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Aging is a multifactorial process that affects skin integrity through the progressive
decline of dermal fibroblast function. Dermal fibroblasts are key regulators of
extracellular matrix (ECM) composition, wound healing, and tissue homeostasis.
However, their dysfunction contributes to structural deterioration, chronic
inflammation, and impaired regenerative capacity. Cellular senescence, a
fundamental characteristic of aging, results in the buildup of senescent
fibroblasts that release growth factors, matrix-degrading enzymes, and pro-
inflammatory cytokines, known as the senescence-associated secretory
phenotype (SASP). This study examines the impact of fibroblast senescence
on dermal aging, highlighting mechanisms such as DNA damage,
mitochondrial dysfunction, oxidative stress, and telomere attrition. The role of
SASP-driven ECM degradation, matrix metalloproteinases (MMPs) activation, and
fibroblast-keratinocyte communication breakdown are explored, demonstrating
their collective contribution to skin aging. Additionally, key signaling pathways,
including p16INK4a/RB, p53, NF-κB, mTOR, and TGF-β, are implicated in
fibroblast senescence and chronic inflammation. Recent advancements in
therapeutic strategies targeting fibroblast aging, such as senolytics,
extracellular vesicle-based interventions, and metabolic reprogramming, offer
promising avenues for skin rejuvenation. This review delves into the molecular
and cellular dynamics of dermal fibroblast aging, emphasizing their relevance for
developing novel anti-aging interventions.
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1 Introduction

Aging is a multifaceted biological process characterized by the gradual deterioration of
cellular and systemic functions, resulting in heightened vulnerability to diseases and an
increased risk of mortality (Guo et al., 2022). At the cellular level, one of the hallmarks of
aging is cellular senescence, a state of irreversible growth arrest triggered by various
stressors, including DNA damage, telomere attrition, oxidative stress, and oncogenic
signaling (López-Otín et al., 2023). Senescent cells, while initially beneficial in
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preventing the propagation of damaged cells, accumulate over time
and contribute to chronic inflammation and tissue dysfunction
through the release of growth factors, matrix-remodeling
enzymes, and pro-inflammatory cytokines, known as the
senescence-associated secretory phenotype (SASP) (Wang et al.,
2024). This persistent low-grade inflammation, termed
inflammaging, exacerbates age-related pathologies such as
neurodegeneration, cardiovascular disease, and cancer.

Furthermore, mitochondrial dysfunction, epigenetic alterations,
and impaired proteostasis also play critical roles in the aging process
by disrupting cellular homeostasis (Srivastava, 2017; Wang K. et al.,
2022). The skin is the largest organ of the human body, functioning
as a highly specialized and dynamic barrier that protects against
environmental insults, pathogens, and mechanical trauma while
regulating thermoregulation and hydration (Kabashima et al., 2019;
Gilaberte et al., 2016). Structurally, it comprises a complex interplay
of epithelial, connective, and subcutaneous tissues, each
contributing to its protective and homeostatic roles. The
outermost layer consists of a continuously regenerating stratified
squamous epithelium, primarily composed of keratinocytes, which
form a resilient barrier against external stressors. Beneath this, a
dense fibroblast-rich connective tissue network provides
biomechanical strength and elasticity through extracellular matrix
(ECM) components, such as collagen and elastin. The innermost
layer is composed of adipose-rich subcutaneous tissue, functioning
as an insulator and energy reserve while also aiding in shock
absorption and metabolic regulation (Gilaberte et al., 2016;
Richardson, 2003; Lee and Kim, 2022). However, intrinsic aging,
driven by genetic and cellular factors, along with extrinsic factors

such as ultraviolet (UV) radiation, pollution, and oxidative stress,
leads to structural and functional deterioration (Farage et al., 2008;
Hussein et al., 2025). Aged skin exhibits collagen degradation,
reduced fibroblast activity, impaired wound healing, and
increased senescence of dermal and epidermal cells, contributing
to loss of elasticity, thinning, and the formation of wrinkles (Shin
et al., 2019; Chin et al., 2023). The accumulation of senescent cells,
particularly in the dermis, exacerbates chronic inflammation
through the SASP, further accelerating aging-related skin
degeneration (Figure 1) (Konstantinou et al., 2024).

Given that dermal fibroblasts have a pivotal role in managing
skin integrity by regulating ECM composition, wound healing, and
cellular homeostasis, their dysfunction is a key driver of age-related
skin deterioration. In this review, we examine the process of skin
aging by focusing on the role of dermal fibroblasts, investigating
their functional decline, ECM remodeling, and senescence-
associated alterations that contribute to age-related structural and
physiological deterioration.

2 The characteristics of dermal
fibroblasts

Dermal fibroblasts are mesenchymal cells specialized in
preserving the skin’s structural framework and functional
homeostasis. As the predominant cell type in the dermis,
fibroblasts are responsible for the remodeling, synthesis, and
degradation of the ECM, which provides the skin with
mechanical strength, elasticity, and hydration (Plikus et al., 2021;

FIGURE 1
The structural alterations within the dermis that related to skin aging, the progressive increase of senescent cells in aged dermal tissue, and the
impact of different intrinsic and extrinsic factors.

Frontiers in Pharmacology frontiersin.org02

Nan et al. 10.3389/fphar.2025.1592596

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1592596


Thulabandu et al., 2018). These cells primarily produce collagen
(types I and III), glycosaminoglycans (GAGs), fibronectin, and
elastin, ensuring the stability of the dermal-epidermal junction
and facilitating skin repair and regeneration (Boraldi et al., 2024).
In addition to their structural role, fibroblasts act as key regulators of
skin homeostasis by modulating various cellular and biochemical
processes. They secrete growth factors and cytokines such as
platelet-derived growth factor (PDGF), fibroblast growth factors
(FGFs), insulin-like growth factor-1 (IGF-1), and transforming
growth factor-beta (TGF-β), which influence keratinocyte
proliferation, immune responses, and angiogenesis (Faria and
Andrade, 2024; Zhao et al., 2019). Fibroblasts also communicate
with immune cells, endothelial cells, and epidermal keratinocytes
through paracrine signaling, contributing to the regulation of skin
inflammation and tissue repair (Plikus et al., 2021; Dong et al., 2024).
Mechanotransduction is another crucial function of fibroblasts, as
they respond to mechanical stimuli from their microenvironment
and modulate ECM production accordingly. Fibroblasts sense and
adapt to mechanical forces via integrins and focal adhesion
complexes, which regulate their morphology and behavior
(Junker, 2024; Di et al., 2023). This dynamic ability to respond to
environmental cues ensures the maintenance of wound healing
processes and tissue integrity. In healthy skin, dermal fibroblasts
typically remain inactive; however, following injury, they undergo
activation and differentiate into myofibroblasts. These myofibroblasts
gain increased contractility and contribute to wound closure by
synthesizing extracellular matrix proteins (Sierra-Sánchez et al.,
2021). However, excessive fibroblast activation can lead to fibrosis,
characterized by excessive collagen deposition and ECM stiffening,
contributing to pathological conditions such as scleroderma and
hypertrophic scarring (Wang S. et al., 2022).

3 The role of senescent dermal
fibroblasts in skin aging

Aging is associated with a progressive decline in dermal
fibroblasts, leading to impaired skin structure, decreased
regenerative capacity, and ECM degradation. Studies have shown
that the total fibroblast population in human skin declines
significantly with age, contributing to the thinning of the dermis,
reduced collagen production, and compromised wound healing
(Kühnel et al., 2025; Varani et al., 2006). This reduction is
primarily driven by cellular senescence, apoptosis, and decreased
proliferative potential, which collectively weaken the functional and
structural integrity of the skin. An investigation was conducted to
examine the age-related decline in dermal fibroblast number using
single-cell RNA sequencing (scRNA-seq) and computational
transcriptomic analysis on over 5,000 dermal fibroblasts isolated
from sun-protected human skin (Solé-Boldo et al., 2020). The study
employed cell clustering techniques and differential gene expression
analysis to identify distinct fibroblast subpopulations and assess
changes in their abundance with aging. The findings showed a
significant reduction in fibroblast density, which disrupts ECM
homeostasis and compromises dermal integrity. This decline is
attributed to diminished proliferative capacity, increased cellular
senescence, and impaired self-renewal mechanisms. Additionally,
cell-cell interaction mapping revealed weakened fibroblast-

keratinocyte communication in aged skin, further exacerbating
fibroblast depletion and contributing to structural deterioration
(Solé-Boldo et al., 2020). Another study showed that a histological
analysis of sun-protected skin from young (18–29 years) and old (80+
years) individuals demonstrated a 35% reduction in fibroblast density
in aged skin. This decline was accompanied by a 68% reduction in
type I procollagen content and a 30% decrease in fibroblast collagen-
synthetic capacity, indicating that both fibroblast loss and impaired
fibroblast function contribute to the decline in ECM homeostasis
(Fligiel et al., 2003). Additionally, fibroblasts in aged skin exhibited
reduced mechanical interactions with collagen fibers, leading to
impaired mechanotransduction and further compromising their
ability to maintain dermal structure (Fligiel et al., 2003; Fisher
et al., 2016).

Cellular senescence is initiated by multiple stimuli, including
oxidative stress (reactive oxygen species (ROS)), DNA damage,
ionizing radiation, telomere attrition, and mitochondrial
dysfunction (Figure 2) (Torres et al., 2024). These stressors
activate signaling pathways that upregulate cyclin-dependent
kinase (CDK) inhibitor proteins, including p16INK4a and
p21CIP1/WAF1. The increased expression of these inhibitors
suppresses CDK activity, leading to hypophosphorylation of the
retinoblastoma (RB) protein and ultimately triggering a sustained
G1-phase cell cycle arrest (Kudlova et al., 2022; Jin et al., 2024).
Additionally, activation of p53 (TP53) in response to DNA damage
contributes to the upregulation of p21, reinforcing senescence onset
(Jin et al., 2024; Mijit et al., 2020). Furthermore, senescence-
associated β-galactosidase (SA-β-Gal) is among the most
commonly utilized markers for identifying senescent cells. It is
detected histochemically at pH 6.0 due to increased lysosomal
activity. Recent findings suggest that SA-β-Gal activity correlates
with enhanced lysosomal biogenesis and metabolic dysfunction in
senescent fibroblasts, reinforcing its role as a key senescence
biomarker (Franco et al., 2025). Unlike apoptotic cells, senescent
fibroblasts evade immune clearance and persist within the dermal
microenvironment, where they actively secrete a pro-inflammatory
and tissue-degrading SASP. The aberrant accumulation of senescent
fibroblasts leads to progressive loss of cellular identity, which causes
altered gene expression profiles, impaired ECM remodeling, and
dysregulated signaling pathways essential for maintaining dermal
homeostasis (Pereira et al., 2019; Song et al., 2020).

Recent research has introduced nuanced mechanisms that extend
beyond classical senescence, enriching our understanding of how
fibroblast aging contributes to skin degeneration. Among these,
inflammaging and senescent drift have garnered attention for their
systemic and temporal implications. Rather than acute, pathogen-
driven inflammation, the skin of elderly individuals experiences a
chronic inflammatory bias, shaped by long-term accumulation of
senescent fibroblasts and their persistent secretion of SASP factors
(Pilkington et al., 2021). Unlike acute inflammation, which is self-
resolving and beneficial, inflammaging perpetuates tissue damage,
promotes ECM degradation, and impairs cutaneous immune
responses (Pilkington et al., 2021). Recent studies indicate that
fibroblast-derived extracellular vesicles may serve as amplifiers of
this chronic inflammation by disseminating pro-inflammatory signals
throughout the dermal microenvironment, establishing a feed-
forward loop that exacerbates aging phenotypes and delays wound
repair Recent studies indicate that fibroblast-derived extracellular
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vesicles may serve as amplifiers of this chronic inflammation by
disseminating pro-inflammatory signals throughout the dermal
microenvironment, establishing a feed-forward loop that
exacerbates aging phenotypes and delays wound repair (Xie et al.,
2025; Bian et al., 2022; Lyamina et al., 2023). Moreover, inflammaging
alters the immunological landscape of the skin, increasing the
infiltration of dysfunctional macrophages and CCR2+ monocytes,
which further suppress immune surveillance and potentiate age-
associated dermopathologies (Fulop et al., 2023). Another evolving
concept is senescent drift, referring to the phenotypic and functional
heterogeneity that emerges among senescent cells over time. Unlike
the uniform senescence response seen in acute stress models, aged
dermal fibroblasts exhibit variable transcriptional and secretory
profiles influenced by cumulative environmental exposure,
epigenetic modifications, and stochastic factors (Sun, 2023). A key
mechanistic insight into this heterogeneity was demonstrated by Song
et al. who identified carnitine acetyltransferase (CRAT) as a central
metabolic regulator whose deficiency in dermal fibroblasts induced
mitochondrial dysfunction, oxidative stress, and a switch from
oxidative phosphorylation to glycolysis (Song et al., 2023). This
metabolic imbalance triggered persistent SASP expression through
activation of the cGAS-STING-NF-κB axis, mimicking senescence

phenotypes and promoting chronic inflammation and ECM
degradation. Their in vivo model using fibroblast-specific CRAT-
knockout mice confirmed the presence of pronounced aging features,
increased SASP factors, and decreased dermal collagen density, all
hallmarks of senescent drift (Song et al., 2023). Additionally,
Smirnova et al. emphasized that extracellular vesicles derived from
mesenchymal stem cells (MSCs), often explored as regenerative
agents, can paradoxically contribute to senescent drift if derived
from aged or stressed donors. These EVs carry a complex cargo of
cytokines, lipids, and nucleic acids capable of propagating senescence
to surrounding cells, exacerbating inflammaging and altering the local
immune milieu. The authors stress that such secretomes may lack
consistency, and without rigorous screening, pose a risk of
unintentionally amplifying senescence-related dysfunction
(Smirnova et al., 2023). Single-cell RNA sequencing and trajectory
analysis have further revealed that fibroblast subtypes transition
through intermediate states during aging, indicating that
senescence is not a binary switch but a spectrum of progressive
cellular states (Tao et al., 2024; Uyar et al., 2020). This insight
challenges current therapeutic strategies that broadly target
senescence and underscore the need for precision interventions
tailored to fibroblast subpopulations.

FIGURE 2
The general mechanisms of dermal fibroblast senescence and their effect on skin aging through the regenerative capacity, impairment of cellular
function, and tissue integrity.
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3.1 The impact of the senescence-
associated secretory phenotype on
skin aging

The SASP encompasses a diverse array of bioactive molecules,
including growth factors, microRNAs (miRNAs), cytokines,
chemokines, matrix metalloproteinases (MMPs), and small-
molecule metabolites, secreted by senescent cells (Wang et al.,
2024; Coppé et al., 2010). These factors alter the proliferation and
migration of nearby non-senescent cells while also exhibiting
immunomodulatory functions (Coppé et al., 2010). Among the
key SASP components, pro-inflammatory proteins including
interleukin-8 (IL-8), IL-15, IL-1β, and interferon-gamma
(IFNγ), along with MMPs involved in ECM degradation
(MMP1, MMP3, MMP10, MMP14, etc.), have been identified
in both skin aging-associated secretory phenotype (SAASP) and
canonical SASP, indicating common senescent signatures across
different tissues (Khavinson et al., 2022; Malaquin et al., 2016).
Additionally, SAASP exhibits distinct protein expression patterns
related to metabolic regulation and adherens junction
interactions, highlighting unique molecular adaptations specific
to senescent skin fibroblasts (Waldera Lupa et al., 2015; Lopes-
Paciencia et al., 2019). A study by Narzt et al. suggests that lipid-
derived SASP components contribute to senescence persistence
and skin aging by identifying lysophosphatidylcholines (LysoPCs)
as key SASP factors in senescent dermal fibroblasts, which
promote immune evasion and chronic inflammation through
altered chemokine secretion and macrophage signaling (Narzt
et al., 2021). In addition, Waldera Lupa et al. performed a
systematic molecular investigation of normal human dermal
fibroblasts obtained from intrinsically aged skin. The findings
reveal that fibroblasts from aged donors exhibit increased nuclear
foci positive for promyelocytic leukemia protein and p53 binding
protein 1, resembling DNA segments with chromatin alterations
reinforcing senescence. Despite the absence of increased DNA
damage or telomere shortening, these aged fibroblasts develop a
SAASP, distinct from the classical SASP. A total of 998 secreted
proteins were identified, with 70 proteins showing age-dependent
secretion patterns; suggesting that SAASP is essential in intrinsic
skin aging by altering the extracellular environment and fibroblast
function (Waldera Lupa et al., 2015).

3.2 SASP-driven ECM degradation and MMP
activation

The degradation of the ECM in aged fibroblasts results in
diminished dermal resilience and reduced thickness, leading to
skin laxity and wrinkle formation. The MMPs within the SASP
play a crucial role in this process by directly cleaving collagen
fibrils, and accelerating ECM breakdown during aging (Feng et al.,
2024; Freitas-Rodríguez et al., 2017). The study by Quan et al.
investigates the impact of collagen fragmentation and MMPs on
dermal fibroblast function in photodamaged human skin. Their
findings reveal that chronic UV exposure elevates multiple MMPs,
leading to progressive degradation of the ECM, impaired collagen
homeostasis, and reduced type I collagen production, which
collectively contribute to skin aging. Additionally, fragmented

collagen microenvironments were found to disrupt fibroblast
function, promoting increased MMP expression and decreased
collagen synthesis, highlighting a key mechanism in photoaging
and dermal degeneration (Quan et al., 2013). Qin et al. further
revealed that the age-associated decrease in dermal fibroblast size
independently elevates MMP expression by activating the AP-1
transcription factor complex (c-Fos/c-Jun), thereby facilitating
collagen breakdown (Qin et al., 2017). Liu et al. examine the
effects of human umbilical cord mesenchymal stromal cell-
derived extracellular vesicles (hucMSC-EVs) on dermal
fibroblasts during wound healing, identifying a distinct
MMP13+ fibroblast subtype that exhibits fetal-like
characteristics and has a crucial role in ECM reorganization by
expressing MMP13, MMP9, and HAS1, facilitating fibroblast
migration and keratinocyte interactions through the PIEZO1-
calcium-HIF1α-VEGF-MMP13 signaling pathway, emphasizing
the essential role of MMPs in fibroblast-driven ECM
remodeling and skin regeneration (Liu Y. et al., 2024).
Additionally, Song et al. investigate how UV irradiation induces
MMP-1 expression in human dermal fibroblasts through
epigenetic regulation. Their findings reveal that UV exposure
downregulates carnitine acetyltransferase (CRAT) via promoter
hypermethylation, leading to the activation of ERK, JNK, and
p38 MAPK signaling pathways, which in turn upregulate MMP-1
expression and accelerate ECM degradation. Overexpression of
CRAT mitigated this effect, suggesting that epigenetic modulation
of CRAT could serve as a potential therapeutic target for
preventing UV-induced skin aging (Song et al., 2024).
Furthermore, Asharaf et al. investigate the photoprotective
effects of sulfated mannogalactan (BVP-2) from Bacillus
velezensis in preventing UV-A-induced MMP upregulation and
ECM degradation in human dermal fibroblasts. Results indicate
that UV-A exposure significantly increases MMP-2, MMP-9, and
MMP-1 expression, leading to collagen degradation and
photoaging, whereas treatment with BVP-2 downregulates
MMP expression by 30%–50%, reducing oxidative stress and
ECM breakdown (Asharaf et al., 2024). Molecular docking
studies further support that BVP-2 directly interacts with
MMPs, inhibiting their enzymatic activity, and highlighting its
potential as a natural anti-photoaging agent (Asharaf et al., 2024).
Furthermore, Novotná et al. explored the potential of natural
bioactive compounds in inhibiting MMP activity and preventing
ECM degradation in skin aging, examining the effects of
rhamnose, rutinose, hesperidin, and hesperetin on normal human
dermal fibroblasts and demonstrating that MMP-2 andMMP-1 levels
were significantly decreased, particularly with rutinose and rhamnose,
which also enhanced collagen I production, suggesting that these
flavonoids and carbohydrates play a protective role in fibroblast-
mediated ECM homeostasis, making them promising candidates for
cosmetic and dermatological applications to counteract fibroblast
dysfunction and collagen breakdown (Novotná et al., 2023).
Nevertheless, Yokose et al. investigate MMPs in UVB-induced skin
aging, highlighting tissue inhibitor of metalloproteinases-1 (TIMP-1)
as a key regulator that suppresses MMP-12, MMP-9, MMP-1, and
MMP-3 to prevent collagen and elastic fiber degradation. TIMP-1
overexpression preserves ECM integrity, while its inhibition
exacerbates MMP-driven collagen breakdown and inflammation,
accelerating skin aging (Yokose et al., 2012).
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3.3 Altered ECM in skin cancer progression

ECM disruption caused by senescent dermal fibroblasts has been
increasingly recognized as a contributing factor to the initiation and
progression of skin cancers. These fibroblasts exhibit altered
expression of structural proteins and matrix-remodeling enzymes,
leading to a microenvironment that supports carcinogenesis.
Notably, the excessive activity of MMPs, particularly MMP-1 and
MMP-3, degrades type I and III collagen, reducing dermal integrity
and facilitating the migration of pre-malignant keratinocytes (Cole
et al., 2018). Several studies have shown that senescent fibroblasts
influence neighboring epithelial cells not only via soluble SASP
factors but also by altering ECMmechanics and biochemistry. Fisher
et al. reported that the senescence-driven ECM microenvironment
in aged skin impairs keratinocyte-fibroblast interactions, enhancing
susceptibility to basal cell and squamous cell carcinoma (Fisher et al.,
2023). Additionally, Mavrogonatou et al. demonstrated that
extracellular vesicles released by senescent fibroblasts carry ECM
fragments and bioactive molecules that modulate keratinocyte
behavior and gene expression, favoring transformation
(Mavrogonatou et al., 2023). Quan et al. investigate the role of
MMP1 in dermal aging and skin tumor susceptibility using a
humanized transgenic mouse model that selectively expresses
human MMP1 in fibroblasts, revealing that elevated MMP1 activity
in fibroblasts leads to collagen fibril fragmentation, disrupted
fibroblast-ECM interactions, and reduced fibroblast spreading,
which impairs collagen homeostasis and accelerates dermal aging,
demonstrating that MMP1-induced ECM degradation creates a pro-
inflammatory and tumorigenic microenvironment, significantly
increasing susceptibility to skin papilloma formation, highlighting
MMP1 as a pivotal factor in age-related dermal degeneration and
tumorigenesis (Quan et al., 2023).

UV radiation further amplifies ECM alterations. Kang et al.
showed that UVB-irradiated senescent fibroblasts increase
fibronectin deposition and activate PI3K/AKT and ERK signaling
in HaCaT cells, resulting in enhanced proliferation, a hallmark of
early neoplastic transformation (Kang et al., 2008). Likewise, Ezure
et al. identified that senescent fibroblast-derived complement factor
D negatively regulates COL1A1 expression in nearby fibroblasts,
contributing to a collagen-deficient dermal matrix permissive to
malignant progression (Ezure et al., 2019). In the context of
melanoma, the stromal contribution to tumor development has
also been observed. Sadangi et al. reported that senescent fibroblasts
and altered ECM components help transformed melanocytes bypass
oncogene-induced senescence, a key step in early melanoma
formation (Sadangi et al., 2022). Toutfaire et al. showed that
senescent dermal fibroblasts, particularly those induced by UVB
or replicative aging, exhibit a pro-tumorigenic secretory profile,
including elevated MMPs and cytokines that remodel the ECM.
While their direct impact on cutaneous squamous cell carcinoma
(cSCC) cell behavior was limited, cSCC cells reinforced fibroblast
senescence and SASP expression via NF-κB activation. This
bidirectional crosstalk promotes ECM degradation and
inflammation, creating a microenvironment conducive to tumor
progression (Toutfaire et al., 2018). Furthermore, age-related ECM
changes not only affect cancer initiation but also shape tumor
progression and therapeutic response. The degradation of
basement membrane components and disorganization of collagen

fibers reduce physical barriers to invasion and support epithelial-
mesenchymal transition (EMT), a process critical for cancer cell
dissemination (Pretzsch et al., 2022). Altered ECM stiffness and
composition, including the accumulation of non-fibrillar collagens
and proteoglycans, have been shown to modulate integrin signaling,
enhance mechanotransduction, and promote invasive phenotypes in
skin cancer cells (Blokland et al., 2020; Zhang J. et al., 2024).

3.4 SASP cytokines and chemokines in
dermal fibroblasts

In dermal fibroblasts, SASP components, particularly cytokines
and chemokines, contribute to chronic inflammation, ECM
degradation, and impaired tissue regeneration. These secreted
factors sustain autocrine senescence within fibroblasts and act in
a paracrine manner, propagating senescence in neighboring cells
and exacerbating tissue dysfunction (Table 1) (Acosta et al., 2008;
Wlaschek et al., 2021; Li X. et al., 2023). IL-1β, tumor necrosis factor-
alpha (TNF-α), and IL-6 are the primary cytokines secreted by
senescent fibroblasts, which serve as central mediators of chronic
low-grade inflammation in aging skin (Li X. et al., 2023). IL-6 is
highly upregulated in senescent fibroblasts and functions through
the JAK/STAT3 signaling pathway, reinforcing fibroblast senescence
and inducing paracrine senescence in surrounding cells. IL-1β, a
potent activator of MMPs, promotes ECM remodeling by
upregulating MMP-1, MMP-3, and MMP-9, leading to collagen
degradation and dermal thinning. Similarly, TNF-α, a key
inflammatory regulator, activates NF-κB and AP-1 signaling,
driving fibroblast dysfunction and accelerating ECM breakdown.
A study explores the role of EVs secreted by senescent dermal
fibroblasts in regulating epidermal homeostasis and inflammation
(Choi et al., 2020). Senescent fibroblasts exhibit increased EV
production due to elevated dysfunctional lysosomal activity,
oxidative stress, and neutral sphingomyelinase (nSMase) activity.
Compared to EVs from young fibroblasts, senescent fibroblast-
derived EVs impair keratinocyte differentiation and barrier
function, while also increasing pro-inflammatory cytokine IL-6
levels, contributing to chronic inflammation in aging skin (Choi
et al., 2020). Another study investigates the impact of SASP
cytokines and EVs in senescent dermal fibroblasts, highlighting
the senomorphic effects of Haritaki fruit extract (Bogdanowicz
et al., 2023). Senescent fibroblasts triggered by ionizing radiation
exhibited elevated IL-6, IL-1β, and IL-8, contributing to chronic
inflammation and ECM degradation (Bogdanowicz et al., 2023).
Haritaki extract effectively suppressed SASP cytokine secretion and
EV-mediated inflammatory signaling, demonstrating its potential to
attenuate fibroblast senescence and delay skin aging (Bogdanowicz
et al., 2023). In addition, a study examined the effects of medicinal
plant extracts on etoposide-induced senescent dermal fibroblasts,
revealing that senescent cells displayed a distinct SASP profile with
increased IL-6 secretion, further driving inflammation and tissue
degradation. While quercetin and goldenrod extracts demonstrated
senolytic properties, selectively reducing the senescent fibroblast
burden, chamomile extract unexpectedly amplified IL-6 secretion,
intensifying inflammatory responses (Imb et al., 2024). Charoensin
et al. investigated the protective effects of nuciferine, an alkaloid
fromNelumbo nucifera, against H2O2-induced senescence in human
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dermal fibroblasts, with particular emphasis on the modulation of
SASP cytokines. Oxidative stress from H2O2 exposure led to
increased cytokines secretion, contributing to ECM degradation
and chronic inflammation, whereas nuciferine treatment
significantly reduced SASP cytokine expression and senescence-
associated β-galactosidase activity, suggesting its potential to
mitigate fibroblast senescence and inflammation-driven skin
aging (Charoensin and Weera, 2022). Ogata et al. explored the
role of SASP factors in macrophage dysfunction and its contribution
to senescent fibroblasts accumulation in the dermis. SASP factors,
particularly IL-1α and GM-CSF, impair both apoptosis induction
and phagocytosis by downregulating TNF-α expression and
reducing the engulfment capacity of macrophages, leading to an
increased burden of senescent fibroblasts in aged and UV-exposed
skin (Ogata et al., 2021).

In addition to cytokines, senescent fibroblasts secrete
chemokines such as CXCL8, CCL2, and CXCL1, which modulate
immune cell infiltration and inflammatory responses in aging skin
(Chen et al., 2024). CXCL8 enhances neutrophil recruitment and
MMP activity, contributing to collagen degradation and loss of skin
elasticity. CCL2, CCL2, or monocyte chemoattractant protein-1
(MCP-1), attracts macrophages to senescent fibroblast-rich areas,
increasing chronic immune activation and fibrosis. In addition,
CXCL1, a keratinocyte-derived chemokine, has been implicated
in fibroblast-keratinocyte signaling dysregulation, leading to
delayed wound healing and barrier dysfunction in aged skin
(Chen et al., 2024; Esterly and Zapata, 2024). Li et al. studied the

protective effects of a fermented rice product called maifuyin, and its
bioactive components, choline and succinic acid (SA), against UVA-
induced senescence in human dermal fibroblasts. UVA exposure
elevated CXCL2 expression, promoting inflammation and ECM
degradation, while Maifuyin and SA treatment suppressed
CXCL2 secretion, β-galactosidase activity, and MMP-1
expression, highlighting their potential as anti-photoaging agents
targeting oxidative stress and chemokine signaling (Li et al., 2025).
Fang et al. systematically compared the molecular characteristics of
senescent human dermal fibroblast models, highlighting the elevated
expression of chemokines CXCL1, CXCL8, and CCL2 (Fang et al.
2024). UVB-induced and atazanavir-treated fibroblasts exhibited
the highest SASP-related chemokine expression, creating a pro-
inflammatory microenvironment that activates T cells,
macrophages, and NK cells. Single-cell RNA sequencing revealed
similarities between senescent fibroblasts and aged skin conditions,
suggesting that targeting fibroblast-derived chemokines could
provide therapeutic strategies for age-related and inflammatory
skin diseases (Fang et al. 2024). Smith & Carroll further
investigated the role of mTORC1 activation and lysosomal
dysfunction in senescent dermal fibroblasts, and they found that
elevated IL-6, IL-8, CXCL1, and MMP expression in senescent
fibroblasts exacerbates immune dysregulation and tissue
remodeling, accelerating skin aging (Smith and Carroll, 2024).
Chambers et al. demonstrate that senescent dermal fibroblasts
contribute to age-related immune suppression by upregulating
CCL2, driving CCR2+CD14+ monocyte infiltration and PGE2-

TABLE 1 Cytokines and chemokines in SASP of senescent dermal fibroblasts.

Cytokines/
Chemokines

Role in SASP Signaling
pathways
involved

Biological activity and
delivery modality

References

IL-6 Promotes chronic inflammation,
tissue remodeling, and immune

modulation

JAK-STAT, NF-κB,
MAPK.

Soluble and EV-associated; co-acts with
IL-8, enhances paracrine senescence

Tanaka et al. (2014), Swaroop et al.
(2024), Kolář et al. (2012), Johnson

et al. (2020)

TNF-α Drives inflammation and cell
stress responses

TNF-R, NF-κB, MAPK. Soluble; synergizes with IL-1β and IL-6 in
promoting SASP.

Mavrogonatou et al. (2018), Bashir
et al. (2009)

TGF-β Regulates fibrosis and wound
healing

TGF-β/SMAD, MAPK. Soluble and EV-encapsulated; delivered
with ECM-related proteins

Liu et al. (2016), Urban et al. (2023)

IL-1α Initiates inflammation and SASP
signaling

NF-κB, inflammasome Membrane-bound and soluble; primes
SASP release

Boxman et al. (1996), Koskela von
Sydow et al. (2016), Maret et al. (2004)

IL-1β Induces inflammation and MMP
activation

IL-1R, NF-κB,
inflammasome

Soluble; often released via EVs and
inflammasome activity

Wang et al. (2024), Wlaschek et al.
(2021)

IL-8 Promotes neutrophil chemotaxis
and MMP induction

NF-κB, PI3K-Akt,
MAPK.

Soluble and EV-encapsulated; co-
packaged with CCL2 and IL-6 in EVs

Kolář et al. (2012), Zhang M. et al.
(2024)

CCL2 Attracts macrophages and
enhances immune infiltration

CCR2, NF-κB,
PI3K-Akt

Soluble and EV-associated; facilitates
monocyte recruitment and

immunosuppression

Chambers et al. (2021), Ohgo et al.
(2015)

CCL3 Stimulates T-cell and monocyte
chemotaxis

CCR1, NF-κB, MAPK. Soluble; acts in combination with
CCL5 in immune cell recruitment

Wang et al. (2024), Lei et al. (2023)

CCL5 Sustains immune cell infiltration
and inflammation

CCR5, MAPK, NF-κB Soluble and EV-associated; interacts with
IL-8 in sustained inflammation

Wang et al. (2024), Lei et al. (2023)

CXCL1 Promotes neutrophil infiltration
and inflammatory amplification

CXCR1/2, MAPK,
PI3K-Akt

Soluble; part of EV cargo in senescent
fibroblasts and UV-induced skin

Kolář et al. (2012), Koczkowska et al.
(2025)

CXCL2 Enhances neutrophil recruitment,
chronic inflammation

CXCR2, NF-κB,
PI3K-Akt

Soluble and EV-bound; upregulated by
oxidative stress and photoaging triggers

Bogdanowicz et al. (2023), Kita et al.
(2024)
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mediated T-cell inhibition. p38 MAPK inhibition suppressed
CCL2 expression, reduced monocyte recruitment, and restored
antigen-specific immunity, highlighting CCL2 as a potential
target for improving skin immune function in aging (Chambers
et al., 2021). Horn et al. investigated the role of CCL2, CXCL1, and
IL-8 in sulfur mustard (SM)-induced senescence in human dermal
fibroblasts, revealing their contribution to chronic inflammation and
impaired wound healing (Horn et al., 2022). Gene expression
analysis and cytokine profiling showed that senescent fibroblasts
upregulate CCL2, promoting monocyte recruitment, while
CXCL1 enhances neutrophil infiltration, and IL-8 sustains the
inflammatory microenvironment, exacerbating tissue damage and
delayed regeneration (Horn et al., 2022).

4 Signaling pathways involved in dermal
fibroblast senescence

Fibroblast senescence in the dermis is a complex and
multifaceted process governed by various signaling pathways that
contribute to skin aging and declining skin function. The DNA
damage response (DDR) pathway serves as an initial defense
mechanism against cellular damage induced by oxidative stress,
UV radiation, and different genotoxic factors (Huang and Zhou,
2020). Upon sensing DNA damage, DDR proteins including ATM
(ataxia-telangiectasia mutated), p53, and p21 are activated to induce
cell cycle arrest, therefore preventing the propagation of damaged
DNA and promoting repair mechanisms to maintain genomic
integrity (Gruber et al., 2013). However, persistent activation of
the DDR pathway, due to continuous stress, leads to a state of
irreversible cell cycle arrest, a hallmark of senescence (Ma and Zhou,
2025). In dermal fibroblasts, this persistent DDR activation
contributes significantly to the aging process by impairing the
proliferation of fibroblasts and disrupting the maintenance of the
ECM, ultimately accelerating the aging of the skin (Wlaschek et al.,
2021; Gruber et al., 2013; Shackelford et al., 2001; Ohtsuka et al.,
2004). Zhang et al. presented that MSC-EVs protect fibroblasts from
UVB-induced photoaging by modulating the TIMP1/
Notch1 pathway, reducing ROS accumulation, DNA damage, and
SASP-mediated inflammation, thereby preserving fibroblast
viability and ECM integrity (Zhang H. et al., 2024). In contrast, a
study identified ATR kinase activation as a keymediator of psoralen-
induced fibroblast senescence, where telomeric DNA damage and
persistent γ-H2AX foci drive cell-cycle arrest, reinforcing the role of
ATR in telomere-dependent senescence (Hovest et al., 2006).
Furthermore, MAPK pathways, particularly p38 and JNK, further
amplify senescence by promoting SASP-mediated inflammation and
ECM degradation, while Notch1 and EGFR/Akt signaling serve as
protective regulators, mitigating oxidative stress and sustaining
fibroblast survival (Tivey et al., 2013). Mavrogonatou et al. found
that UVB-induced fibroblast senescence is regulated through the
JNK/ATM-p53 signaling axis, with additional cytoprotective roles of
the EGFR/Akt and Nrf2 pathways in stress adaptation and SASP
modulation (Mavrogonatou et al., 2022). Tiemann et al. linked
ABCC6 deficiency in PXE fibroblasts to premature senescence via
a p21-mediated mechanism, independent of p53 activation, leading
to increased IL-6 and MCP-1 secretion, suggesting a pro-
inflammatory SASP (Tiemann et al., 2020). Furthermore,

Frediani et al. identified long non-coding RNAs (lncRNAs)
H19 and PURPL as key regulators of fibroblast senescence, with
H19 promoting autophagy and senescence through PI3K/AKT/
mTOR activation, whereas PURPL inhibition reversed senescence
by downregulating p53 (Frediani et al., 2024). Promjantuek et al.
explored the involvement of SIRT1 in dermal fibroblast
immortalization, showing that SIRT1 activation extends fibroblast
lifespan by modulating telomerase activity and repressing
p53 signaling (Promjantuek et al., 2022). Additionally, galangin-
induced activation of SIRT1 attenuates UVB-induced fibroblast
senescence through the deacetylation of p53, decreased
expression of SASP markers, and restoration of dermal
homeostasis (Wen et al., 2024). Adding more, Haj et al.
identified cGAS-STING activation as a key driver of premature
senescence in ataxia-telangiectasia (A-T) dermal fibroblasts, marked
by an interferon-stimulated gene (ISG) signature independent of
interferon expression. Transcriptomic analysis revealed
dysregulated ECM remodeling and SASP-associated gene
expression, contributing to fibrotic remodeling and cellular
dysfunction (Haj et al., 2023).

Another critical regulator of fibroblast senescence is the
p16INK4a/pRB pathway, which is essential for maintaining cell
cycle control. P16INK4a acts as a potent inhibitor of cyclin-
dependent kinases (CDKs), which are essential for
phosphorylating the retinoblastoma protein (pRB) (Serizawa,
1998; Ohtani et al., 2004). This phosphorylation event is
necessary for progression through the G1 phase of the cell cycle.
In senescent fibroblasts, elevated levels of p16INK4a block the
phosphorylation of pRB, thus maintaining pRB in its active form
and inducing G1 arrest. This arrest prevents fibroblasts from re-
entering the cell cycle, contributing to the loss of proliferative
capacity that characterizes aging fibroblasts (Vandenberk et al.,
2011; Weebadda et al., 2005). The accumulation of p16INK4a in
aging skin is associated with reduced fibroblast function and
impaired wound healing, which further exacerbates the aging
phenotype (Safwan-Zaiter et al., 2022; Adamus et al., 2014). In
an effort to identify potential therapeutic targets, Takaya et al.
examined the role of Secreted Frizzled-Related Protein 4 (SFRP4)
in fibroblast senescence and SASP regulation. Their findings indicate
that SFRP4 expression is significantly upregulated in p16INK4a-
positive fibroblasts and promotes senescence by enhancing IL-6, IL-
8, MMP3, and TNF-α expression, while SFRP4 knockdown
effectively suppressed SASP, improved fibroblast proliferation,
and enhanced ECM integrity, suggesting its potential as a target
for anti-aging interventions (Takaya et al., 2022). A study found that
UVB-induced fibroblast senescence is mediated by p16INK4a
activation, with Allomyrina dichotoma larvae extract reducing
ROS accumulation, suppressing MMP-1, and restoring COL1A1,
ultimately preventing ECM degradation (Kim et al., 2024). In
another study, P-MSC-EVs rejuvenate p16INK4a + senescent
fibroblasts by delivering miR-145-5p, activating Erk/Akt
signaling, and enhancing tissue regeneration (Su et al., 2023).

The NF-κB signaling pathway is another key regulator of
fibroblast senescence, particularly through its role in promoting
inflammation. NF-κB is a central transcription factor that regulates
the matrix-degrading enzymes, expression of pro-inflammatory
cytokines, and growth factors (Liu et al., 2017). In senescent
fibroblasts, NF-κB signaling is persistently activated in response
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to DNA damage, oxidative stress, and other stimuli. Once activated,
NF-κB translocates to the nucleus and promotes the expression of
pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β, which
are key components of the SASP. The cytokines and MMPs released
from senescent fibroblasts contribute to a pro-inflammatory
microenvironment and ECM degradation, which accelerates skin
aging. This inflammatory feedback loop, driven by NF-κB, further
amplifies the senescence phenotype and promotes skin aging
(Salminen et al., 2012; Nelson et al., 2018; Chien et al., 2011).
Trentini et al. investigated apple-derived nanovesicles (ADNVs) as
potential anti-aging agents, revealing that ADNVs enhance collagen
synthesis while reducing MMP-1, MMP-8, and MMP-9 expression
through the downregulation of Toll-like receptor 4 (TLR4)-NF-κB
signaling, highlighting their role in modulating fibroblast senescence
and ECM integrity (Trentini et al., 2022). Meanwhile, Li et al.
explored the role of SIRT7 in skin immune function and
inflammation, showing that SIRT7 downregulation with age
reduces TLR2-mediated NF-κB activation, thereby dampening
pro-inflammatory responses in dermal fibroblasts, a mechanism
potentially linked to decreased skin reactivity in aged individuals (Li
et al., 2022). Further emphasizing NF-κB’s role, Harada et al. found
that constitutive activation of IKKβ (a key regulator of NF-κB)
prevents stress-induced fibroblast senescence by sustaining
Ezh2 expression, suppressing p16INK4a activation, and
counteracting SASP-associated inflammation (Harada et al.,
2024). Woo et al. showed that leaf extract from Isatis tinctoria L.
prevents fibroblast senescence through inhibition of the mTOR/NF-
κB signaling pathway, thereby reducing SASP secretion and

inflammation (Woo et al., 2022). Additionally, Kim et al.
identified a novel Morus alba-derived compound (GDHBA) that
mitigates TNF-α-induced oxidative damage and inflammation in
human dermal fibroblasts, significantly reducing MMP-1 levels via
NF-κB and MAPK/AP-1 inhibition (Kim et al., 2022).

The mTOR signaling pathway, particularly through mTORC1,
is a key regulator of cellular growth and metabolism. In dermal
fibroblasts, mTORC1 coordinates cellular responses to nutrient
availability, stress, and growth factors. Under normal conditions,
mTORC1 regulates protein synthesis and inhibits autophagy
(Figure 3) (Ben-Sahra and Manning, 2017; Panwar et al., 2023).
However, in senescent fibroblasts, mTORC1 activation leads to the
autophagy suppression, which is important for maintaining
cellular homeostasis by degrading damaged proteins and
organelles (Carroll et al., 2017). In the absence of efficient
autophagy, cellular damage accumulates, contributing to
senescence. Furthermore, mTORC1 activation promotes the
expression of SASP factors, which exacerbate the inflammatory
environment in aged skin (Kang and Elledge, 2016; Young and
Narita, 2010). The mTOR pathway is thus a critical regulator of
both the cellular maintenance processes and the inflammatory
responses that drive skin aging. Li et al. identified annexin A7
(ANXA7) as a key regulator of senescence-associated
heterochromatin foci (SAHF) formation in human dermal
fibroblasts via the AMPK/mTOR pathway, showing that inhibiting
ANXA7 with ABO enhances mTOR activation while suppressing
AMPKphosphorylation, which leads to reduced SAHF formation and
altered chromatin remodeling (Li N. et al., 2023).

FIGURE 3
The intracellular signaling alterations in aged dermal fibroblasts, focusing on key pathways that influence cellular aging including, ECM production,
autophagy, and antioxidant molecule regulation.
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In addition to these pathways, NRF2 (Nuclear factor erythroid
2-related factor 2) serves as a key regulator in protecting fibroblasts
from oxidative stress. NRF2 regulates the expression of antioxidant
enzymes that counteract oxidative damage, a major contributor to
fibroblast senescence (Kim et al., 2010; Ngo and Duennwald, 2022).
As we age, NRF2 activity declines, leading to increased oxidative
stress that further exacerbates DNA damage, ECM degradation, and
the onset of senescence. Enhancing NRF2 activity has been proposed
as a strategy to reduce oxidative damage and delay the progression of
skin aging (Medoro et al., 2024). Fang et al. reported that activation
of NRF2 by Poria cocos extract shields fibroblasts from H2O2-
induced oxidative damage by enhancing antioxidant responses
and suppressing TGF-β/Smad7 signaling, which otherwise drives
collagen degradation and ECM instability (Fang et al., 2021).
Similarly, Liu et al. found that Urolithin A (UroA) activates
NRF2/ARE signaling and mitophagy via the SIRT3-FOXO3-
PINK1-PARKIN pathway, effectively reducing ROS accumulation,
limiting SASP expression, and preventing fibroblast senescence (Liu
et al., 2022). In addition, Takaya et al. observed that Cistanche
deserticola polysaccharides enhance NRF2/HO-1 signaling, leading
to decreased ROS levels, suppressed SASP markers, and improved
fibroblast proliferation, ultimately delaying oxidative damage-induced
skin aging (Takaya et al., 2023). In line with this, Lee et al. identified
Galangin, a flavonoid, as an NRF2 activator that counteracts H2O2-
induced fibroblast senescence by stimulating SIRT1-PGC-1α/
Nrf2 signaling, increasing antioxidant enzyme expression, and
maintaining ECM integrity (Lee et al., 2022). NRF2’s role extends
to protecting fibroblasts from glucocorticoid-induced skin aging
(Kang et al., 2024). Additionally, Darawsha et al. emphasized the
synergistic effects of carotenoids, polyphenols, and estradiol in NRF2-
mediated mitochondrial protection, which help to maintain collagen
integrity and suppress MMP-1 levels, counteracting fibroblast
senescence (Darawsha et al., 2024).

The TGF-β signaling pathway is another key mediator of
fibroblast senescence, particularly through its role in fibrosis and
ECM remodeling. TGF-β is a potent regulator of fibroblast function,
and its signaling through the SMAD proteins promotes the
expression of ECM components such as collagen. In senescent
fibroblasts, TGF-β signaling is upregulated, leading to excessive
ECM deposition and fibrosis, which results in formation of
wrinkles and stiffening of the skin (Yu et al., 2021). Chronic
TGF-β signaling also contributes to the pro-inflammatory
environment that drives senescence and aging in dermal tissues.
Park et al. highlighted leucine-rich alpha-2-glycoprotein 1 as a key
factor in maintaining ECM integrity through TGF-β activation,
enhancing collagen production while suppressing MMP-1
expression (Park et al., 2023). The developmental stage-specific
interactions between TGFBR2 and DNMT3A suggest an
epigenetic regulation of fibroblast aging, further influencing ECM
remodeling (Tomela et al., 2021). Human ceramides have also been
demonstrated to promote collagen and fibrillin synthesis via TGF-β
and FGF2 signaling, improving skin elasticity and potentially
counteracting structural decline (Sugahara et al., 2022).
Santamarine protects dermal fibroblasts from UVA-induced
photoaging by suppressing MAPK/AP-1 and activating TGF-β/
Smad, reducing MMP-1 expression and restoring collagen
production (Oh et al., 2021). Additionally, the anti-aging
potential of Acheta domesticus extract has been explored,

demonstrating the ability to stimulate TGF-β1 expression, inhibit
collagenase, and prevent ECM degradation (Yeerong et al., 2024).
Research on the effects of cortisol on collagen homeostasis has
shown that cortisol suppresses type I collagen production through
glucocorticoid receptor signaling. Furthermore, AP collagen
peptides have been found to prevent this inhibition by blocking
glucocorticoid receptor activation and restoring TGF-β signaling,
providing a potential strategy to counteract stress-induced skin
aging (Chae et al., 2021).

Finally, IGF-1 signaling promotes fibroblast proliferation and
ECM synthesis. IGF-1 activates the PI3K/Akt pathway, which
supports cell survival, growth, and collagen production (Khan
et al., 2025). As IGF-1 signaling declines with age, fibroblasts lose
their proliferative capacity and their ability to maintain the integrity
of the ECM, leading to thinning of the dermis and decreased skin
elasticity. This reduction in IGF-1 signaling is strongly related to the
aging process and the reduced regenerative capacity of fibroblasts in
aging skin (Zhang J. et al., 2024). Xu et al. investigated oleanolic acid
as an anti-aging agent, demonstrating that it modulates IGF-1
signaling and downregulates PI3K/AKT/mTOR activity, leading
to reduced SASP cytokines and improved fibroblast function (Xu
et al., 2025). Similarly, Wen et al. studied the galangin’s protective
properties in H2O2-induced oxidative stress in dermal fibroblasts,
showing that it activates IGF-1R signaling to enhance collagen
synthesis and inhibit inflammation (Wen et al., 2020). Further
emphasizing IGF-1’s role in fibroblast health, Mahajan et al.
examined creatine and nicotinamide, highlighting their
antioxidant properties and ability to prevent fibroblast senescence
by maintaining IGF-1 expression (Mahajan et al., 2021). Lee et al.
extended this work by demonstrating that IGF-1 increases biglycan
and decorin synthesis, which stabilizes collagen and protects against
ECM degradation (Lee et al., 2021). Echinacoside promotes collagen
synthesis and fibroblast survival by activating IGF-1/IGF-1R
pathways, counteracting UVB-induced photoaging and oxidative
damage (Wen et al., 2025). Along with that, the loss of IGF-1
expression in aged fibroblasts has been linked to impaired
keratinocyte responses to UVB radiation, leading to increased
photocarcinogenesis, whereas fractionated laser resurfacing has
been shown to restore IGF-1 levels and improve skin resilience
(Spandau et al., 2021).

5 Future direction

Research on fibroblast senescence and skin aging has rapidly
evolved, with novel therapeutic strategies emerging to mitigate
cellular dysfunction, chronic inflammation, and ECM
degradation. The future of fibroblast senescence research will
focus on targeted senotherapeutics, stem cell-based interventions,
metabolic and epigenetic reprogramming, and biomaterial
applications, all of which hold promise for delaying or reversing
age-related skin deterioration. One of the most promising avenues
for future research is the development of senolytics and
senomorphics to selectively eliminate senescent fibroblasts or
suppress the SASP. Recent studies have identified small
molecules, such as ABT-263 (Navitoclax) and Quercetin, that
target senescent fibroblasts by modulating the Bcl-2 family of
proteins, thereby reducing inflammation and restoring tissue
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homeostasis (Widgerow et al., 2024). Additionally, nutraceuticals
such as resveratrol and fisetin have shown potential in reducing
oxidative stress and inhibiting SASP-associated cytokines like IL-6,
IL-8, and MMPs (Wyles et al., 2024). Future clinical studies should
focus on optimizing the safety and efficacy of these compounds for
dermatological applications. Stem cell-based approaches,
particularly MSC-EVs, offer a promising strategy for fibroblast
rejuvenation. MSC-EVs have been shown to transfer bioactive
molecules, such as miRNAs and proteins, that suppress fibroblast
senescence, enhance collagen synthesis, and modulate inflammatory
responses (Liu J. et al., 2024). However, standardizing EV isolation
and characterization protocols, as well as optimizing delivery
methods, remain major challenges. Future studies should aim to
enhance the specificity and longevity of EV-based fibroblast
therapies for clinical applications. In addition, metabolic
dysregulation has an important role in fibroblast senescence, with
studies indicating that senescent fibroblasts undergo metabolic
shifts, including mitochondrial dysfunction and increased
glycolysis. Caloric restriction mimetics, such as spermidine and
nicotinamide riboside, undergo investigation for their potential to
restore mitochondrial homeostasis and extend the fibroblast lifespan
(Wiley and Campisi, 2021). Moreover, epigenetic alterations,
including histone acetylation and DNA methylation, regulate
fibroblast senescence, making epigenetic drugs such as histone
deacetylase (HDAC) inhibitors potential candidates for reversing
fibroblast aging (Wang K. et al., 2022). Recent findings suggest that
the skin microbiome is crucial in modulating fibroblast function and
inflammation. Dysbiosis, characterized by an imbalance inmicrobial
communities, has been linked to chronic low-grade inflammation
and increased oxidative stress in dermal fibroblasts. Probiotic and
postbiotic formulations are being explored as potential interventions
to modulate fibroblast aging and improve skin resilience
(Ratanapokasatit et al., 2022). Future studies should aim to
identify particular bacterial strains and microbial metabolites
capable of promoting fibroblast longevity. Innovative biomaterials
are being developed to support fibroblast function, accelerate wound
healing, and combat skin aging. Hydrogel-based scaffolds enriched
with growth factors, such as PDGF and epidermal growth factor,
have demonstrated efficacy in promoting fibroblast proliferation
and collagen synthesis (Sindhi et al., 2025; Chen et al., 2025).
Additionally, bioengineered matrices that mimic the native ECM
environment may serve as platforms for fibroblast transplantation
and skin regeneration therapies. Future research should focus on
optimizing biomaterial properties to enhance fibroblast survival and
functional integration (Xing et al., 2020).

6 Conclusion

The process of dermal aging is closely linked to the functional
decline and senescence of fibroblasts, which disrupts extracellular
matrix homeostasis, reduces skin elasticity, and promotes chronic

inflammation. The interplay between cellular stressors,
mitochondrial dysfunction, and epigenetic alterations contributes
to fibroblast senescence and the secretion of the senescence-
associated secretory phenotype (SASP), further exacerbating skin
degeneration. Emerging evidence suggests that targeting fibroblast
senescence through senolytics, stem cell-derived extracellular
vesicles, and metabolic interventions holds promise for reversing
or mitigating age-related skin deterioration. While significant
progress has been made in understanding fibroblast aging, future
research should focus on optimizing therapeutic strategies to
enhance fibroblast longevity, restore ECM integrity, and improve
overall skin health. Advances in regenerative medicine, biomaterials,
and molecular interventions may provide new avenues for delaying
or reversing dermal aging, ultimately improving skin function and
resilience against environmental stressors.
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