasing insulin resistance (HOMA-IR), inducing adipose tissue inflammation, and
aggravating the blockade of the insulin signaling cascade. In addition, TMAO is also associated with genes in the insulin signaling pathway.

increasing fasting insulin, HOMA-IR, and glucose intolerance, and
inducing adipose tissue inflammation (Gao et al., 2014; Dambrova
et al, 2016). It impairs insulin signaling and hepatic glucose
metabolism, affecting glycogen synthesis and gluconeogenesis
(Kalagi et al., 2022) (Figure 4). TMAO’s production depends on
FMO3, and FMO3 polymorphisms may influence T2D risk
2013). the
mechanism linking circulating TMAO levels to T2D has yet to
be fully clarified.

Recent studies suggest that DMB and dietary indoles can prevent
and treat diabetes via the TMAO pathway. First, DMB, a choline
analogue, is found in balsamic vinegar, olive oil, grape seed oil, and

(Yamazaki and Shimizu, Nonetheless, exact

red wine. Studies have found that DMB treatment does not affect
body weight or lipid abnormalities but significantly reduces plasma
TMAO levels and prevents cardiac dysfunction (Chen K. et al,
2017). DMB can mitigate foam cell formation and atherosclerotic
plaque development by lowering TMAO levels. However, DMB has
been demonstrated solely as an effective non-lethal bactericidal
agent, with no proven effect on improving glucose homeostasis
and insulin sensitivity. Whereas DMB shows promise in treating
cardiovascular disease and T2D, its chemical structure leaves room
for improvement. Secondly, dietary indoles can effectively lower
TMAO levels and inhibit FMO3 activity, however, their lack of
specificity arises from their role as potent 5-HT agonists, with the
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ability to cross the blood-brain barrier and potentially induce
adverse psychological effects (Cashman et al., 1999; Chen J. et al,,
20165 Zajdel et al., 2016). Clinically, T2D is commonly treated by
insulin injection. Although it shows good efficacy, fear of needles
contributes to poor adherence, leading to inadequate blood sugar
control and recovery hindrance. Non-invasive alternatives include
inhaled or oral insulin; however, challenges exist in using these
(Zajdel 2016).
sulphonylureas commonly

routes et al, Clinically, metformin and

are used anti-diabetes drugs.
Metformin remains the most widely prescribed antidiabetic
agent, particularly for obese and overweight patients. However,
metformin exerts no direct effects on P-cells; moreover, in the
absence of weight reduction, there is no substantial improvement
in muscle insulin sensitivity. Sulphonylureas are secreagogues that
treat T2D by triggering the endogenous insulin secretion of
pancreatic P-cells. However, sulphonylureas do not have long-
term protective effects on P-cell function and may accelerate -
cell

generations, have a high incidence of causing hypoglycaemia and

failure. Moreover, sulphonylureas, particularly older
adverse effects such as weight gain (Gao et al., 2014).
Meanwhile, TCM showed encouraging results in treating
diabetes through the TMAO pathway. Flavonoids can lower
TMAO levels by inhibiting TMA production, while oolong tea

can reduce TMAO levels by reducing FMO3 levels. Studies show
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an interaction between flavonoids and the gut microbiota, which
is directly related to TMAO (Hua et al., 2022). Flavonoids are
widely present in a variety of Chinese medicines such as
Styphnolobium japonicum (L.) Schott, Carthamus tinctorius,
Scutellaria baicalensis Georgi, Pueraria montana var,Lonicera
japonica Thunb., Citrus reticulata Blanco, Chrysanthemum x
morifolium (Ramat.) Hemsl., Epimedium sagittatum (Siebold
and Zucc.) Maxim, Ginkgo biloba L., and China’s ten famous
traditional green teas, including Lu’an melon seed tea. CutC can
break down dietary choline and betaine to generate TMA. Hence,
inhibiting CutC activity can suppress TMA production, thereby
lowering TMAO levels and achieving anti-diabetic effects. An
experiment docking 16 flavonoids from Lu’an melon seed tea
with CutC revealed that kaempferol 3-O-rutinoside (Hua et al,,
2022), quercetin 3-O-rhamnosidyl galactoside, kaempferol 3-O-
rhamnosidyl galactoside, and myricetin 3-O-galactoside can bind
with CutC to regulate its activity, suppress TMA production,
TMAO effects.
Additionally, flavonoids, abundant in various plants, fruits,

reduce levels, and achieve anti-diabetic
vegetables, and leaves, exhibit a wide range of medicinal
properties, such as anticancer, antioxidant, anti-inflammatory,
and antiviral activities. They also offer neuroprotective and
cardioprotective benefits. Therefore, the advantages of using
flavonoids to treat diabetes are more pronounced (Ullah et al.,
2020). Oolong tea, a tea variety unique to China, has shown
significant efficacy in preventing diabetes. Experiments have
indicated that oolong tea extract can lower TMAO formation
capacity by remodeling the gut microbiota and downregulating
the elevation in FMO3 induced by carnitine (Chen P. Y. et al,,
2019). Moreover, FMO3 lipogenesis

gluconeogenesis through modulating PPARa expression and

also reduces and
activity, highlighting the significant efficacy of oolong tea in

diabetes prevention (Shih et al., 2015).

3.2 Cardiovascular and
neurological disorders

Recent research has established that elevated plasma TMAO
concentrations demonstrate a significant correlation with an
augmented risk of atherosclerotic thrombotic cardiovascular
disease (CVD), rendering it a significant pathogenic determinant
for cardiovascular, peripheral, and cerebrovascular diseases (Janeiro
et al, 2018). TMAO promotes atherosclerosis by upregulating
(Al-Rubaye et 2019),
inducing cholesterol accumulation, inflammation, foam cell
formation, endothelial dysfunction, and thrombosis (Zhen et al.,
2023). Elevated levels of TMAO precursors, such as choline and
betaine, are also linked to higher CVD prevalence and poor
Additionally, TMAO
neurological disorders (Parker et al., 2020); it crosses the blood-

macrophage scavenger receptors al,,

outcomes. is closely associated with
brain barrier (BBB), and impairs synaptic plasticity and cognitive
function by downregulating the mTOR pathway, causing

hippocampal neuron loss and synaptic damage (Chen S. et al., 2019).

3.2.1 Atherosclerosis (AS)

In recent years, numerous studies and experiments have shown a
close relationship between high levels of TMAO and adverse
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cardiovascular events caused by atherosclerosis (Komaroff, 2018).
TMAO accelerates aortic lesion formation by disrupting cholesterol
and bile acid metabolism. In animal models, use of the choline TMA
lyase inhibitor iodomethyl choline (IMC) increases bacterial
cholesterol metabolite loss and decreases intestinal sterol
transport protein Niemann-Pick C1-Like 1 (NPCIL1) expression,
reshaping gut microbiota and reducing hepatic cholesterol
accumulation, while upregulating CYP7A1 and other bile acid-
related genes (Pathak et al, 2020). Mechanistically, TMAO
the ROS-TXNIP-

NLRP3 inflammasome, increasing inflammatory cytokines (IL-1p,

induces oxidative stress and activates
IL-18), impairing endothelial nitric oxide synthase (eNOS) and
nitric oxide (NO) production, and leading to endothelial
dysfunction (Sun et al, 2016). Clinical data show that higher
plasma TMAO is associated with increased risk of major adverse
cardiovascular events (MACE) and mortality (Guasti et al., 2021).
TMAO is now considered both a driver and prognostic marker of
atherosclerosis progression to CVD, mainly by affecting lipid
metabolism, inflammation, and endothelial function (Wang et al.,
2011; Koeth et al, 2013). TMA, produced by gut microbes, is
oxidized to TMAO in the liver via FMO3(Tang et al,, 2013; Shih
et al., 2019), triggering chronic inflammation and arterial damage
that promote atherosclerotic lesions (Fatkhullina et al, 2018;
Komaroff, 2018) (Figure 5A).

In recent years, mechanistically-based small molecule inhibitors
targeting the primary bacterial enzyme TMA lyase have been
developed, presenting potential as anti-atherosclerotic thrombotic
agents (Pathak et al., 2020). TCM can modulate lipid metabolism
through altering levels of TMAO. For example, Zingiber officinale
Roscoe exhibits anti-atherosclerosis effects. Moreover, results from
various animal model experiments have indicated that resveratrol
(RSV) can mitigate TMAO-induced AS by suppressing TMA
formation, with the hepatic FXR-fibroblast growth factor 15
(FGF15) axis serving a critical role in resveratrol-induced bile
acid (BA) synthesis (Chen M. L. et al., 2016). Numerous types of
Chinese herbs can regulate lipid metabolism in the body (Li et al.,
2021c). TMAO is formed through the super-metabolism of dietary
substrates containing trimethylamine groups, making its production
highly dependent on the composition of the gut microbiome (Falony
et al,, 2015). Altering dietary habits to reduce the intake of TMAO
precursors (such as choline and carnitine) or modifying the
composition and function of the gut microbiome can diminish
TMAO formation (Iglesias-Carres et al., 2021). A high-choline diet
raises TMAO levels and atherosclerosis in animal populations.
TMAO may partially mediate the well-documented correlation
between red meat intake and cardiovascular disease risk.
Therefore, lower blood TMAO levels due to fruit and vegetable
intake could explain the cardioprotective effects observed (Sun
et al, 2016). Berberine, a bioactive alkaloid derived from
traditional Chinese herbal medicines, demonstrates the capacity
to suppress TMAO production through modulation of the gut
microbiome’s  microbial ~composition.  Berberine’s  anti-
atherosclerotic efficacy potentially stems from its ability to
reduce TMAO production, making it an excellent modulator for
inhibiting atherosclerotic plaque development (Chen and Wang,
2021). Berberine has emerged as a compound with the potential to
lower atherosclerosis risk (Etxeberria et al., 2015). Qing-Xue-Xiao-
Zhi (QXXZF) demonstrates anti-
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cholesterol and LDL-C levels, and reducing FMO3 expression.

atherosclerotic effects in vivo and in vitro by improving lipid
metabolism and inhibiting inflammation. It reduces blood
TMAO
mechanisms for atherosclerosis protection. QXXZF can treat
atherosclerosis by upregulating the ABCA1/ABCGI1-PPARYy/
LXR axis and inhibiting the TLR4/MyD88/NF-«xB signalling
pathway (Li et al., 2021d). Ganoderma lucidum (Leyss. ex Fr.)

concentration, helping to elucidate its potential

Karst spore extract has hypolipidaemic and anti-atherosclerotic
effects on hyperlipidaemic rabbits, lowering blood cholesterol and
low-density lipoproteins while reducing arterial plaque area, and
upregulating LXR, CYP7A1, and ABCA1/G1 in the liver, intestine,
and macrophages (Lai et al., 2020). Ganoderma lucidum spore
extract decreases TG, TC, LDL levels, and serum TMAO in heart
failure rats induced by high TMAO levels (Liu Y. et al., 2021). The
Alisma orientalis Beverage (AOB), a TCM made from various
herbal plants, has long been used to treat metabolic syndrome and
AS (Liu et al,, 2023). In an atherosclerosis model established in
male apolipoprotein E-deficient mice fed a high-fat diet (HFD),
multiple interventions were applied. Data analysis revealed that
after 8 weeks of HFD, AOB-treated mice exhibited significantly
reduced inflammatory cytokine expression and AS development.
AOB serum TMAO
FMO3 expression (Figure 5B). Diminishing circulating TMAO

Furthermore, lowered and hepatic
levels can mitigate inflammatory cytokine release, thereby
attenuating chronic low-grade systemic inflammation and
consequently reducing the risk of HFD-induced atherosclerosis.
The anti-atherosclerotic effects of AOB are related to changes in
the gut microbiome and reduced gut microbiome metabolite
TMAO, indicating AOB’s potential therapeutic value in AS

treatment (Zhu et al., 2020).
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3.2.2 Thrombosis

Research indicates that adverse cardiovascular outcomes,
including arterial thrombosis and mortality (Tang et al., 2013; Li
X. S. et al,, 2017; Haghikia et al., 2018), are linked to TMAO (Zhu
et al, 2018). TMAO promotes platelet hyperactivity, elevates
thrombosis risk, and directly regulates thrombotic diseases. After
vascular endothelial dysfunction, the exposure of collagen and tissue
factor triggers thrombus formation (Furie and Furie, 2008), while
vascular calcification (VC) increases vessel rigidity and facilitates
thrombosis (Lee et al, 2020). TMAO also induces endothelial
dysfunction by disrupting junction proteins, activating the
NLRP3 inflammasome to release high-mobility group box
1 protein (HMGB1), and altering endothelial permeability (Singh
et al,, 2019). Furthermore, TMAO exacerbates VC through dose-
dependent vascular smooth muscle cell calcification and activation
of the NLRP3 inflammasome and NF-kB signaling (Zhang et al.,
2020), thereby further promoting thrombosis (Figure 6).

Given that TMAO can induce thrombosis directly or indirectly
through endothelial damage and vascular calcification, lowering
TMAO levels and inhibiting factors leading to thrombosis might
be effective in treating CVD through drugs or relevant medical
interventions. Nonetheless, further research is needed to elucidate
specific therapeutic mechanisms. Moreover, HMGBI, a key
mediator of TMAO-induced endothelial dysfunction, might serve
as a significant target for treating endothelial dysfunction and its
related cardiovascular diseases. Cell control experiments and
analyses demonstrate that glycyrrhizic acid, a known
HMGBI binder, which reduces HMGBI1 expression induced by
TMAO, can be used to treat the disruption of cell junction
proteins (Singh et al., 2019).
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Numerous studies have concluded that TMAO is a non-
traditional risk factor for CVD in patients with CKD (Bennett
et al, 2013). For these patients with both CVD and CKD,
standard clinical interventions for managing CVD do not
improve cardiovascular outcomes. Consequently, CVD represents
the predominant cause of mortality among patients with CKD
(Levey et al., 1998). Experiments have demonstrated that TMAO
exhibits acute positive inotropic and lusitropic effects on human and
mouse myocardium, significantly increasing intracellular calcium in
ventricular cardiomyocytes (Oakley et al., 2020). However, research
indicates that chronically elevated contractility and intracellular
calcium levels increase cardiac energy consumption, e ultimately
leading to heart failure (Bohm et al., 2010).

3.2.3 Cognitive dysfunction

Synaptic plasticity is the activity-dependent change in the
strength of neuron connections (Magee and Grienberger, 2020),
long believed to be a fundamental component of learning and
memory. TMAO
cognitive dysfunction by promoting endoplasmic reticulum stress

reduces synaptic plasticity and induces
and directly binding to activate PERK, which damages synaptic
plasticity (Zhang et al., 2007; Chen S. et al., 2019), leading to damage
of synaptic plasticity. TMAO also impairs synaptic plasticity
through the mammalian target of rapamycin (mTOR)/70-kDa
ribosomal protein S6 kinase (p70S6K) pathway, both key
regulators of protein translation and synaptic plasticity (Lipton
and Sahin, 20145 Zhou et al., 2023). Studies show that elevated
TMAO decreases mTOR and p70S6K expression,

hippocampal neuron loss and synaptic ultrastructural damage,

causes

and worsens cognitive function in mice, with higher TMAO
leading to more severe deficits (Li et al., 2018). Intervention with
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L. plantarum alongside memantine reduced Ap1-42 and AP1-40,
protected hippocampal neurons, improved synaptic plasticity, and
decreased TMAO production, alleviating cognitive impairment in
AD mice (Wang et al., 2020). However, clinical trials found that
memantine treatment may worsen stuttering and language problems
in autistic children (Alaghband-Rad et al., 2013).

In TCM, TMAO mainly alleviates cognitive impairment by
improving synaptic plasticity. Liu et al. found through
experiments that compared to the TMAO group, synaptic
structural damage significantly improved in the AOB group,
characterized by regular synaptic morphology, enhanced
vesicle distribution within the presynaptic region, and more
obvious synaptic clefts. This indicates that AOB mitigates
TMAO-induced cognitive impairment by improving synaptic
plasticity and regulating synaptic-related proteins (Liu et al.,
2023). Furthermore, Jin et al. found that the combination of
Danggui Shaoyao San (DSS) and its decoction formula can
diminish the prevalence of detrimental gut microbiota (Jin
et al, 2023), thereby improving cognitive and learning
capacities. Through Nissl staining and Western blot analysis
of the integrity of hippocampal neurons and synaptic protein
expression, they found that DSS and the decoction formula group
showed reduced damage to hippocampal neurons and increased
expression levels of synapsin I (P < 0.05) and PSD95 (P < 0.01)
proteins. Meanwhile, alpha and beta diversity analyses indicated
that the richness and diversity of gut microbiota species in DSS
and decoction formula groups were similar to the sham operation
group, signifying significant recovery effects (P < 0.05). This
suggests that DSS may mitigate cognitive impairment by
modulating gut microbiota and increasing the proportion of
beneficial

bacteria, thereby reducing TMAO production.
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Additionally, baicalin and berberine have also been shown to
lower TMAO levels (Liu et al., 2020). Bazi Bushen capsule
alleviates cognitive deficits by inhibiting cellular senescence,
secreting SASP factor, and regulating microglial activation and
polarization mechanisms, thereby reducing the decline of
synaptic function and protecting neurons (Ji et al., 2022).

3.2.4 Alzheimer's disease (AD)

AD is a progressive neurodegenerative disorder of the central
nervous system in the elderly, marked by cognitive impairment and
characterized by cerebral amyloid plaques (mainly amyloid {8, Ap)
and neurofibrillary tangles (NFT) (Naseri et al, 2019). TMAO
AP by
redistributing water and enhancing hydrogen bonding (Kumari
et al, 2018). TMAO levels are correlated with hippocampal AP
plaques, and AP accumulation is an early pathological change in AD
(Jack et al., 2019). Additionally, TMAO increases platelet reactivity,
promoting AP release and neuroinflammation (Zhu et al., 2016;

promotes aggregation and stabilizes aggregates

Borroni et al., 2002). TMAO also enhances tau aggregation into
NFTs by stabilizing hydrogen bonds, reducing the aggregation
threshold and lag phase (Levine et al., 2015). Furthermore,
TMAO
mediators, leading to neuroinflammation (Heneka et al, 2010;
Brunt et al, 2021) Finally, TMAO induces mitochondrial
dysfunction, neuronal aging, and mitochondrial damage in the

activates  astrocytes to secrete pro-inflammatory

hippocampus, contributing to AD pathology (Swerdlow et al,
2010; 2014; Swerdlow et al., 2017; Li et al., 2018) (Figure 7).

Clinically, common AD medications are acetylcholinesterase
inhibitors (AChEIs). However, a trial involving 22,845 AD patients
showed that those treated with AChEIs had higher risks of appetite
disorders, insomnia, or depression compared to those receiving a
placebo (Bittner et al., 2023), indicating that modern clinical drugs
come with certain side effects.

Traditional Chinese medicine treats AD primarily by regulating
gut microbiota balance to inhibit TMAO production. Guanxinning
tablets, an oral compound preparation composed of Salvia
miltiorrhiza Bunge and Pueraria montana var. lobata (Willd.)
Maesen and S.M.Almeida ex Sanjappa and Predeep [Fabaceae],
exhibit potential in mitigating TMAO concentrations and
enhancing gut microbiota composition (Zhang et al, 2021).
Xanthoceraside (XAN), extracted from the husks of Xanthoceras
sorbifolium Bunge, was found by Zhou et al. to alleviate gut
microbiota imbalance and modulate levels of microbial-derived
metabolites to mitigate AD (Zhou et al, 2022). However, the
precise mechanism by which XAN treats AD through altering
microbial-derived metabolite levels remains unclear, though it
may relate to reduced TMAO levels. Schisandra chinensis
(Turcz.) Baill, isolated from Schisandra chinensis polysaccharides
(SCP), and preventative electroacupuncture can regulate gut
microbiota by increasing the proportion of beneficial bacteria,
thereby suppressing harmful bacteria and reducing TMAO
production (He et al,, 2021; Fu et al.,, 2023), preventing the onset
of AD. In addition, some traditional Chinese medicine prescriptions
can improve the clinical symptoms of AD through other effects. For
example, Danggui-Shaoyao-san prescription plays an active and
effective  role in  improving  oxidative  stress and
neuroinflammation in APP/PS1 mice and ultimately improving
cognitive deficits, which is conducive to the improvement of AD
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(Wu Q. et al., 2020). A natural Pterocarpus indicus plant antitoxin,
Medicarpin, can alleviate cognitive and memory dysfunction in AD
patients by influencing the cholinergic system, neuronal apoptosis
and synaptic function (Li D. et al,, 2021).

3.2.5 Parkinson'’s disease (PD)

PD is a prevalent neurodegenerative disorder affecting the
(Khan 2019).
demonstrated that TMAO serves as an early biomarker for
Parkinson’s disease (Chung et al,, 2021). TMAO promotes PD
progression by inducing neuroinflammation through microglial

elderly et al, Numerous researchers have

activation. Elevated serum TMAO not only activates astrocytes in
the striatum and hippocampus of the PD models in mice but also
promotes M1-type polarization of microglia (Quan et al., 2023),
thereby initiating neuroinflammatory cascades. Microglia exhibit
phenotypic plasticity, capable of transitioning between the pro-
the
M2 phenotype (Ji et al., 2018). Qiao and colleagues demonstrated

inflammatory M1 phenotype and anti-inflammatory
that elevated serum TMAO significantly upregulated mRNA
expression of pro-inflammatory M1 microglial markers (CD16,
CD32, and iNOS) in the TMAO + MPTP experimental model,
suggesting a potential mechanism by which high TMAO levels
intensify  neuroinflammatory  processes PD  through
M1 microglial polarization (Qiao et al, 2023). Additionally,

TMAO can induce a-synuclein misfolding, affecting neuron cells.

in

Aggregated forms of a-Synuclein in neurons or glial cells are
pathological markers of PD (Liicking and Brice, 2000). a-
Synuclein is a small (14 kDa), highly conserved presynaptic
protein abundant throughout the brain (Maroteaux et al., 1988).
Through small-angle X-ray scattering (SAXS) experiments, Uversky
et al. analyzed that TMAO induces a-synuclein misfolding (Uversky
et al,, 2001), leading to PD. Jamal et al. further confirmed through
replica exchange molecular dynamics (REMD) simulations that
TMAO promotes a-synuclein dense folding (Jamal et al., 2017).
Moreover, TMAOQO can reduce the levels of the neurotransmitter 5-
HT, crucial for mood regulation and cognition in the brain (Ni et al.,
2021). Quan et al. studied the effect of TMAO on 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model mice
(Quan et al.,, 2023), determining 5-HT levels and its metabolites in
the striatum via high-performance liquid chromatography to
explore TMAO’s effect on striatal neurotransmitters. Results
showed a significant reduction in 5-HT levels in the TMAO +
MPTP group compared to the MPTP group, indicating that TMAO
diminishes neurotransmitter 5-HT levels, the
onset of PD.

Modern medical research suggests L-DOPA is effective for PD

treatment. However, prolonged L-DOPA use may lead to motor

influencing

disorders (Ahlskog and Muenter, 2001), manifesting as involuntary,
purposeless, irregular, and repetitive motor phenomena involving
limb, axial, and facial musculature. Additionally, antibiotics like
metronidazole and ciprofloxacin are frequently used for
neurological disorders (Tang et al, 2013), but continuous
antibiotic use to reduce TMAO can disrupt intestinal ecology,
affecting beneficial gut flora, and TMAO levels can reappear a
month or more after stopping antibiotics.

However, TCM offers unique roles in treating PD by reducing
the abundance of gut flora that produces TMA, thus indirectly

inhibiting TMAO production. TMA is a precursor to TMAO
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Mechanism of TMAO inducing AD. TMAO promotes AD by directly promoting platelet hyperreactivity, activating astrocytes to induce
neuroinflammation, inducing mitochondrial damage, promoting tau protein aggregation and A B deposition.

(Galland, 2014), which is oxidized after absorption by intestinal
epithelium to form TMAO. Two main TMA biosynthetic
mechanisms have been described involving a specialized ethyl
radical enzyme (Craciun and Balskus, 2012), The first pathway
comprises CutC with its activator CutD, utilizing choline as a
substrate, while the second involves a two-component Rieske-
type oxygenase/reductase system (CntA/B). Rath et al. established
a key gene database for principal TMA synthesis pathways (Rath
et al., 2017), encoding CutC and carnitine oxygenase (CntA), to
investigate microbial community TMA formation potential.
Through 16S rRNA gene sequence analysis, they found that
Clostridium cluster XIVa and Proteobacteria contain CutC genes,
with genes encoding CntA/B found in y- and p-Proteobacteria.
Buyang Huanwu Decoction (BHD) is a renowned TCM formula
comprising Astragalus mongholicus Bunge, Angelica sinensis (Oliv.)
Diels, lactiflora  Pall,
‘Chuanxiong’, Carthamus tinctorius L, Prunus persica (L.) Batsch,
and Earthworm (Fu et al., 2022). Hu et al. reported that BHD
2024),
phylogenetically heterogeneous taxon within the Firmicutes

Paeonia Conioselinum  anthriscoides

reduces Lachnospiraceae abundance (Hu et al, a

phylum of Clostridium cluster XIVa (Ruan, 2013). Consequently,
inhibiting TMA
production and thus decreasing TMAO levels. Wan et al. found

BHD reduces Lachnospiraceae abundance,

that Astragalus mongholicus not only reduces a-synuclein
aggregation in the striatum but also decreases Proteobacteria’s
relative abundance in PD models (Wan et al,, 2022), indicating
Astragalus mongholicus inhibits TMAO production while reducing
a-syn aggregation leading to PD. An ancient PD treatment is
Compound Dihuang Granule (CDG), composed of seven herbs:
Rehmannia glutinosa (Gaertn.) Libosch. ex DC., Paeonia lactiflora,
Uncaria rhynchophylla (Miq.) Miq., Pearl Shell, Salvia miltiorrhiza,
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Acorus verus (L.) Raf, and Scorpion. He et al. found decreased
Proteobacteria in PD mice after CDG administration (He Z. Q. et al.,
2023), suggesting CDG indirectly reduces TMAO production by
lowering Proteobacteria. Polysaccharides and ginsenosides from
Panax quinquefolius L restore gut microbiota composition (Zhou
et al, 2021), reducing Escherichia coli abundance. Furthermore,
YeaW, a ubiquitous enzyme in E. coli, has been proposed as a key
enzyme for the third major metabolic pathway of carnitine to TMA
conversion (Koeth et al., 2014). Piperine (PIP) stimulates autophagy
by inhibiting PI3K/AKT/mTOR activation (Yu et al, 2024),
degrading o-synuclein accumulation in PD rat colons and
substantia nigra. PIP administration reduces E. coli to 6.37%,
demonstrating its inhibitory effect on TMAO production. Besides
TCM treatment,
Acupuncture can improve gut microbiota imbalance; Jang et al.
found after acupuncture treatment in PD mice, a reduction in

acupuncture also benefits PD treatment.

Proteobacteria in the gut, indicating decreased TMAO levels
(Jang et al,, 2020) (Figure 8).

3.3 Urinary system diseases

Plasma levels of TMAO have been found to have a clear
association with various human urinary system diseases and
serve as a key biomarker for several kidney diseases (Chang
al,  2021).
demonstrated significantly increased plasma TMAO levels among
patients diagnosed with chronic kidney disease (CKD). TMAO
suppresses megalin expression in renal tubular epithelial cells

et Clinical investigations have consistently

through PI3K and ERK signaling pathways, reducing albumin
uptake by these cells. Additionally, TMAO induces oxidative
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Treatment of AS caused by TMAO by TCM. TCM reduces the TMA level by regulating different intestinal flora and thus reduces the TMAO level to

treat PD.

stress and activates NLRP3 inflammasomes through the MAPK
pathway, thereby impairing renal function and inducing renal
fibrosis (Andrikopoulos et al., 2023). TMAO is also a significant
factor in diabetic kidney disease (DKD) progression, with elevated
plasma TMAO levels leading to NLRP3 inflammasome formation
and activation in endothelial cells, which then results in endothelial
dysfunction, increased monocyte adhesion, and production of pro-
inflammatory cytokines in blood vessels, eventually progressing to
vascular oxidative stress and DKD.

3.3.1 Chronic kidney disease (CKD)

Metabolomic analysis shows that chronic kidney disease (CKD)
patients have higher plasma TMAO concentrations (Prokopienko
et al., 2019). In HFD-induced mice, elevated TMAQO mediates renal
fibrosis and dysfunction via oxidative stress and inflammation (Sun
etal., 2017). As impaired renal function and fibrosis are key features
of CKD (Xu et al., 2017; Wang et al., 2022), TMAO is considered a
risk factor. Mechanistically, TMAO inhibits megalin expression via
PI3K/ERK, reducing albumin uptake and promoting tubular cell
dysfunction, which triggers tubulointerstitial inflammation and
fibrosis (Kapetanaki et al, 2022). Through promoting
p38 phosphorylation in the MAPK pathway, TMAO activates
inflammatory pathways and upregulates NOX4 to enhance
oxidative stress and activate NLRP3 inflammasomes, resulting in
renal inflammation. TMAO also activates the NLRP3-IL-1f axis,
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promoting inflammatory chemotaxis and cytokine release.
Increased oxidative stress and cytokines ultimately lead to
tubulointerstitial damage and renal function deterioration,
triggering CKD (Lai et al., 2022). Furthermore, TMAO enhances
CaOx crystal deposition via oxidative stress and autophagy-related
cell death, impairs renal function, and promotes kidney stones
(Dong et al, 2022). It also triggers fibroblast proliferation and
renal fibrosis through PERK/Akt/mTOR and NLRP3/NF-«B
signaling, advancing CKD (Kapetanaki et al., 2021) (Figure 9A).
Numerous studies have indicated that TMAO can be a target for
the diagnosis and treatment of CKD (Tomlinson and Wheeler,
2017). TMAO is produced by the oxidation of TMA, therefore
inhibiting TMA synthesis can effectively reduce TMAO levels.
TMAO is related to the abundance of gut microbiota, with
several bacterial families, such as Enterobacteriaceae, involved in
TMA-TMAO production, making the direct regulation of gut
microbiota one method to modulate TMAO levels (Zixin et al,,
2022). Medications like ranitidine and finasteride, as FMO
substrates, competitively inhibit TMA binding, consequently
diminishing TMAO generation and potentially mitigating CKD
progression.  Additionally,

significantly ~ decrease

and finasteride
the gut
microbiota and offering potential renal protective mechanisms

ranitidine can

Enterobacteriaceae, altering

(Zixin et al, 2022). Meldonium can reduce the gut microbiota-
dependent production of TMA/TMAO from L-carnitine, thereby
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(A) Mechanism of TMAO inducing CKD. TMAO promotes renal fibrosis leading to CKD by inducing autophagy, inducing inflammation, and oxidative
stress. (B) Treatment of CKD caused by TMAO by modern medical drugs. TMAO acts with modern medical drugs to treat CKD through two ways
changing the intestinal microflora and reducing TMA or TMAO precursor levels. (C) Treatment of CKD caused by TMAO by TCM. TMAO and TCM treat

CKD through two ways: changing intestinal microflora and inhibiting inflammation and oxidative stress
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(A) Mechanism of TMAO inducing DKD. TMAO leads to DKD by inducing inflammation and promoting oxidative stress. (B) Treatment of DKD caused
by TMAO by TCM. TCM treats DKD by acting with TMAO by regulating intestinal microbes, promoting cell apoptosis, and affecting TMAO metabolism.

lowering TMAO levels and potentially delaying CKD, thereby
lowering TMAO levels and potentially delaying CKD (Kuka
et al,, 2014). However, prolonged use of Meldonium may lead to
adverse effects such as hypoxia, dizziness, and a lack of blood supply
(Benedetto et al., 2008). A nutritional supplement, RSV, lowers
TMAO levels by reducing the gut microbial production of TMA,
thus delaying CKD (Song et al., 2020). Aspirin reduces TMAO levels
through inhibition of microbial TMA lyase activity, thus delaying
CKD progression (Zixin et al., 2022). Trigonelline, an alkaloid
extracted from fenugreek seeds, can reduce hepatic
FMO3 activity, inhibit TMA oxidation, and decrease TMAO
production, thereby slowing the progression of CKD (Yong et al.,
2023) (Figure 9B). However, inhibiting FMO3 can also bring about
side effects such as liver inflammation and fish odour syndrome
(trimethylaminuria) (Wang et al, 2015). Despite significant
advances in modern medicine for treating CKD, the side effects
associated with the use of modern medications cannot be
overlooked.

Additionally, clinical studies have shown that TCM has a
significant effect on the treatment of CKD. Curcumin diester
acylated with DHA can markedly reduce TMAO levels. DHA-
acylated Curcumin diester potently suppresses inflammation,
apoptosis, and oxidative stress by interrupting the TMAO-
mediated PI3K/Akt/NF-kB signaling cascade (Shi H. H. et al,
2022). This can slow the progression of CKD. The Yi Qi Huo
Xue Jiang Zhuo formula (YHJF) consists of five traditional Chinese
herbs: Astragalus mongholicus, Angelica sinensis, Rheum officinale
Baill, Salvia miltiorrhiza, and Scleromitrion diffusum (Willd.)
R.J.Wang. YHJF demonstrates anti-inflammatory properties by
suppressing NLRP3 inflammasome activation, thereby preventing
TMAO level escalation in 5/6 nephrectomised mice. YHJF can also
alter the gut microbiota and reverse gut permeability, preventing
increased transport of TMAO into the circulation and retarding the
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progression of CKD to some extent (Liu et al, 2022). Rheum
officinale enema can also reduce TMAO and TMA levels in the
serum of 5/6Nx CKD rats by decreasing certain TMAO-related
inhibit
(interleukin-6,

bacteria, the expression of inflammatory markers

tumour necrosis factor-a, and interferon-y),
alleviate renal interstitial fibrosis, and slow the progression of
CKD (Ji et al,, 2021). Additionally, Cornus officinalis Siebold and
Zucc. demonstrates potential CKD prevention through
comprehensive modulation of gut microbiota and targeted
regulation of uraemic toxins (including TMAO) (Du et al., 2022)

(Figure 9C).

3.3.2 Diabetic kidney disease (DKD)

According to the definition, DKD pathogenesis is characterized
by compromised renal function, manifesting as either decreased
glomerular filtration rate or elevated urinary albumin excretion, or
both (Gheith et al,, 2016). The Framingham Heart Study suggests
that TMAO might be a surrogate marker for GFR. Experiments by
Xu and others have also demonstrated that a lower GFR leads to
higher TMAO levels (Xu et al., 2017). Therefore, TMAO is highly
likely to be a significant risk factor in the onset of DKD. Gut-derived
TMAO induces apoptosis by increasing intracellular mROS levels
and further promoting NLRP3 assembly activation, with the
underlying mechanism being the regulation of the intracellular
mROS-NLRP3 cytokinesis
inflammatory factors, thus promoting DKD (Yi et al, 2023). In

axis to activate and release
rats with CKD, augmented TMAO concentrations precipitate
vascular oxidative stress and inflammatory cascades, culminating
endothelial and

microvascular

in impairment.
endothelial

pathogenetic mechanisms in diabetic nephropathy. Therefore,
increased TMAO levels can lead CKD patients to develop DKD

further. Additionally, TMAO can promote the development of DKD

Inflammatory  processes

compromise  constitute  pivotal
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Disease type

Colorectal Cancer (CRC)

10.3389/fphar.2025.1592524

TCM/Components Target/Mechanism of action Therapeutic outcome
Curcumin Inhibit NF-kB-P2X7R signaling and reduce Alleviate inflammation and oxidative stress,
NLRP3 inflammasome activation and improve cell damage
Apigenin Reduce the expression of NLRP3 mRNA and protein Inhibit inflammatory response and slow

induced by TMAO

down CRC progression

Non-Alcoholic Fatty Liver
Disease (NAFLD)

Atherosclerosis (AS)

Thrombosis

Cognitive Impairment

Berberine (BBR)

Activate intestinal FXR signaling and regulate bile acid
metabolism

Reduce liver fat accumulation and improve
lipid metabolism

Quercetin
Qingxue Xiaozhi Formula
(QXXZF)

Ganoderma lucidum spore
extract

Glycyrrhizic Acid
Alisma orientalis
Beverage (AOB)

Danggui Shaoyao San (DSS)

Reduce total cecal bile acid levels

Upregulate ABCA1/ABCG1-PPARY/LXR axis and
inhibit TLR4/MyD88/NF-«B pathway

Upregulate hepatic LXR, CYP7A1, and ABCA1/
GI expression

Inhibit TMAO-induced HMGB1 expression and protect
endothelial cell junctions

Regulate gut microbiota and reduce TMAO production

Regulate gut microbiota and increase the proportion of
beneficial bacteria

Improve bile acid circulation and alleviate
NAFLD

Reduce TMAO levels and plaque formation
Reduce cholesterol and LDL, and alleviate
atherosclerosis

Reduce thrombosis risk and improve
endothelial function

Improve synaptic plasticity and alleviate
cognitive impairment

Reduce TMAO and protect hippocampal
neurons

Alzheimer’s Disease (AD)

Guanximing Tablets

Regulate gut microbiota and reduce TMAO levels

Reduce AP deposition and improve
cognitive function

Schisandra chinensis
polysaccharides (SCP)

Increase beneficial bacteria and inhibit harmful bacteria

Reduce TMAO and delay the progression
of AD

Parkinson’s Disease (PD)

Chronic Kidney Disease (CKD)

Diabetic Kidney Disease (DKD)

Hypercholesterolemia

Buyang Huanwu
Decoction (BHD)

Compound Rehmannia
Granules (CDG)

Yigi Huoxue Jiangzhuo Formula

(YHJF)
Rhubarb Enema
Zuogui Jiangtang Yishen
Decoction (ZGJTYS)

Kudingcha (Ligustrum
robustum)

Reduce Firmicutes (e.g., Lachnospiraceae)

Reduce the abundance of Proteobacteria

Inhibit NLRP3 inflammasome and regulate intestinal
permeability

Reduce TMAO-related microbiota and inhibit
inflammatory factors (IL-6, TNF-a)

Inhibit mROS-NLRP3 axis and regulate gut microbiota
and hepatic FMO3

Regulate cholesterol and bile acid metabolism and
inhibit intestinal TMA production

Inhibit TMA production and improve
motor dysfunction

Reduce a-synuclein aggregation
Reduce TMAO entry into the blood and
delay renal fibrosis

Improve renal function and reduce uremic
toxins

Reduce renal cell apoptosis and improve
glucose metabolism

Reduce serum TMAO and cholesterol levels

Resveratrol

Promote bile acid synthesis through the gut-liver FXR-
FGF15 axis

Improve cholesterol excretion

Type 2 Diabetes (T2D)

Flavonoids (e.g., Quercetin,
Kaempferol)

Competitive inhibition of CutC enzyme activity and
reduce TMA production

Reduce TMAO and improve insulin
resistance

Oolong Tea Extract

Downregulate FMO3 expression and regulate gut
microbiota

Reduce TMAO production and improve
glucose metabolism

by inducing inflammation (NF-kB, NLRP3, TNF-q, IL-1p, IL-6),
oxidative stress, and fibrosis in the renal system (Fang et al., 2021b).
The promotion of renal-related inflammatory mechanisms occurs
through TMAO activating NLRP3 inflammasomes and NF-kB
signal transduction, with NF-xB playing a role in the DKD
process by promoting vascular inflammation and oxidative stress,
becoming a potential pathogenic mechanism in DKD (Huang et al.,
2023) (Figure 10A).

Experiments have demonstrated that elevated serum TMAO
levels are positively correlated with the risk of DKD in patients,
with TMAO potentially being a biological marker for DKD
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(Huang et al., 2023). Therefore, targeting TMAO could be a
way to treat DKD. However, clear research results regarding the
interaction of current modern medical drugs with TMAO to treat
DKD are not yet available. Recent studies, however, have shown
that high levels of circulating TMAO may exacerbate DKD,
suggesting that choline-TMA lyase inhibitors (such as DMB,
IMC) might have potential in improving DKD (Fang et al.,
2021a). More detailed mechanisms are yet to be widely
researched. Encouragingly, there is currently evidence that
TCM has a positive effect on the treatment of DKD. The
Zuogui-Jiangtang-Yishen Decoction (ZGJTYS) is composed of
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nine Chinese herbs, including Astragalus mongholicus, Salvia
miltiorrhiza, Dioscorea polystachya Turcz., Coptis chinensis,
Achyranthes bidentata Blume, Leonurus japonicus Houtt,
Rehmannia glutinosa, Cornus officinalis, and Zea mays L. It
operates from three aspects to provide treatment effects.
ZGJTYS may impact the expression of CutC by regulating gut
microbiota and inhibit liver FMO3 levels to reduce TMAO.
ZGJTYS demonstrates the capacity to directly attenuate
TMAO concentrations in both plasma and renal tissue.

Moreover, ZGJTYS mitigates diabetic kidney disease
progression by suppressing TMAO-mediated apoptotic
mechanisms through modulation of the mROS-NLRP3

inflammatory pathway (Yi et al, 2023). The Jiangtang
Decoction (JTD) consists of five herbs, including Euphorbia
pekinensis Rupr., Salvia miltiorrhiza, Astragalus mongholicus,
leeches, and Cistanche deserticola Ma. JTD reduces TMAO levels
and shows alleviating effects on inflammatory factors (such as
NLRP3, IL-6, and IL-17A), effectively improving the progression
of DKD. JTD regulates the composition of gut microbiota,
thereby reducing the potential role of gut microbiota-mediated
uraemic toxins (including TMAO) and inflammation in
promoting the development of DKD. Although experimental
results demonstrate a significant association between JTD and
gut microbiota, the underlying mechanisms require further
research (Hong et al., 2023).

In the study of kidney diseases, TMAO often induces kidney
dysfunction and a decrease in glomerular filtration rate through
pathways like activating autophagy, inducing inflammation,
promoting renal interstitial fibrosis, inducing apoptosis, and
oxidative stress. This mediates the onset and progression of
renal diseases such as CKD and DKD. Notably, while modern
medical drugs are often accompanied by some adverse reactions,
the application of TCM shows certain advantages in treating
kidney diseases. Therefore, the extensive use of TCM could
potentially become an effective means of treating kidney-
related diseases. However, up to now, the deeper pathogenic
mechanisms between TMAO, CKD, and DKD, along with the
therapeutic mechanisms of TCM interacting with TMAO, have
not been fully elucidated. Therefore, further investigation into
the development of TMAO and kidney diseases is required
(Figure 10B).

4 Conclusion and outlook

TMAO, a key metabolite of gut microbiota, has been identified
by numerous studies as a common pathological basis for
multisystem chronic diseases. Its production relies on the action
of CutC in gut microbiota and the oxidation by hepatic
FMO3 enzyme. In digestive diseases, TMAO promotes CRC
progression through inflammatory responses and oxidative stress.
It activates PERK to further stimulate NLRP3 and NF-«B pathways,
driving CRC development via ROS-mediated oxidative stress.
Alternatively, TMAO may increase NAFLD risk by inducing
oxidative stress, impairing glucose tolerance, or reducing bile acid
synthesis. In cardiovascular diseases, elevated plasma TMAO
upregulates scavenger receptors on macrophages to promote
cholesterol deposition. Concurrently, TMAO activates the ROS-
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TXNIP-NLRP3  pathway, endothelial
dysfunction and accelerating atherosclerotic plaque formation. It

causing inflammatory
also disrupts tight junction proteins through inflammation
induction, exacerbates VC via NLRP3 inflammasome and NF-«xB
signaling  activation, and  promotes  thrombosis.  In
neurodegenerative diseases, TMAQ penetrates the BBB, impairing
synaptic plasticity through PERK activation or mTOR pathway
inhibition (Zhou et al, 2023), while promoting AP and tau
protein aggregation in Alzheimer’s and Parkinson’s disease
progression. As a key biomarker in urinary system diseases,
TMAO suppresses Megalin expression via PI3K and ERK
signaling, activates the MAPK-NLRP3 pathway to induce renal
oxidative stress and inflammation, and ultimately leads to
renal fibrosis.

In TMAO-targeted therapies, TCM demonstrates multi-
target intervention capabilities. BBR from Coptis chinensis
inhibits TMA oxidation by FXR

signaling. Flavonoids enzyme

activating intestinal
competitively block CutC
activity, reducing TMA production at its source. Guanxinning
Tablets modulate gut microbiota, while SCP decrease TMA
generation. metabolic and inflammatory

ZGJTYS TMAO-induced
apoptosis by inhibiting the mROS-NLRP3 axis. Curcumin
inhibits NLRP3 P2X7R

signaling, and apigenin reduces NLRP3 expression to improve

precursor For

regulation, suppresses renal

inflammasome activation via
cholesterol metabolism disorders. Synergistic effects of TCM
JTD

inflammatory cytokines, while AOB mitigates TMAO-induced

formulations are particularly notable: alleviates
cognitive impairment by enhancing synaptic plasticity and
regulating synaptic proteins (Zhu et al., 2020; Liu et al., 2023).

In modern medical approaches, prolonged antibiotic use and
Meldonium carry significant side effects. While FMO3 inhibitors
reduce TMAO levels, they risk adverse effects like hepatic
inflammation, and individuals with FMO3 gene defects may
develop trimethylaminuria (fish odour syndrome). In contrast,
TCM achieves therapeutic outcomes with reduced toxicity risks.
For instance, berberine lowers serum TMAO while maintaining gut
microbiota homeostasis, and Guanxinning Tablets provide
cardiovascular protection comparable to statins without typical
statin-related side effects.

However, current research on TCM interventions for TMAO-
related diseases faces notable limitations. The mechanism of XAN in
treating AD via microbiota metabolite regulation remains unclear,
as does ZGJTYS’s anti-renal apoptosis mechanism. Additionally,
studies exploring TCM-TMAO interactions in systemic disease
management remain scarce, highlighting the need for broader
experimental and clinical validation.

Existing literature shows promising results but requires more
comprehensive experimental and clinical verification. Future
research should focus on elucidating TMAO’s pathogenic

mechanisms and exploring TCM’s therapeutic potential.
Clinically, personalized treatment strategies could be developed
by integrating modern medicine with TCM or combining herbal
and synthetic drugs to enhance therapeutic efficacy and improve
patient outcomes.

The effects of various TCM therapies on different diseases
induced by TMAO, including their therapeutic targets and

outcomes, are summarized and presented in the following table.
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Glossary

TMAO Trimethylamine N-oxide

TCM Traditional Chinese Medicine
FMO3 flavin-containing monooxygenase 3
TMA trimethylamine

CutC choline TMA lyase

DMA dimethylamine

OCT2 Organic cation transporter 2
TMADH  trimethylamine dehydrogenase
ACE-1 angiotensin-converting enzyme inhibitor
CRC colorectal cancer

NAFLD non-alcoholic fatty liver disease
PERK protein kinase R-like endoplasmic reticulum kinase
IR insulin resistance

AT adipose tissue

FXR farnesoid X receptor

BBR berberine

TCA taurocholic acid

CVD cardiovascular disease

AS Atherosclerosis

NPC1L1 Niemann-Pick C1-Like one

IL interleukin

eNOS endothelial nitric oxide synthase
NO nitric oxide

NAC N-acetylcysteine

MACE major adverse cardiovascular events
RSV resveratrol

FGF15 FXR-fibroblast growth factor 15
BA bile acid

QXXZF Qing-Xue-Xiao-Zhi Formula

AOB Alisma orientalis Beverage

HFD high-fat diet

vC vascular calcification

HMGB1 high-mobility group box 1 protein
BBB blood-brain barrier

mTOR mammalian target of rapamycin
P70S6K 70-kDa ribosomal protein S6 kinase
4E-BP1 4E-binding protein 1

LTP long-term potentiation

AD Alzheimer’s Disease

NFT neurofibrillary tangles

Ap amyloid f

ROS reactive oxygen species
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AChEIs
XAN
SCP

PD
SAXS
REMD
BHD
CDG
PIP
CKD
DKD
YHJF
ZGJTYS
JTD
RCT
NPCIL1
ABC
CHO
LR

T2D

DMB
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acetylcholinesterase inhibitors
Xanthoceraside

Schisandra chinensis polysaccharides
Parkinson’s Disease

small-angle X-ray scattering

replica exchange molecular dynamics
Buyang Huanwu Decoction
Dihuang Granule

Piperine

chronic kidney disease

diabetic kidney disease

Yi Qi Huo Xue Jiang Zhuo formula
Zuogui-Jiangtang-Yishen Decoction
Jiangtang Decoction

reverse cholesterol transport
Niemann-Pick C1

ATP-binding cassette

cholesterol

Ligustrum robustum

type 2 diabetes

3,3-dimethyl-1-butanol
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