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Introduction: Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder characterized by amyloid-beta (Aβ) peptide accumulation, oxidative
stress, mitochondrial dysfunction and cholinergic deficits, all of which
contribute to neuronal damage and cognitive decline.

Methods: This study investigated the neuroprotective potential of quercetin, a
natural flavonoid, in human neuroblastoma SH-SY5Y cells exposed to Aβ-
induced toxicity. Various assays were conducted to evaluate cell viability,
reactive oxygen species (ROS) levels, mitochondrial membrane potential
(ΔΨm), acetylcholinesterase (AChE) activity and Aβ aggregation.

Results: Quercetin significantly enhanced cell viability and reduced oxidative
stress by lowering intracellular ROS levels. It preserved mitochondrial integrity by
stabilizing ΔΨm and inhibited AChE activity, thereby supporting cholinergic
function. Additionally, quercetin reduced Aβ aggregation and the formation of
toxic amyloid fibrils.

Discussion: These findings suggest that quercetin confers neuroprotection by
targeting multiple pathological mechanisms involved in AD, including oxidative
stress, mitochondrial dysfunction, AChE activity and Aβ aggregation. Quercetin
demonstrates promise as a natural therapeutic agent for the treatment of AD.
However, further in-vivo investigations and clinical studies are warranted to
validate these findings and explore its translational potential.
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Introduction

Alzheimer’s disease (AD) is a major challenge of modern medicine that is
characterized by progressive neurodegeneration and cognitive impairment. AD is a
progressive neurological condition that erodes cognitive functions and memory.
Despite progress, the exact pathogenesis of AD is still not well understood and this
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has led to challenges in developing effective therapies (Choe et al.,
2022; Leventhal et al., 2024). The development of AD is often
linked to the increasing deposition of amyloid-beta (Aβ) plaques
and neurotoxic tangles of tau protein, which impair neural
function and eventually result in neuronal cell death (Janelidze
et al., 2020; Griciuc and Tanzi, 2021). Now, AD has come to be
understood as a multi-faceted disease reliant on an interplay
between genetic, environmental and lifestyle factors. For
example, all the genetic risk factors identified to date in AD act
by promoting synaptic degeneration or increasing the levels of
toxic Aβ oligomers, with the apolipoprotein E4 (APOE4) allele best
characterized (Jackson et al., 2019). In addition, cerebrovascular
health has been shown to have a complex association with
cognitive decline, since vascular risk factors including
hypertension and diabetes have also been implicated in the
early progression of AD (Pluta et al., 2021; Ferrari-Souza et al.,
2024). Likewise, the relationship between neuroinflammation and
neurodegeneration is essential to consider, since activated
microglia and astrocytes create the inflammatory response that
causes damage to neurons (Johnson et al., 2020; Griciuc and
Tanzi, 2021).

It has been recently suggested the possibility that oxidative
stress and metabolic dysregulation lead to AD. High redox status
caused by sustained ROS can result in tau hyperphosphorylation
and neurofibrillary tangle formation, important elements of AD
pathology (Sundstrom et al., 2018). Disruption of energy
metabolism on a more granular scale, particularly in the
context of microglia and astrocytes, has also been linked to
cognitive impairment, thus suggesting that this metabolic shift
may underlie and perhaps precede the neurodegenerative process
itself (Johnson et al., 2020; Lewczuk et al., 2020). Furthermore,
the link between sleep disturbances and AD has gained traction,
with emerging evidence indicating that cholinergic dysfunction
may induce sleep disturbances, thereby perpetuating cognitive
decline (Choe et al., 2022). Such complexity of AD requires
integrative approaches to better determine its etiology and
develop effective therapies. As further complexity in the AD
model is being researched, it is evident that a more complete
understanding of AD pathology is needed to advance the
development of disease modification strategies and outcomes
in AD patients.

Quercetin is a flavonoid that is ubiquitous in fruits and
vegetables and has been studied for its potential
neuroprotective properties. Recent findings suggested that
quercetin might inhibit Aβ production through the
modulation of β-secretase activity resulting in decreased level
of this neurotoxic peptide (Mugundhan et al., 2024). Moreover,
quercetin beyond its role as a neuroprotective agent due to its
antioxidant properties, it may antagonizes the oxidative stress
caused by Aβ toxicity (Croce et al., 2012; Mattioli et al., 2019).
Quercetin exhibits neuroprotective effects through multiple
molecular pathways. It enhances brain-derived neurotrophic
factor (BDNF) expression, supporting neuronal survival and
synaptic plasticity, thus aiding cognitive function (Rahvar et al.,
2018). It also regulates mitochondrial integrity and apoptosis by
modulating Bcl-2, Bax, cytochrome c, and caspase-3, helping
prevent neurodegeneration (Zhang et al., 2024). Quercetin
activates the PI3K/Akt signaling pathway, promoting anti-

apoptotic activity and neuronal recovery after injury (Chang
et al., 2014; Jeon et al., 2017). Moreover, it inhibits
neuroinflammation by downregulating NF-κB, reducing pro-
inflammatory cytokine production (Granado-Serrano et al.,
2012). Through its antioxidant properties, quercetin
enhances cellular defense mechanisms and resilience against
oxidative stress, contributing to overall neuronal health (Costa
et al., 2013; Bayazid and Lim, 2022). Due to its interaction with a
number of signaling pathways, including pathways that are
implicated in apoptosis and inflammation, quercetin is a
promising candidate for therapy in AD (Petry et al., 2020).

Thus, the aim of this study was to assess the neuroprotective
effect of quercetin against Aβ peptide-induced toxicity in human
neuroblastoma SH-SY5Y cells. In the present study, we utilized this
well-characterized cellular model to investigate the neuroprotective
potential of quercetin by evaluating its effects on oxidative stress,
mitochondrial membrane stability, AChE inhibition and Aβ
aggregation, which are key contributors to Aβ-induced
neurotoxicity. The neuroprotective properties of several
compounds, such as polyphenols and peptides, have been
demonstrated against Aβ toxicity by different mechanisms,
mainly inhibition of Aβ aggregation or modulation of
apoptotic pathways (González-Sanmiguel et al., 2020; Mallesh
et al., 2024). This study aims to clarify the neuroprotective
potential of the natural flavonoid quercetin and, as such, to
add to advances in therapeutic strategies for AD and other
neurodegenerative disorders.

Materials and methods

Chemicals

Dulbecco’s Modified Eagle Medium (DMEM) and fetal bovine
serum (FBS) were purchased from Gibco, United States. Key
experimental reagents, including 5,5′-dithiobis-(2-nitrobenzoic
acid) (DTNB), 2′,7′-dichlorofluorescein diacetate (DCFDA), Aβ
1-42 (Aβ1-42) peptide and MTT were obtained from Merck-Sigma
Aldrich. All remaining chemicals were acquired from
HiMedia®, India.

Antioxidant assay

DPPH assay
The DPPH assay based on (Brand-Williams, 1999) was used to

determine quercetin’s radical scavenging capacity. A freshly
prepared DPPH solution (0.78 mg/20 mL) was reacted with
quercetin (50–300 μM). Briefly, 1 mL 0.1 mM DPPH was added
to 100 μL quercetin, incubated for 15 min in the dark, and
absorbance measured at 517 nm. As a positive control, ascorbic
acid was used. The calculation of % inhibition was carried out via
following equation.

Inhibition of DPPH radical %( ) � Ab –As/Ab × 100

Where, Ab = absorbance of the blank (DPPH solution without
sample) and As = absorbance of the sample (DPPH solution
with quercetin).
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FRAP (ferric-reducing antioxidant
power) assay

The Ferric Reducing Antioxidant Power (FRAP) method, as
detailed by (Benzie and Strain, 1996) was further utilized to quantify
the antioxidant potential of quercetin. The initial mixture of assay
was performed with the combination of 30 mM FeCl3·6H2O, 10 mM
2,4,6-tripyridyl-S-triazine and 150 mM acetate buffer (pH-3.6) in
40 mM hydrochloric acid at the ratio of 10:1:1 at the room
temperature. Then, 3.95 mL of freshly prepared FRAP reagent,
and 5 μL of differing concentrations of quercetin (50–300 μM)
was added to this mixture. The mixture was left to incubate at room
temperature for 30 min. With quercetin in a solution, ferric ions are
reduced to ferrous ions, where the ferrous ions are chelated with
TPTZ to produce the blue-colored ferrous-TPTZ complex.
Subsequently, the absorption was taken at 593 nm. As a positive
control, ascorbic acid was used.

AChE inhibition

The Ellman spectrophotometric method was employed to
quantify cholinesterase inhibitory activity (Ellman et al., 1961).
In this assay, 3 mL 0.1 M Tris-HCl buffer (pH - 8.0) was mixed
with 20 μL AChE solution (3 U/mL). Then, 100 μL solution of
different concentrations of quercetin (50–300 μM) were included
in the solution, incubated at room temperature for 15 min. After
this incubation, 50 μL of teramethylbenzothiazole-2-thione
(DTNB) was added (3 mM). Initiation of the reaction was
occurred by adding 50 μL of 15 mM acetylthiocholine iodide
(AChI), when a yellow colour was observed. Galantamine was
served as the positive control. Measurements of absorbance were
taken at 412 nm with a UV-visible spectrophotometer (UV-2600,
Shimadzu, Japan). Enzyme inhibition percentages were calculated
via comparing the enzyme activities with respect to negative
control as per following equation:

Inhibition %( ) � A0 –A1 × 100

Where, A0 = Absorbance of the control (reaction mixture without
quercetin). A1 = Absorbance of the test sample (reaction mixture
with quercetin).

Thioflavin T (ThT) assay

This method is often utilized as an assay to determine the
kinetics of fibrillogenic in the context of amyloid formation.
Thioflavin T (ThT) binds to amyloid fibrils and fluoresces, and
thus facilitates monitoring of in-vitro amyloid fibril aggregation
(Xue et al., 2017). Different quercetin concentrations were
combined with 20 μM of Aβ1-42 in a volume of 40 μL, and
incubated at 37°C for 24 h. Then, 100 μL of ThT solution was
added to the solution after incubation. After a 30 min incubation,
the fluorescence intensity of the samples were measured using a
FP-6200 spectrofluorometer (Shimadzu, RF-5000). The detection
wavelengths were 450 nm (excitation) and 483 nm (emission).
Galantamine with Aβ1-42 was served as the positive control for
comparison.

Neuroprotective effects of quercetin

Preparation of quercetin stock solution
The test samples were prepared as stock solutions in culture

media at a concentration of 500 µM and sterilized through a 0.2-
micron PES membrane syringe filter. In distinct wells, different
volumes of the filtered stock solution were added to achieve final
concentrations ranging from 50 to 300 μM. As quercetin is sparingly
soluble in water, the appropriate solubilization was carried out by
initially dissolving it in dimethyl sulfoxide (DMSO) to prepare a
concentrated stock solution. This stock was then diluted with the
respective culture medium to achieve the desired working
concentrations for cell assays. The final concentration of DMSO
in all treatments, including control groups, were kept below 0.1% to
avoid any solvent-induced cytotoxic effects.

Aβ1-42 stock solution and working solution

To prepare the Aβ 1-42 (Aβ1-42) stock solution, it was first
dissolved in distilled water to achieve a 1 mM concentration.
Subsequently, a working solution of 100 μM was made by
diluting the stock in cell culture medium supplemented with 10%
FBS. This working solution was then applied to the wells, resulting in
final Aβ1-42 concentrations spanning 0.625–20 µM.

Cell culture

The SH-SY5Y cell line was sourced from the National Centre for
Cell Science (NCCS) in Pune, India. The studies were performed
with SH-SY5Y neuroblastoma cells cultured in DMEM containing
non-essential amino acids (1X) and 10% FBS under 5% CO2 at 37°C
and were used for experiments when 80% of confluence was reached.

Assessment of cell viability

A modified MTT assay was used to evaluate cell viability
(Kenchappa et al., 2023). Centrifugation at 300 × g was
performed to collect the cells and resuspended in DMEM-HG
medium. The suspension was seeded at a concentration of about
15,000 cells in 200 μL. Then, 200 μL of a suspension of cells were
added to each well in a 96-well microtiter plate and then incubated
under 5% CO2 in a humidified environment for 24 h at 37°C. The
medium was then carefully replaced with 200 μL of various
concentrations of quercetin. The plate was placed back in the
incubator for an additional 24 h under identical conditions.
Following this incubation, the spent medium was carefully
aspirated and 200 μL of fresh medium containing 10% MTT
reagent (final concentration - 0.5 mg/mL) was introduced into
each well. The plate was then incubated at 37°C with 5% CO2 for
3 h to allow for formazan crystal formation. After incubation, the
medium was gently removed while ensuring the crystals remained
undisturbed. To dissolve the formazan, 100 μL of DMSO was added
to each well and the plate was subjected to gentle agitation using a
gyratory shaker. The optical density at 570 nm and 630 nm was
measured using a microplate reader to evaluate cell viability. The
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absorbance of the background was subtracted, and percentage of
growth inhibition was determined. The IC50 value was calculated
from the dose-response curve based on the concentration of test
compound required to inhibit it by 50%.

Assessment of cytoprotective activity

The protective role of quercetin against Aβ1-42 induced toxicity was
assessed usingMTT assay, as described before (Dalberto et al., 2020). As
per our prior methodology, cells were placed into 96-well plates and left
to incubate for 24 h. After incubation, the spent medium was aspirated
and 100 μL of different concentrations of quercetin was added to the
wells and initiated further incubation at 37°Cwith 5%CO2 for 4 h. Then
after treating with quercetin, 100 μL of β-Amyloid (10 μM) or (20 μM)
were added to the corresponding wells, and again plate was incubated
for 48 h at 37°C with 5% CO2. After the initial incubation, the spent
culture medium was carefully removed from each well. A fresh 200 μL
aliquot of medium containing 10%MTT reagent was then added to the
wells. The plate was incubated for 3 h at 37°C under a 5% CO2

atmosphere to allow formazan formation. Following incubation, the
medium was gently aspirated, ensuring the retention of MTT-derived
crystals. To fully solubilize the formazan, 100 μL of DMSOwas added to
each well, and the plate was gently agitated using a gyratory shaker.
Optical density readings were recorded at 570 nm and 630 nm using a
microplate reader.

Mitochondrial membrane potential
(Δψm) assay

Cells at a density of 3 × 105 cells in 2 mL were plated in 6-well
plates, and incubated overnight at 37°C in a CO2-controlled
environment to facilitate attachment. The following day, the
culture medium was replaced with fresh medium supplemented
with 100 µM quercetin, and cells were maintained under the same
conditions for 4 h. After 24 h, cells were subjected to 20 μM Aβ1-42
treatment, and incubated for an additional 96 h. At the end of the
treatment, cells were collected and centrifuged at 300 × g for 5 min at
room temperature. The resulting pellet was washed twice with PBS
to remove residual medium. Next, the cells were resuspended in
0.5 mL of freshly prepared JC-1 staining solution, and gently mixed
to ensure an even distribution. The suspension was then incubated at
37°C in a CO2 incubator for 10–15 min. Following staining, cells
were washed using a 1X assay buffer, resuspended, and immediately
subjected to flow cytometry analysis. Furthermore, mitochondrial
membrane potential (Δψm) in SH-SY5Y cells were assessed using
JC-1 staining, via fluorescence imaging to detect changes in red
(aggregates) and green (monomers) fluorescence, serving as an
indicator of mitochondrial health, and allowing differentiation
between live (polarized), and dead or apoptotic (depolarized)
cells (Chang et al., 2013; Kim and Xue, 2020).

ROS estimation by H2DCFDA staining

Intracellular ROS levels were assessed by culturing cells in 6-well
plates at a density of 3 × 105 cells per well in 2 mL of medium,

followed by overnight incubation at 37°C in a CO2-enriched
environment. The next day, cells underwent a 4 h pre-treatment
with 100 µM quercetin. This was followed by exposure to 20 μM
Aβ1-42 for a duration of 96 h. After the treatment period, 5 μL of a
10 μM H2DCFDA solution was introduced into each well and the
cells were incubated at 37°C for 1 h. Subsequently, cells were
detached using trypsin, transferred into 5 mL tubes, and
processed for flow cytometric analysis. Following centrifugation
at 300 × g for 5 min at room temperature, the cell pellets were
washed twice with PBS, and resuspended in 500 μL of pre-warmed
Dulbecco’s Phosphate-Buffered Saline (DPBS). Flow cytometry was
conducted using a 488 nm excitation wavelength, with fluorescence
emission detected at 525 nm (FL1) (Chang et al., 2013; Kim and
Xue, 2020).

Statistical analysis

All results are expressed as the mean ± standard deviation (SD)
from at least three independent experiments. The statistical
significance of the antioxidant potential of quercetin, as
determined by DPPH and FRAP assays, were analyzed using
two-way ANOVA followed by Bonferroni’s multiple comparison
test. For all other experimental assays, one-way ANOVA followed by
Dunnett’s multiple comparison test was employed to assess
statistical significance. A p-value of less than 0.05 was considered
statistically significant. All analyses were performed using GraphPad
Prism software version 8.0 (GraphPad Software, Inc., United States).

Results

Antioxidant activity

Oxidative stress markers are playing a role in the development of
neurodegeneration, causing to cellular damage and death. The
DPPH and FRAP assays were used to evaluate antioxidant
activity. DPPH assay measured absorbance at 515 nm to detect
free radicals, and similar measurements were made for FRAP assay
at 593 nm. A shift from deep violet to pale yellow observed in the
DPPH assay are indicative of antioxidant activity, while the FRAP
assay demonstrated an increase in the Fe2+-TPTZ complex,
suggesting effective donation of electrons by the antioxidants.
The quercetin showed concentration dependent antioxidant
activity. These observations suggest that quercetin is an affective
scavenger of free radicals and electron donor, leading to their strong
antioxidant qualities (Figures 1A, B).

Inhibition of AChE and the potential for
Thioflavin T (ThT) binding

The AChE inhibitory activity of quercetin is shown in Figure 2A,
which demonstrated the concentration-dependent inhibition of
AChE by quercetin. Phenolic and flavonoid compounds found in
nature have been identified to have neuroprotective actions by
inhibiting AChE activity, which represents an effective strategy
for treating AD. Further evaluation of the neuroprotective

Frontiers in Pharmacology frontiersin.org04

Adnan et al. 10.3389/fphar.2025.1593264

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1593264


FIGURE 1
Antioxidant potential of quercetin evaluated using in-vitro assays. (A)DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay showing dose-
dependent antioxidant activity of quercetin. (B) Ferric reducing antioxidant power (FRAP) assay demonstrating the electron-donating capacity of
quercetin across tested concentrations. Data are presented as mean ± standard deviation (SD) from three independent experiments. Statistical
significance is denoted as follows: ns (not significant) > 0.05, *p < 0.05, **p < 0.005, ***p < 0.0005.
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FIGURE 2
Evaluation of AChE inhibitory activity and inhibition of amyloid aggregation by quercetin. (A) Inhibitory effect of quercetin on AChE activity,
compared with the standard compound galantamine. (B) Thioflavin-T fluorescence assay showing inhibition of Aβ1-42 aggregation in the presence of
increasing concentrations of quercetin and galantamine. Data are presented as mean ± standard deviation (SD) from three independent experiments.
Statistical significance is denoted as follows: ns (not significant) > 0.05, *p < 0.05, **p < 0.005, ***p < 0.0005.

Frontiers in Pharmacology frontiersin.org06

Adnan et al. 10.3389/fphar.2025.1593264

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1593264


potential of quercetin was performed using the ThT fluorescence
assay (Figure 2B). The results showed that quercetin inhibited the
binding of ThT to amyloid, suggesting that it could inhibit amyloid-
β aggregation effectively.

MTT assay and cell viability

The impact of quercetin on SH-SY5Y cell viability was assessed
across a range of concentrations (50–300 μM). No substantial

FIGURE 3
Assessment of cytotoxic effects of quercetin and Aβ1-42 on SH-SY5Y Cells. (A) MTT assay showing cell viability following treatment with various
concentrations of quercetin, indicating its non-cytotoxic nature. (B) MTT assay demonstrating cytotoxic effects of Aβ1-42 on SH-SY5Y cells. Data are
presented asmean± standard deviation (SD) from three independent experiments. Statistical significance is denoted as follows: ns (not significant) > 0.05,
*p < 0.05, **p < 0.005, ***p < 0.0005.
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alterations in either cell viability was observed, even at high
concentrations reaching 300 μM (Figure 3A). The cytotoxicity of
quercetin against SH-SY5Y cells were further evaluated through
microscopic observation. The results indicated that quercetin
treatment did not induce any noticeable changes in cell shape,
size or morphology, suggesting no significant cytotoxic effects

under the tested conditions. The cells maintained their typical
neuronal morphology with intact cell membranes, and normal
adherence properties, further supporting the biocompatibility of
quercetin at the examined concentrations. These results suggest a
low level of quercetin-induced cytotoxicity in SH-SY5Y cells
(Figures 4A–F). In contrast, Aβ1-42 exhibited dose-dependent

FIGURE 4
Microscopic images showing the morphological assessment of SH-SY5Y cells treated with quercetin at various concentrations. (A) Untreated
control, (B) 100 μM, (C) 150 μM, (D) 200 μM, (E) 250 μM, and (F) 300 µM. No significant morphological alterations were observed, indicating the non-toxic
nature of quercetin up to 300 µM.

FIGURE 5
Microscopic images showing dose-dependent morphological changes in SH-SY5Y cells following Aβ1-42 treatment. (A) Untreated control, (B)
1.25 µM, (C) 2.5 µM, (D) 5.0 µM, (E) 10 μM, and (F) 20 µM. Increasing Aβ1-42 concentrations resulted in pronounced cell shrinkage, rounding and
detachment, indicative of neurotoxic effects.
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FIGURE 6
Combinedmicroscopic andMTT assay-based evaluation of SH-SY5Y cells to assess the neuroprotective effects of quercetin against Aβ1-42-induced
cytotoxicity. Treatment groups include: (A) Untreated control, (B) Aβ1-42 (10 µM), (C) Aβ1-42 (20 µM), (D–F) Aβ1-42 (10 µM) co-treated with quercetin (50,
100, 150 µM), and (G–I) Aβ1-42 (20 µM) co-treated with quercetin (50, 100, 150 µM). (J) Quantitative evaluation of neuroprotective effect of quercetin
against Aβ1-42-induced cytotoxicity using the MTT assay. Data are presented as mean ± standard deviation (SD) from three independent
experiments. Statistical significance is denoted as follows: ns (not significant) > 0.05, *p < 0.05, **p < 0.005, ***p < 0.0005.Quercetin co-treatment visibly
preserved cell morphology and viability compared to Aβ1-42-only groups.
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cytotoxicity in SH-SY5Y cells, when it was checked from 1.25 to
20 μM concentrations. The IC50 value of Aβ1–42 in SH-SY5Y cells
were determined to be 18.54 μM. Notably, 20 μM Aβ1-42 induced
significant cytotoxicity, characterized by cell loss, shrinkage and
altered morphology, as visualized microscopically (Figures 3B,
5A–F). To explore whether quercetin possesses neuroprotective
abilities, SH-SY5Y cells were exposed to Aβ1-42 (10 and 20 μM)
in combination with varying concentrations of quercetin (50,
100 and 150 μM) for 24 h. The MTT assay was subsequently
used to evaluate cell viability. Consistent with previous
observations, Aβ1-42 treatment alone resulted in a dose-related
decrease in cell viability. However, co-treatment with quercetin
significantly improved cell survival compared to cells exposed to
Aβ1-42 alone (10 and 20 μM), demonstrating a clear neuroprotective
effect. In the presence of 10 μM Aβ1-42, cell viability decreased to
65.30%. Upon treatment with quercetin, cell viability improved to
67.64% at 50 μM (a 3.57% increase), 79.69% at 100 μM (a 22.06%
increase), and 88.73% at 150 μM (a 35.84% increase) compared to

Aβ1-42-treated cells. Similarly, in the presence of 20 μM Aβ1-42, cell
viability was reduced to 48.89%, which increased to 50.17% at 50 μM
(a 2.61% increase), 62.84% at 100 μM (a 28.56% increase) and
75.37% at 150 μM quercetin treatment (a 54.14% increase),
respectively. These results indicate a dose-dependent
neuroprotective effect of quercetin against Aβ-induced
cytotoxicity (Figures 6A–J).

Effect of quercetin on ROS production

Oxidative stress, a key driver in AD progression is known to
both promote amyloid-β generation and intensify AD pathology.
This study investigated the impact of quercetin on Aβ1-42 induced
ROS production in SH-SY5Y cells using H2DCFDA staining and
flow cytometry. Exposure of cells to 20 μMAβ1-42 for 24 h resulted in
elevated ROS levels. However, co-treatment with 100 μM quercetin
significantly attenuated Aβ1-42-induced ROS production (Figures

FIGURE 7
Detection of intracellular ROS generation using H2DCFDA staining and flow cytometry. (A)Untreated control cells exhibiting baseline ROS levels, (B)
Cells treated with Aβ1-42 (20 µM), showing increased ROS production, (C) Cells pre-treated with quercetin (100 µM) prior to Aβ1-42 (20 µM) exposure,
demonstrating a reduction in ROS levels, (D) Quantitative assessment of H2DCFDA fluorescence intensity across treatment groups, highlighting the
protective effect of quercetin against Aβ1-42-induced oxidative stress. Data are presented asmean ± standard deviation (SD) from three independent
experiments. Statistical significance is denoted as follows: ns (not significant) > 0.05, *p < 0.05, **p < 0.005, ***p < 0.0005.
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7A–D). These findings indicate that quercetin effectively mitigated
Aβ1-42 induced ROS generation. The reduction in H2DCFDA
fluorescence intensity in the co-treated group reflects this
decrease in cellular ROS, indicating that protective action of
quercetin may be partly attributed to its ability to inhibit ROS
generation.

Effects of quercetin on MMP

The mitochondrial membrane potential (Δψm), a key indicator
of mitochondrial health, was evaluated in SH-SY5Y cells using JC-1
dye. Cells exposed to 20 μM Aβ1-42 exhibited a marked increase in
mitochondrial depolarization, evidenced by decreased red
fluorescence and increased green fluorescence, indicating
mitochondrial dysfunction. Flow cytometry analysis confirmed a
significant reduction in red fluorescence mean intensity and an
elevated proportion of cells in the apoptotic region. However, pre-
treatment with 100 μM quercetin effectively preserved
mitochondrial membrane potential, as indicated by enhanced red

fluorescence intensity and a reduced population of depolarized cells.
These findings suggest that quercetin mitigates Aβ1-42 induced
mitochondrial damage, thereby supporting mitochondrial
integrity and enhancing cell viability (Figures 8A–D).

Fluorescence microscopy assessment of
JC-1-stained cells

Mitochondrial membrane potential (Δψm) was further assessed
using JC-1 staining in SH-SY5Y cells and visualized under a
fluorescence microscope. In control (untreated) cells, strong red
fluorescence was observed, indicating the presence of J-aggregates
formed by JC-1 in polarized, healthy mitochondria, which is
characteristic of live and metabolically active cells. In contrast,
cells treated with Aβ1-42 alone exhibited a marked increase in
green fluorescence and a significant reduction in red
fluorescence, suggesting mitochondrial depolarization, a hallmark
of early apoptosis and cell death. This shift from red to green
fluorescence reflects a loss of Δψ and indicates compromised

FIGURE 8
Analysis of mitochondrial membrane potential (Δψm) using JC-1 staining in SH-SY5Y cells. (A) Control cells exhibiting intact mitochondrial
membrane potential, (B) Cells exposed to Aβ1-42 (20 µM), showing significant mitochondrial membrane depolarization, (C) Cells pre-treated with
quercetin (100 µM) before Aβ1-42 (20 µM) exposure, demonstrating restoration of mitochondrial membrane integrity, (D)Quantitative analysis of JC-1 red
fluorescence intensity, reflecting mitochondrial health across different treatment groups. Data are presented as mean ± standard deviation (SD)
from three independent experiments. Statistical significance is denoted as follows: ns (not significant) > 0.05, *p < 0.05, **p < 0.005, ***p < 0.0005.
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mitochondrial function in dying or dead cells. Notably, cells pre-
treated with the quercetin prior to Aβ1-42 exposure showed a
restoration of red fluorescence along with a reduction in green
fluorescence, signifying the maintenance of Δψ, and a higher
proportion of live and healthy cells. These observations further
demonstrate that quercetin protects against Aβ1-42-induced
mitochondrial dysfunction and promotes cell survival
(Figures 9A–C).

Discussion

The gradual loss of neuronal function and subsequent cell death
frequently observed alongside Aβ peptide accumulation, characterizes
neurodegenerative diseases, notably AD. The pathology of AD is
predominantly influenced by the aggregation and misfolding of Aβ,
leading to cellular toxicity and neuroinflammation (Cheignon et al.,
2018; Jia et al., 2019; Piancone et al., 2021). Increasing evidence
highlights the critical role of various environmental and molecular
factors contributing to the progression of neurodegenerative changes,
necessitating effective therapeutic interventions (Vyawhare et al., 2023;
Khoury et al., 2024). Current study investigated the neuroprotective
potential of quercetin, a natural flavonoid, towards Aβ-induced toxicity
in human neuroblastoma SH-SY5Y cells. The obtained results
demonstrate that quercetin exhibited significant neuroprotective
activity via multiple mechanisms, including antioxidant activity,
AChE inhibition, prevention of Aβ aggregation, mitochondrial
membrane stabilization, and ROS modulation.

Aβ-induced neurotoxicity is primarily mediated by oxidative stress,
mitochondrial dysfunction and cholinergic deficits, which contribute to
synaptic failure and neuronal death. The accumulation of Aβ peptides
in the brain is closely linked to increased oxidative stress, which elevates
ROS and leads to significant cellular damage (Ba et al., 2022; Varesi
et al., 2023). The results of the present study show that quercetin
significantly enhances cell viability in Aβ-treated SH-SY5Y cells,
suggesting its potential to counteract Aβ-induced cytotoxicity.
Quercetin has been documented for its antioxidant properties,
effectively neutralizing excessive ROS production, a major
contributor to neuronal damage in AD (Ayvaz, 2019; Varesi et al.,
2023). The antioxidant activity of quercetin was further supported by
the H2DCFDA staining assay, which revealed a marked reduction in
intracellular ROS levels upon quercetin treatment. This reduction in
ROS mitigates oxidative stress and supports in the preservation of
mitochondrial integrity, as mitochondrial dysfunction is a critical aspect
of neurodegenerative diseases (Wang et al., 2020). By stabilizing
mitochondrial function and preventing ROS accumulation, quercetin
may help in the protection of neuronal health against the toxic effects of
Aβ (Wang et al., 2020). Moreover, the combined properties of
quercetin, including its potential to inhibit AChE, and its role in
modulating mitochondrial processes, create a multifaceted approach
to neuroprotection in the context of AD (Rahman et al., 2020).
Additionally, ability of quercetin to maintain cellular homeostasis in
the presence of Aβ-induced stress indicates its therapeutic prospects. It
not only reduces oxidative damage, but also assists in mitigating
cholinergic deficits, thereby further improving synaptic integrity and
neuronal communication (Hakvoort et al., 2021). As oxidative stress

FIGURE 9
Fluorescence imaging of mitochondrial membrane potential in SH-SY5Y cells using JC-1 staining. (A) Untreated control cells exhibiting
predominant red fluorescence, indicating healthy, polarized mitochondria, (B) Aβ1–42 treated cells displaying increased green fluorescence, indicative of
mitochondrial depolarization and loss of Δψm, (C) Quercetin-treated cells showing restored red fluorescence, suggesting protective effects against
Aβ1–42-induced mitochondrial dysfunction.
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plays a central role in these pathophysiological mechanisms, the ability
of quercetin to act as both a direct scavenger of ROS and an enhancer of
antioxidant pathways highlights its potential utility in ADmanagement
(Zhao et al., 2019; Mandal et al., 2023).

Cholinergic dysfunction is another crucial element in the
pathology of AD, primarily due to excessive AChE activity. Our
study determined that quercetin exhibits substantial AChE
inhibitory activity, which could contribute to the restoration of
cholinergic neurotransmission. Targeting AChE inhibition is a
recognized therapeutic avenue for AD, as it enhances synaptic
acetylcholine availability, and may improve cognitive function
(Uddin et al., 2020; Jain et al., 2022). The capability of quercetin
to modulate AChE activity suggests its potential as a promising
candidate for AD intervention in agreement with the reported
studies that flavonoids can act as multifaceted neuroprotective
agents (Qi et al., 2020; Islam et al., 2021). Furthermore, the
formation and aggregation of Aβ peptides into toxic oligomers
and fibrils play a crucial role in AD pathogenesis. The results of
Thioflavin T (ThT) assay demonstrated that quercetin effectively
inhibits Aβ aggregation, indicating its ability to interfere with the
fibrillization process. This anti-amyloidogenic property is
significant, as preventing Aβ aggregation can reduce the
formation of neurotoxic plaques and mitigate their detrimental
effects on neuronal cells (Uddin et al., 2020; Jain et al., 2022; Li
et al., 2022). The present findings are in agreement with previous
work showing anti-amyloidogenic properties of flavonoids in AD
models (Islam et al., 2021; Zhang et al., 2022).

Mitochondrial dysfunction is another hallmark of Aβ toxicity,
leading to energy deficits and apoptotic cell death. The
mitochondrial membrane potential (ΔΨm) assay in our study
showed that quercetin treatment helps maintain mitochondrial
integrity in Aβ-treated SH-SY5Y cells. The preservation of ΔΨm
suggests that quercetin prevents mitochondrial depolarization, a key
indicator of mitochondrial dysfunction (Tsai et al., 2022; Fadzil
et al., 2023; Oso et al., 2023). This protective effect on mitochondria
may contribute to enhanced neuronal survival and resilience against
Aβ toxicity, emphasizing its multifaceted role in neuroprotection
(Oso et al., 2023; Sanad et al., 2023; Kerna et al., 2024).

Overall, the neuroprotective effects of quercetin observed in this
study can be attributed to its multifunctional properties, including its
ability to scavenge free radicals, inhibits AChE, prevent Aβ aggregation,
and protect mitochondrial function. These findings are consistent with
existing literature, which highlights the role of flavonoids in
neuroprotection through their antioxidant, anti-inflammatory and
anti-amyloidogenic mechanisms (Evans et al., 2022; Mandal et al.,
2023; Sanad et al., 2023). Quercetin is well known for its notable
neuroprotective properties, exerting its effects through various
pathways, including the regulation of apoptosis, modulation of the
oxidative stress response, and enhancement of neurotrophic factor
activity. One of the primary mechanisms through which quercetin
exerts its neuroprotective effects involves the regulation of apoptotic
pathways, particularly through modulation of Bcl-2 family proteins.
Studies indicate that quercetin decreases the expression of pro-apoptotic
Bax while increasing the anti-apoptotic Bcl-2, thereby preventing
neuronal death induced by oxidative stress and excitotoxicity (Yang
et al., 2013). Specifically, the Western blot analyses conducted on
hippocampal neuronal cell lines illustrate that quercetin enhances
Bcl-2 levels while reducing cytochrome c release associated with

mitochondrial permeability (Yang et al., 2013; Singh et al., 2024).
This highlights the role of quercetin in protecting against neuronal
loss due to apoptotic stimuli.

Additionally, quercetin is known to activate crucial
neuroprotective transcription factors such as Nrf2, which plays a
prominent role in the antioxidant response. Nrf2 activation regulates
the expression of various genes involved in antioxidant defense and
detoxification systems (Li et al., 2016). In a study involving human
aortic endothelial cells, quercetin was demonstrated to enhance
Nrf2 levels, suggesting that this transcription factor mediates its
neuroprotective effects through the regulation of antioxidant
enzymes and cellular detoxification pathways (Li et al., 2016).
Furthermore, Nrf2 engagement is complemented by its interactions
with other signaling molecules like p38 MAPK indicating a complex
network of regulatory mechanisms (Li et al., 2016).

Quercetin also influences the expression of neurotrophic factors
such as brain-derived neurotrophic factor (BDNF). Elevated levels of
BDNF have been associated with improved neuronal survival,
growth and synaptic plasticity, which are critical for restoration
of neurodegenerative processes (Rahvar et al., 2018). This
mechanism is particularly relevant in the context of diseases
characterized by neuronal degeneration, as BDNF has been
shown to enhance synaptic function and provide neuroprotection
(Rahvar et al., 2018). The action of quercetin is also reported against
neuroinflammation, an important feature of neurodegenerative
diseases which is mediated by the inhibition of cyclooxygenase-2
(COX-2) and inducible nitric oxide synthase (iNOS), reducing pro-
inflammatory cytokine release (Yang et al., 2018). Such effects link
directly the influence of quercetin on the Wnt signaling pathway,
specifically the canonical Wnt pathway, which has been implicated
in neuroinflammatory responses (Yang et al., 2018). By modulating
these pro-inflammatory pathways, quercetin contributes to a
decrease in oxidative stress and neuroinflammation, further
supporting neuronal survival.

Moreover, Heme Oxygenase-1 (HO-1) is a crucial
cytoprotective enzyme that aids in defending against oxidative
damage by catalyzing the degradation of heme into biliverdin,
carbon monoxide, and iron, thus playing a significant role in
cellular antioxidant defense mechanisms. The expression and
activation of HO-1 are closely linked to the Nrf2 signaling
pathway, which is a principal regulator of cellular responses to
oxidative stress (Hu et al., 2021; Guo et al., 2022). Enhanced
Nrf2 activation leads to the upregulation of antioxidant genes,
including HO-1 and ultimately contributes to cell survival in
response to oxidative damage (Robaczewska et al., 2016; Ji et al.,
2021). In various pathological contexts, including
neurodegenerative diseases and inflammation, the induction of
HO-1 appears to be a protective response aimed at mitigating
oxidative stress. For example, studies have shown that under
oxidative conditions, HO-1 expression is significantly
upregulated, which correlates with reduced levels ROS and
subsequent cellular protection (Robaczewska et al., 2016; Ji et al.,
2021; Mi et al., 2022). Conversely, decreased expression of HO-1 has
been associated with degraded outcomes in oxidative stress-related
diseases, suggesting its essential role in cytoprotection against
oxidative injuries (Amin et al., 2014; Robaczewska et al., 2016).

The integration of Nrf2 and HO-1 pathways is particularly vital
as they represent a feedback mechanism that reinforces cellular
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resilience during oxidative stress. When HO-1 is expressed, it not
only helps to detoxify ROS but also modulates numerous
downstream signaling pathways associated with inflammation
and apoptosis (Amin et al., 2014; Robaczewska et al., 2016; Ji
et al., 2021). Specifically, the Nrf2/HO-1 axis is found to be an
essential component in various stress-responsive pathways, which
include mitigating DNA damage and promoting cell survival (Miller
et al., 2019; Khan et al., 2024). Addressing the status of HO-1 in
human system is, therefore, crucial. In the present study, the HO-1
expression levels under conditions of induced oxidative stress via
quercetin could elucidate its potential protective mechanisms within
the mitochondrial context. Further exploration of upstream
regulators like Nrf2, and their post-translational modifications
that could alter HO-1 expression, will provide a comprehensive
understanding of the interplay between these pathways in response
to oxidative challenges. Although the findings are promising, it is
crucial to recognize the limitations of this investigation. The in-vitro
design fails to replicate the intricate complexities of AD pathology,
as it occurs in living systems. Future studies should focus on
validating these findings using animal models and clinical studies
to establish the pharmacokinetics, bioavailability and long-term
effects of quercetin in neurodegenerative conditions (Chen et al.,
2023). Additionally, exploring the synergistic effects of quercetin
with existing AD treatments may provide further insights into its
therapeutic potential (Tsai et al., 2022; Kerna et al., 2024).

Moreover, quercetin currently faces several well-documented
challenges that limit its clinical application, particularly in
neurological disorders. Among the most prominent issues are its
poor bioavailability, extremely low aqueous solubility (~0.1 μg/mL at
physiological pH), rapid degradation during gastrointestinal digestion
and limited permeability across the blood–brain barrier (BBB) (Rich
et al., 2017; Chen et al., 2018; Mukherjee et al., 2019). Its low solubility
severely restricts gastrointestinal absorption, while its instability during
digestion and storage further diminishes its therapeutic potential
(Batiha et al., 2020; Jeayeng et al., 2025). Moreover, due to its
hydrophilic nature and molecular structure, quercetin exhibits
limited translocation across the BBB, hindering its effectiveness in
central nervous system applications (Rich et al., 2017). To address
these limitations, researchers have explored various nanoformulation
strategies. Self-nanoemulsifying drug delivery systems (SNEDDS) have
been shown to enhance solubility and absorption of quercetin by
maintaining it in supersaturated states in the GI tract (Tran et al.,
2014; Muhtadi et al., 2022). Additionally, lipid-based nanoparticles and
encapsulation in biodegradable carriers have demonstrated promise in
improving both stability andCNS delivery (Kumari et al., 2010; Hussain
et al., 2021; Patel et al., 2024; Wang et al., 2024). These innovative
approaches are critical for overcoming the inherent pharmacokinetic
barriers and advancing quercetin’s viability as a therapeutic agent.

Overall, present study offers a comprehensive mechanistic
investigation into the neuroprotective effects of quercetin against
Aβ-induced toxicity in human SH-SY5Y neuroblastoma cells,
setting it apart from previous studies that typically focus on
isolated pathways. Unlike earlier studies, the present study
simultaneously evaluates the impact of quercetin on oxidative
stress, mitochondrial membrane potential, Aβ aggregation and
AChE activity, four key pathological features associated with AD.
By integrating these endpoints within a single experimental
framework, our study addresses a critical gap in the literature

regarding the multitargeted potential of natural compounds.
Furthermore, the pharmacological limitations of quercetin
highlighting the translational importance of the outcomes of this
study in guiding future in-vivo studies and the development of
advanced delivery systems. This integrated approach highlights the
therapeutic relevance of quercetin and emphasizes the necessity of
exploring plant-based multitarget agents for complex
neurodegenerative conditions like AD.

Conclusion

The present study provides compelling evidence for the
neuroprotective role of quercetin against Aβ-induced toxicity in
SH-SY5Y cells. By mitigating oxidative stress, inhibiting AChE
activity, preventing Aβ aggregation and preserving mitochondrial
function, quercetin demonstrates a multifaceted approach to
neuroprotection. These findings support its potential as a
promising natural therapeutic candidate for AD and other
neurodegenerative disorders. However, further research is needed
to explore its clinical applicability and efficacy in treating
neurodegenerative diseases.
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