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Introduction: Colorectal cancer is the third most common cancer worldwide,
and accurate pathological diagnosis is crucial for clinical intervention and
prognosis assessment. Although deep learning has shown promise in
classifying whole slide images (WSIs) in digital pathology, existing weakly
supervised methods struggle to fully model the multimodal diagnostic
process, which involves both visual feature analysis and pathological
knowledge. Additionally, staining variability and tissue heterogeneity hinder
model generalization.

Methods: We propose a multimodal weakly supervised learning framework
named PAT-MIL (Pathology-Attention-MIL), which performs five-class WSI-
level classification. The model integrates dynamic attention mechanisms with
expert-defined text prototypes. It includes: (1) the construction of pathology
knowledge-driven text prototypes for semantic guidance, (2) a refinement
strategy that gradually adjusts category centers to adaptively improve
prototype distribution, and (3) a loss balancing method that dynamically
adjusts training weights based on gradient feedback to optimize both visual
clustering and semantic alignment.

Results: PAT-MIL achieves an accuracy of 86.45% (AUC = 0.9624) on an internal
five-class dataset, outperforming ABMIL and DSMIL by +2.96% and +2.19%,
respectively. On external datasets CRS-2024 and UniToPatho, the model
reaches 95.78% and 84.09% accuracy, exceeding the best baselines by 2.22%
and 5.68%, respectively.

Discussion: These results demonstrate that PAT-MIL effectivelymitigates staining
variability and enhances cross-center generalization through the collaborative
modeling of visual and textual modalities. It provides a robust solution for
colorectal lesion classification without relying on pixel-level annotations,
advancing the field of multimodal pathological image analysis.
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1 Introduction

Colorectal cancer (CRC) is the third most common type of cancer
globally and the second leading cause of cancer-related deaths (Bray
et al., 2024). The classification of colorectal epithelial lesions generally
includes the following categories: non-tumor lesions (e.g.,
inflammatory polyps), benign epithelial tumors and precursors
(e.g., hyperplastic polyps, adenomatous polyps with low-grade or
high-grade dysplasia), andmalignant epithelial tumors (e.g., colorectal
adenocarcinoma and neuroendocrine neoplasms) (World Health
Organization, 2019). These different lesion grades reflect varying
risks of malignancy and guide corresponding intervention
strategies (Wei et al., 2020). Hyperplastic polyps are common
benign epithelial lesions with a low risk of malignant
transformation, but they still require regular monitoring. Tubular
adenoma is a frequently observed subtype of adenomatous polyps,
and due to its higher potential for malignancy, early removal is
typically recommended. This is particularly important as tubular
adenomas may progress to malignant lesions if not timely
intervened (Torlakovic et al., 2003). High-grade intraepithelial
neoplasia is a precancerous condition that exhibits significant
cytological abnormalities and a high tendency for malignancy, thus
necessitating proactive intervention. Once epithelial lesions progress
to the adenocarcinoma stage, it indicates that the lesion has developed
into an uncontrolled malignant proliferative state, usually requiring
comprehensive treatment approaches such as surgery and
chemotherapy (Yengec-Tasdemir et al., 2023). Therefore,
accurately distinguishing lesion categories during diagnosis is of
critical importance.

Deep learning has shown great potential in recognizing disease-
specific histomorphological patterns. It has also been widely applied
in automated biomarker detection (Niazi et al., 2019; Song et al.,
2023; Li et al., 2022; Perez-Lopez et al., 2024). Recent studies have
shown that deep learning techniques can classify conventional H&E
stained, formalin-fixed, paraffin-embedded digital WSI of colorectal
cancer into microsatellite stable and microsatellite unstable
categories, sometimes outperforming board-certified pathologists
(Yamashita et al., 2021;Wagner et al., 2023). Furthermore, the use of
pre-trained models, which are widely applied in the field of
pathology, (Chen et al., 2024; Vorontsov et al., 2023; Ding et al.,
2024; Xu et al., 2024) has significantly enhanced the capability of
models to extract morphological features. However, due to the
massive scale of WSI data and the complexity of professional
interpretation, manually annotating pixel-level details is
extremely challenging. To address this issue, researchers have
developed weakly supervised learning algorithms (Ilse et al., 2018;
Lu et al., 2021; Li et al., 2024; Li et al., 2021; Bontempo et al., 2023;
Chikontwe et al., 2024, Shao et al., 2021) that enable models to be
trained using only slide-level labels. While this approach alleviates
some of the challenges associated with data annotation, there
remains a gap between how models operate in both traditional
supervised and weakly supervised learning and actual clinical
practice. In standard clinical diagnostic processes, pathologists
rely on extensive prior pathological knowledge combined with
identified tumor regions to make comprehensive judgments.
Therefore, an important research direction is to better simulate
the diagnostic process of pathologists and further integrate deep

learning with clinical practice (Shi et al., 2024; Tang et al., 2023; Liu
et al., 2024; Yu et al., 2023; Zhang et al., 2025).

Iizuka’s team (Iizuka et al., 2020) proposed an automatic
classification method for colorectal polyps based on deep
convolutional neural networks. They used the Inception-v3 network
for patch-level classification and employed recurrent convolutional
neural networks (RCNNs) for WSI prediction. However, this
method was only applied to a binary classification task
distinguishing between adenocarcinoma and adenoma, achieving
AUCs of 0.96 and 0.99, respectively. On the other hand, Wei et al.
(2020) utilized deep residual networks (ResNet) to classify polyps as
either adenomatous or serrated. They compared themodel’s predictions
with diagnoses from local pathologists, achieving an accuracy of 93.5%.
Recently, Perlo and colleagues proposed using ResNet for grading
dysplasia in colorectal polyps (Barbano et al., 2021). They
considered six different types of polyps and provided WSI-level
predictions. Using ResNet-18 on 600 µm slides, they achieved a 70%
diagnostic accuracy at the WSI level. More recently, the team led by
Yengec-Tasdemir proposed combining Sup-Con and BiT for a three-
class classification task of colorectal polyps, achieving an accuracy of
86.2% on their custom dataset and 70.1% on the UnitoPatho dataset
(Yengec-Tasdemir et al., 2024).

In recent years, methods combining contrastive learning with
text supervision have gradually emerged in the field of pathology
image analysis (Stacke et al., 2020; Lu et al., 2019; Ciga et al., 2022;
Wu et al., 2022; Boserup and Selvan, 2022; Ke et al., 2021). The CLIP
model links images with corresponding textual descriptions through
contrastive learning, enabling the model not only to recognize image
features but also to understand diagnosis-related textual
information. The PLIP model (Huang et al., 2023), fine-tuned
based on CLIP (Ciga et al., 2022; Radford et al., 2021), further
integrates pathological text labels with WSI data, effectively
localizing diagnosis-related regions and improving data efficiency.
Meanwhile, the CONCH model leverages pre-training on over
1.17 million image-text pairs for unrelated tasks, demonstrating
exceptional multimodal understanding and transfer capabilities. In
14 pathology benchmarks, CONCH (Lu et al., 2024) achieved
leading performance in tasks such as classification, segmentation,
description generation, and image retrieval, and can adapt to various
downstream tasks with minimal additional fine-tuning, showcasing
its broad application potential.

We propose a multimodal deep learning framework for a five-
class classification task in colorectal cancer pathology, which
integrates a dynamic attention mechanism with semantic
guidance from expert-defined text prototypes. By focusing on
diagnostic-relevant regions through an attention-based module,
our method effectively suppresses noise from irrelevant areas.
Meanwhile, the text-driven prototype optimization mechanism
enhances the alignment between visual and semantic features,
mitigating the impact of data variations such as staining
differences. Additionally, for the task specific to colorectal
pathology, we employed various pre-trained image feature
extractors and selected the one with the best performance. This
collaboration between visual and text modalities enables the model
to generate robust WSI-level representations, demonstrating
exceptional performance and adaptability across diverse datasets
and complex cancer subtypes.
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2 Experimental setup and data

The WSIs required for the development and evaluation of our
method were collected from patients undergoing colorectal
cancer screening at three medical centers: Xijing Hospital,
Liuzhou People’s Hospital, and Zhongnan Hospital. Our team
of expert pathologists collaborated to annotate different types of
colorectal pathological morphologies in these images. We used
these annotations as the reference standard for training and
testing our deep learning method to classify colorectal
pathology across whole slide images.

In this project, the proposed method requires data collected
from patients who underwent colorectal cancer screening at our
partner medical center since January 2020. Through
collaboration with various pathology centers, we accumulated
a total of 5,062 pathology WSIs, including both biopsy and
surgical samples. The WSIs were scanned and digitally stored
using the SQS 1000 or SQS-2000 scanners provided by Shenzhen
Shengqiang Technology Co., Ltd., with an objective
magnification of 20x. Images that remained unclear after
multiple scans were excluded. Our training dataset comprises
1756 H&E-stained whole slide images. In this study, we employed
five-fold cross-validation for model training and validation,
ensuring balanced representation of each class in the training,
validation, and test sets through stratified splitting. Specifically,
1,263 samples were selected for training, 141 for validation, and
352 for testing. Additionally, 1,163 external cases were used as an
external test set.

The WSIs do not overlap, and each WSI belongs to a different
patient or colonoscopy procedure. As shown in Table 1, our
histological imaging dataset includes five types of colorectal H&E
stained WSIs: normal (non-tumor lesions), hyperplastic polyp,
adenoma, high-grade intraepithelial neoplasia, and
adenocarcinoma. These five categories cover all stages of
colorectal pathological development and encompass all types in
the WHO classification of colorectal tumors.

The high-resolution histological images of colorectal polyp
samples are large. Most regions in non-normal colorectal WSIs
are normal, with only a small portion actually related to colorectal
polyps or tumors. During the data annotation process, to ensure
accuracy, we invited 2-3 experts with over 20 years of pathology
experience to annotate the slides. They combined clinical
information, imaging data, morphological information, and
immunohistochemical results to reach the final annotation. In
case of disagreements, an additional expert with over 20 years of
clinical pathology experience was invited to review the slides. If a
consensus was reached among the majority of experts, the case was
included in subsequent experiments; otherwise, it was excluded.

As shown in Figure 1, in this study, we also utilized two publicly
available pathology datasets. The first is the UniToPatho (Barbano
et al., 2021) dataset, which includes 292 WSIs acquired
at ×20 magnification (0.4415 μm/px) using a Hamamatsu
Nanozoomer S210 scanner. Each WSI is from a different patient.
These images have been annotated by pathology experts into six
categories: Normal tissue (NORM), Hyperplastic Polyp (HP),
Tubular Adenoma with High-Grade Dysplasia (TA.HG), Tubular
Adenoma with Low-Grade Dysplasia (TA.LG), Tubulovillous
Adenoma with High-Grade Dysplasia (TVA.HG), and

Tubulovillous Adenoma with Low-Grade Dysplasia (TVA.LG).
The second dataset is the IMP-CRS 2024 dataset (Oliveira et al.,
2021; Neto et al., 2022; Neto et al., 2024), which consists of
5,333 colorectal biopsy and polypectomy WSIs from the data
archive of the IMP Diagnostics Laboratory in Portugal, with
2032 WSIs used in this study. These WSIs were digitized using
two Leica GT450 WSI scanners at ×40 magnification and annotated
into three categories: Non-neoplastic lesions, Low-Grade Lesions
(conventional adenomas with low-grade dysplasia), and High-
Grade Lesions (conventional adenomas with high-grade dysplasia
and intramucosal adenocarcinoma).

3 Methods and architecture

3.1 Overall framework

The method of aggregatingWSI feature representations through
attention modules to learn robust representations for medical image
visual tasks has achieved significant success. Meanwhile, in the field
of natural images, research has shown (Ciga et al., 2022) that textual
information can significantly enhance the performance of image-
based models. However, previous pathology studies have typically
relied on paired WSI and diagnostic report content, which requires
large annotated datasets to train a robust foundational model,
limiting the model’s application in data-scarce scenarios.

3.2 Construction of text prototypes

Our research takes a different approach: by extracting the expert
diagnostic knowledge of pathologists and encapsulating these
experiences into cancer-specific descriptions, we further construct
a set of pathology report prototypes associated with different
categories. These prototypes are manually curated by expert
pathologists based on real diagnostic expressions and key
morphological features, offering precise, interpretable semantic
anchors that align with clinically meaningful pathology
categories. These pathology report prototypes (hereafter referred
to as “text prototypes”) serve as semantic guidance, enabling slide-
level features to align more closely with category semantics, thereby
effectively alleviating variability in visual representations such as
staining intensity and tissue morphology. This innovative strategy,
combining pathology reports with attention mechanisms, not only
compensates for the data dependency shortcomings of traditional
methods but also further enhances the model’s generalization ability
and diagnostic performance in pathological tasks.

3.3 Dynamic prototype refinement

To ensure more reasonable visual clustering, we designed a
dynamic fine-tuning module for pathology reports and a matching
module for pathology reports and pathology images. Specifically,
this module dynamically adjusts the text prototypes based on the
distribution information of instance features within the WSI.
Through this mechanism, the text prototypes can not only
express the global semantic information of the categories but also
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gradually adapt to the feature distribution of specific slides, forming
clustering centers that better align with the actual data. This process
effectively bridges the gap between the textual semantic space and
the visual feature space, providing more precise category
representations for subsequent classification tasks. Dynamic fine-
tuning updates the prototypes through feature and category
matching weights:

p t+1( )
k � αp t( )

k + 1 − α( )· 1
Sk| | ∑i∈Sk zi

Where the initial pathology report is pk
(0), Sk is the sample set of

class k, α is the smoothing parameter that controls the update
strength, and zi represents the sample features.

For a given class, the text-guided prototype (pk) and the slide-
level feature zi, the pathology report supervision loss is defined as:

Ltext � − 1
N

∑N
i�1
∑K
k�1

yik log
exp cos zi, pk( )( )∑K
j�1 exp cos zi, pj( )( )⎛⎝ ⎞⎠

Among them, cos(zi, pk) � zi ·pk

‖zi‖‖pk‖, and yik is the class label
of sample i.

3.4 Attention-based instance aggregation

Ourmodel employs an attention-basedmodule to performweighted
aggregation of instance features from WSI. This module learns the
importance weights of instances, adaptively focusing on the regionsmost
relevant to the classification task, enabling themodel to effectively extract
global representations from large-scale unstructured data.

For a WSI, X � x1, x2, . . . , xn{ }, where xi represents instance
features, the attention module performs weighted aggregation using
the weight ai:

ai � exp h xi; θ( )( )∑n
j�1 exp h xj; θ( )( ), z � ∑N

i�1
aixi

Among them, h(xi; θ) is the attention scoring function used to
compute the weights, and z represents the slide-level features.

By computing the weighted slide-level features, the visual
supervision loss is defined as:

Lvis � −∑C
k�1

yk log
exp w⊤

k z + bk( )∑C
j�1 exp w⊤

j z + bj( )

FIGURE 1
Workflow of the deep learningmodel. (A)Data Source and Division: This study utilized 5062 H&E stainedWSIs from four different centers. Data from
Liuzhou Hospital served as the internal dataset for model training, while data from Xijing Hospital was used as an external test set. Additionally, two
publicly available datasets were used to construct extra external datasets to evaluate the model’s generalization capability. (B) Construction and
Optimization of Encoder: The image encoder and text encoder used in the model were trained through contrastive learning on large-scale
pathology image-text pairs. The text content was optimized and adjusted by pathology experts to capture more robust pathological representations,
thereby enhancing the model’s performance in practical applications. (C) Data Preprocessing: After digitizing the slides, the tissue regions were
segmented, and the entireWSI was divided intomultiple patches to facilitate subsequent feature extraction and analysis. (D)Model Computation Process:
The core computation process of the deep learning model is divided into three stages: (1) Slide-level feature generation and prediction based on images;
(2) Slide-level feature generation and prediction based on text; (3) Loss calculation dynamically adjusted according to the loss gradient to balance the
contributions of image and text features, thereby optimizing the final classification performance.

Frontiers in Pharmacology frontiersin.org04

Fu et al. 10.3389/fphar.2025.1592950

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1592950


Where W is the weight matrix of the visual classification
module, and b is the bias vector.

3.5 Dual-loss dynamic weighting strategy

In order to effectively integrate text prototypes and visual
clustering prototypes, we propose a dual-loss dynamic
weighting method based on gradient magnitude. Specifically,
during the training process, the model calculates the gradients
of the two types of losses in real-time and dynamically adjusts
their weights according to their relative magnitudes. This
approach achieves a balance between semantic consistency
and visual feature clustering. The dynamic adjustment
mechanism ensures effective synergy between text and image
information sources, providing a new direction for model
optimization.

Given the loss functions Ltext and Lvis, the formula for
dynamically adjusting the coefficient based on the gradient is:

λtext � ∇Ltext‖ ‖
∇Ltext‖ ‖ + ∇Lvis‖ ‖, λvis �

∇Lvis‖ ‖
∇Ltext‖ ‖ + ∇Lvis‖ ‖

The final computed total weight is:
L � λtextLtext + λvisLvis

The final approach not only eliminates the reliance on paired
data but also significantly enhances the model’s robustness and
generalization capabilities. It offers a novel perspective for the
classification of pathological WSIs with staining inconsistencies
and significant feature variations. This integrated method, based
on multimodal information from text and images, demonstrates its
potential in cancer pathology classification and provides important
insights for a broader range of medical image analysis tasks.

4 Results

In the first part of our study, we focused on selecting the most
suitable image feature extractor to provide robust feature

FIGURE 2
Selection of baseline feature extractors.

TABLE 1 Distribution of the internal dataset.

Normal HP Adenoma HGIN Carcinoma Total

Training 385 101 287 128 362 1,263

Validation 43 11 32 14 41 141

Test 108 29 79 36 100 352

Total 536 141 398 178 503 1,756
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representations for subsequent experiments. To achieve this, we
evaluated several pre-trained large models, testing their performance
on both an internal five-classification dataset and the publicly
available CRC-2024 dataset. For the internal dataset, we
employed a 5-fold cross-validation approach, while for the CRC-
2024 dataset, we conducted evaluations based on the test set division
provided by the official source.

The experimental results demonstrate that the Virchow model
excels in key metrics such as accuracy, F1-score, and AUC. Notably,
on the CRC-2024 dataset, its AUC reached an impressive 0.9949,
showcasing its superior feature extraction capability. In comparison,
although other models come close to Virchow in certain metrics,
their overall performance is slightly inferior. Therefore, our
experiments confirm the advantage of the Virchow model in
colorectal pathology image classification tasks. Based on this, we
have chosen Virchow as the preferred feature extractor for
subsequent experiments to ensure that the model obtains high-
quality feature representations, thereby enhancing overall
performance.

The area under the Receiver Operating Characteristic (ROC)
curve (AUC) is a key metric in medical image classification,
providing a comprehensive evaluation of model performance
across different decision thresholds. To facilitate an intuitive
comparison and selection of baseline feature extractors, we
visualized the accuracy and AUC scores of different models on
various datasets in Figure 2. This graphical representation allows us
to clearly and directly assess the relative advantages of various
feature extraction methods for our specific medical imaging task.

Based on the above considerations, we ultimately selected
Virchow as the baseline model to provide the best feature
representation for subsequent experiments. This choice not only
lays a solid foundation for our research but also enhances the
model’s robustness to staining variations and rare lesion types,
making it more applicable to real-world clinical settings.

To comprehensively evaluate the performance of our proposed
text-supervised image classification model, we conducted
comparative experiments with other classic weakly supervised
models in the multiple instance learning domain. These models
include ABMIL, CLAM,WIKG, DS, and TRANS, which have shown
excellent performance in weakly supervised classification tasks but
have not fully utilized the supervisory signals from text information.

Our experiments employed the same feature extractor (Virchow) as
the baseline model and were trained and evaluated under a unified
experimental setup. To thoroughly assess the performance of each
model, we compared key metrics such as classification accuracy,
AUC, and F1 score.

As shown in Table 2, our text-supervised model outperformed
other weakly supervised models across all datasets and most metrics.
On the colorectal 5-class dataset, our model achieved an accuracy of
86.45% and an AUC of 0.9624, representing improvements of 2.19%
and 0.0043, respectively, compared to the best baseline model
DSMIL. On the CRS-2024 dataset, our model performed
exceptionally well, achieving an accuracy of 95.78% and an AUC
of 0.9949, surpassing all other baseline models. On the
UNITOPATHO dataset, our model also demonstrated excellent
performance, with an accuracy of 84.09% and an AUC of 0.9568,
representing improvements of 5.68% and 0.0137, respectively,
compared to the best baseline model CLAM_SB. These results
fully demonstrate the stability and superiority of our proposed
text-supervised model across multiple datasets.

Compared to models like ABMIL, our text-supervised model
can better leverage the guiding role of textual features, significantly
enhancing the expression capability of cross-modal features.
Although CLAM and WIKG perform well in the weak
supervision domain, their low reliance on text when handling
multimodal data leads to suboptimal performance in diverse
tasks. Our model effectively integrates textual information, not
only improving classification accuracy but also enhancing the
robustness and generalization ability of the model. This
advantage is particularly evident in complex medical image
classification tasks, with a notable improvement on the
UniToPatho dataset, highlighting the exceptional performance of
our model in handling diverse pathological images. This provides
new insights and methods for future multimodal medical image
analysis, demonstrating the tremendous potential of text supervision
in enhancing medical image classification performance. This may
assist pathologists in interpreting complex or ambiguous lesions by
providing more consistent, semantically informed predictions.

The classification confusion matrices in Figure 3 provide us with
an in-depth understanding of the performance of the proposed
method. These matrices show the distribution of predicted classes
relative to the true labels on each dataset. High values along the

TABLE 2 Comparison of the proposed method and other methods.

Dataset Internal-XJ CRS-2024 UNITOPATHO

ACC AUC ACC AUC ACC AUC

ABMIL 0.8349 0.9578 0.9256 0.9861 0.7614 0.9254

CLAM_MB 0.8343 0.9587 0.9356 0.992 0.7500 0.9405

CLAM_SB 0.8383 0.9594 0.9333 0.9909 0.7841 0.9431

DSMIL 0.8426 0.9581 0.9167 0.9857 0.7143 0.8582

TRANSMIL 0.8155 0.9296 0.9100 0.9802 0.6818 0.8812

WIKGMIL 0.8013 0.9424 0.9067 0.9798 0.7727 0.9469

OURS 0.8645 0.9624 0.9578 0.9949 0.8409 0.9568

Bold values indicate the best model performance among the compared models.
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diagonal of the matrix indicate accurate classification results, while
values off the diagonal represent misclassifications. Our method
demonstrates improved classification performance with fewer
misclassification instances. In the IMP-CRS dataset task, the
model excels in distinguishing between non-tumorous lesions,
low-grade lesions, and high-grade lesions, with only a few
misclassifications between low-grade and high-grade lesions. In
our self-constructed dataset task, where categories are further
refined, the model achieves high classification accuracy while
effectively distinguishing between cancerous and non-cancerous

cases, reaching 99.6% specificity and 99.0% precision. In the
more granular UniToPatho dataset task, although there is room
for improvement in distinguishing certain similar lesion types (such
as hyperplastic polyps and tubulovillous adenomas with low-grade
dysplasia), the model overall achieves high classification accuracy.
These results not only validate the effectiveness of our method but
also provide clear directions for further model optimization.

On the external test set, the distribution of samples for each
class is as follows: normal has 713 samples; hyperplastic polyp
has 54 samples; adenoma has 472 samples; high-grade

FIGURE 3
Confusion matrices for different datasets.

FIGURE 4
Confusion matrix for the external test set.
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intraepithelial neoplasia has 9 samples; and adenocarcinoma has
117 samples. As shown in Figure 4, our model, PAT-MIL,
achieved an overall accuracy of 86.39% on this test set, which
is consistent with the results obtained on our internal dataset.
This result indicates that the trained model demonstrates good
generalization ability across data from different pathology
centers, maintaining consistent discriminative performance
among different categories. It validates the robustness of the
model with diverse data sources.

To further intuitively demonstrate the differences in feature
representation between our proposed method and other approaches,
we utilize t-SNE (t-distributed stochastic neighbor embedding) to
perform dimensionality reduction and visualization of the high-
dimensional features extracted by the models. Figure 5 presents the
dimensionality reduction results of our method, ABMIL, and our
own method on the self-constructed five-class dataset. As shown in
the figure, our method exhibits better class separability in the feature
space, with samples from different classes clustering more tightly

FIGURE 5
t-SNE Dimensionality Reduction Plot–Left: Proposed Method; Right: AB-MIL.

FIGURE 6
Visualization heatmap results in the colorectal 5-classification dataset.
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and class boundaries being more distinct. This feature
representation capability directly reflects the advantage of our
method in classification performance. In contrast, the feature
distribution of the ABMIL method is more scattered, with a
certain degree of overlap between classes. This visualization result
further confirms the effectiveness of our proposed text supervision
strategy in enhancing feature representation capability and
classification performance.

By visualizing the scores of the corresponding categories in the
multiple attention modules onto the patch regions, we can obtain a
WSI heatmap of colorectal lesions to demonstrate its
interpretability. Figure 6 shows visualized samples of the four
abnormal categories in the five-category colorectal dataset. For
the CRC category, PAT-MIL can focus on extensive cancerous
regions. For the HP, TA, and HIN categories, the model
highlights tumor cells and local lesions growing along the wall,
which closely aligns with the regions of interest in actual
pathological diagnosis.

To gain a deeper understanding of the impact of each
component of our proposed text-supervised image classification
model on overall performance, we designed and conducted a
series of ablation experiments. These experiments included three
scenarios: removing the text alignment module, removing the visual
module, and removing the text module. The aim was to clarify the
specific role of each module in the text-supervised image
classification task. All experiments were conducted using the
same training set and evaluation criteria to ensure the
comparability and reliability of the results.

As shown in Figure 7, removing any module leads to a
significant decline in model performance. On the colorectal 5-
class dataset, the complete model achieved an accuracy of 86.45%
and an AUC of 0.9624, both of which surpass those of other variants.
These results clearly demonstrate the critical contribution of each
module to the overall performance of the model.

Analyzing these results, we can draw the following conclusions:
the removal of the text alignment module highlights the critical role
of text-image alignment in multimodal learning; the absence of the

visual module indicates that visual features play a central role in
classification tasks; the lack of the text module suggests that text
features provide important supplementary information to the
model. These ablation study results strongly demonstrate that the
text alignment, visual module, and text module are the core
components of our model, working together to enhance the
model’s classification capability. This not only validates the
rationality of our model design but also provides valuable
insights for further optimization and improvement of multimodal
learning models in the future.

5 Conclusion and discussion

This study proposes a multimodal deep learning model that
combines textual information and WSI for the classification of
colorectal pathology images. By introducing pathology expert-
optimized text prototypes and an attention mechanism, we
effectively aligned visual features with semantic information,
significantly enhancing the model’s generalization performance in
complex pathological scenarios such as staining inconsistencies and
diverse tissue morphologies. Experimental results demonstrate that
this method exhibits excellent diagnostic performance in a five-class
colorectal pathology classification task, while also reducing reliance
on immunohistochemistry experiments, thereby offering the
potential to optimize diagnostic processes and reduce medical costs.

Notably, many existing models are primarily evaluated on
specific custom datasets, which may limit their ability to
generalize to diverse datasets in real-world applications. However,
our model demonstrated outstanding generalization performance
across different datasets. Specifically, it not only performed
excellently on our custom-collected dataset but also achieved
remarkable results on the publicly available UniToPatho dataset,
achieving an accuracy of 84.1% in a six-class WSI-level task. In
contrast, other methods in the literature (Yengec-Tasdemir et al.,
2024) achieved an accuracy of 70.3% in a three-class task on the
UniToPatho dataset, further highlighting the generalization

FIGURE 7
Ablation study.
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capability of our model. These results indicate the practical
application potential of our model in the classification of colonic
adenomatous polyps and lay the foundation for its broader
application in clinical settings. These findings validate the
proposed model’s ability to generalize across heterogeneous
datasets and highlight its potential utility in enhancing diagnostic
accuracy and workflow efficiency in clinical pathology.

Despite the encouraging results of this study, its limitations must
be acknowledged. The model was trained and validated on
retrospective datasets, and future prospective clinical studies are
needed to verify its practical effectiveness. Additionally, future
research could explore multi-scale feature representation methods
to extract more critical information from image patches at different
magnifications, further enhancing the model’s robustness and
accuracy. Incorporating a wider variety of textual information
and multi-center data may also further improve the model’s
applicability and diagnostic capability.

Overall, this study demonstrates the potential of multimodal
approaches in colorectal pathology classification and provides new
solutions for diagnostic tasks of other cancers with significant
morphological differences. This method, centered on data efficiency,
paves a new path for the practical application of artificial intelligence in
pathology and broader medical imaging analysis.

However, one current limitation of ourmethod lies in its reliance on
a predefined set of text categories, which may affect flexibility in clinical
deployment across different institutions or populations. In future work,
we plan to explore adaptive text prototype generation and conduct
prospective clinical studies to further validate the model’s practicality
and robustness in real-world clinical workflows. Future deployment in
clinical settings may require adaptive prototype generation and
validation in prospective multicenter studies, especially considering
the potential variation in diagnostic terminology and case
composition across hospitals.
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