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Type 2 diabetes mellitus (T2DM), a chronic condition commonly observed in
adults, particularly among the elderly, is characterized by a dysfunctional insulin
response that impairs blood glucose regulation, resulting in persistent
hyperglycemia. Ginseng, a medicinal plant with significant economic value
and a longstanding history of therapeutic use in Asia, has shown efficacy
against various diseases. Extensive clinical and experimental studies highlight
ginsenosides, its primary bioactive compounds, for their multiple therapeutic
effects across a range of conditions, including endocrine, cardiovascular, and
central nervous system disorders. Various ginsenoside types have demonstrated
potential in lowering blood glucose levels, reducing insulin resistance, and
alleviating complications through the modulation of key protein targets and
signaling pathways. This review consolidates the pharmacological actions and
mechanisms of distinct ginsenosides in managing diabetes and its complications,
offering a theoretical foundation for further pharmacological research and novel
drug development for T2DM treatment, while also providing robust theoretical
support for future clinical applications.
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1 Introduction

Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia arising
from inadequate insulin secretion and/or compromised insulin efficacy (Wang and Cao,
2025). The International Diabetes Federation (IDF) estimates that DM currently impacts
approximately 536.6 million adults globally, with projections indicating an increase to
783.2 million by 2045 (Yang et al., 2024). The rising prevalence of DM, particularly type
2 diabetes mellitus (T2DM), stems from a complex interplay of genetic
predispositions—such as obesity, impaired postprandial insulin release, and damage to
certain pancreatic β cells—and environmental factors, including obesity, poor dietary
habits, physical inactivity, and aging (Młynarska et al., 2025). This results in sustained
hyperglycemia and reduced insulin sensitivity, which cumulatively contribute to various
metabolic disorders.

T2DM significantly disrupts numerous organ systems by inducing profound alterations
across nearly all cellular metabolic pathways. Chronic complications of DM often arise from
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either insulin deficiency or resistance, accompanied by persistent
hyperglycemia, dyslipidemia, and other metabolic irregularities (Bilal
and Pratley, 2025). These complications encompass macrovascular
diseases, notably cardiovascular and cerebrovascular conditions
primarily manifesting as atherosclerosis, and microvascular diseases,
which involve thickening of the basement membrane and deposition of
transparent material in tissues such as the retina, kidneys, and nerves.
Key examples include diabetic retinopathy (DR), diabetic nephropathy
(DN), and neuropathy (Alexander et al., 2024). Emerging evidence
suggests that this binary classification of DM complicationsmay require
refinement, as many complications resist categorization into solely
microvascular or macrovascular types. Instead, chronic DM
complications can be grouped into pathological categories involving
vascular, parenchymal, and mixed tissue, as illustrated in Figure 1.
These complications constitute the primary causes of morbidity and
mortality associated with DM, imposing a growing strain on healthcare
systems worldwide, affecting both developed and developing nations
(Singh et al., 2025).

Traditional diabetes therapies, including thiazolidinediones
(SU), biguanides (BG), and α-glucosidase inhibitors, frequently
carry significant side effects such as hypoglycemia, drug
resistance, edema, and weight gain (Zhang et al., 2025). With
advancements in diabetes research, therapeutic approaches have
shifted from merely enhancing insulin’s hypoglycemic effects to
broader strategies that regulate glucose metabolism, increase insulin
receptor sensitivity, inhibit insulin resistance, control non-
enzymatic glycosylation of proteins, and decrease fatty acid
metabolism (Shahcheraghi et al., 2021). Current diabetes
management primarily emphasizes insulin or peptide derivatives,
oral antidiabetic drugs, and dietary modifications. However, daily
intravenous insulin or peptide injections are inconvenient and
burdensome for patients (Scairati et al., 2025), while long-term
oral administration of chemical drugs poses risks of toxicity. Despite
numerous strategies and medications developed for diabetes
prevention and treatment, the outcomes remain largely
suboptimal. Consequently, there is an urgent demand for new,
effective, and safer natural hypoglycemic agents as alternative
therapies for diabetes and its complications. Recent years have

witnessed a growing interest in traditional Chinese medicine for
diabetes treatment, particularly ginseng.

Ginseng, a perennial herb reaching up to 60 cm in height, is
primarily cultivated in northeastern China, Korea, North Korea, and
Japan (Iqbal et al., 2025). The ginseng shares a basic structure with
steroid hormones, containing saponins, polysaccharides,
polyacetylene, phenols, and alkaloids, each with a rigid tetracyclic
steroid backbone of 17 carbon atoms (Li et al., 2024). Ginsenosides, a
principal class of natural triterpene saponins within ginseng, are
recognized as key contributors to its antidiabetic properties. To
date, nearly 200 ginsenosides have been identified in ginseng
plants and heat-processed ginseng products (Qi et al., 2022).
Ginsenosides are generally categorized into two subtypes:
protopanaxadiol (PPD) and protopanaxatriol (PPT). PPD-type
ginsenosides include Rb1, Rb2, Rb3, Rc, Rd, Rh2, Rg3, and F2,
while PPT-type ginsenosides encompass Re, Rf, Rg1, Rg2, and Rh1
(Liu et al., 2024). These compounds hold therapeutic potential for
treating a wide range of conditions, including diabetes, cancer,
digestive diseases, cardiovascular diseases and nervous system
disorders (Niu et al., 2025).

Increasing evidence from cell, animal, and clinical studies
demonstrates that various ginsenosides exert antidiabetic effects
through multiple mechanisms. However, systematic evaluations
detailing the specific antidiabetic mechanisms and the preventive
effects of different ginsenoside types on diabetes complications
remain lacking. This review compiles and analyzes recent studies
(from 2020 onward) on ginsenosides in the treatment of diabetes
and its complications across different systems or organs, providing a
comprehensive theoretical foundation for their application in
diabetes management.

2 Specific varieties of ginsenoside
ingredients

The active ingredients associated with the ginsenosides used in
the treatment of type 2 diabetes and its complications are shown
in Table 1.

FIGURE 1
DM can lead to complications in a variety of human systems or organs.
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TABLE 1 Detailed information on the kinds of beneficial ginsenoside properties in the treatment of type 2 diabetes and its complications with different
systems.

Ginsenoside Mechanism Signal path or receptor References

Cardiovascular system

Rb1 • anti-oxidative stress AMPK//Nrf2/HO-1 Bingbing et al. (2023)

Rb1 • decrease in extracellular Ca2+ influx Park et al. (2023)

Rb1 • lower lipid levels
• attenuate oxidative stress, hypertrophy, inflammation,

fibrosis, and apoptosis in cardiomyocytes

adipocytokine pathway Zhang et al. (2022)

Rb1 • ameliorate endothelial cell injury and atherosclerosis Wang et al. (2022a)

Rb1 • anti-oxidative stress
• reduce dysfunction of RyR2

RyR2 Feng et al. (2024)

Rb1 • alleviate myocardial lipid accumulation
• alleviate mitochondrial injury
• attenuate ventricular diastolic dysfunction

Mfn2 Ji et al. (2024)

Rb1 • alleviate collagen deposition and degradation AMPK Zhang et al. (2021a)

Rb1 • improve cardiac dysfunction and abnormal
cardiomyocytes calcium signaling

O-GlcNA Qin et al. (2019a)

Rb1 • anti-apoptosis PI3K/AKT Wu et al. (2011)

Rg1 • alleviate the development of mitochondrial
dysfunction and oxidative stress

calpain-1/ROS/PKC-β Lu et al. (2023)

Rg1 • induce macrophage M2 polarization NOTCH Zhen et al. (2024)

Rg1 • anti-apoptosis HIF-1/α-ERK Yuan et al. (2019)

Rg1 • anti-inflammation
• anti-oxidative stress

AMPK/Nrf2/HO-1 Qin et al. (2019b)

Rg1 • reduce the cerebral infarction volume
• promote neuronal recovery

Shen et al. (2017)

Rg1 • anti-apoptosis Yu et al. (2016)

Rg1 • anti-apoptosis
• anti-oxidative stress

Yu et al. (2015)

Rg1 • improve angiogenesis
• anti-apoptosis

Yang et al. (2012)

Rg3 • inhibit vascular smooth muscle cell proliferation and
migration

PPARγ Guo et al. (2018a)

Rg3 • induce macrophage M2 polarization PPARγ Guo et al. (2018b)

Rg3 • improve adiponectin secretion
• promote adiponectin signaling

PPARγ Zhang et al. (2023)

Rk1 • ameliorate endothelial dysfunction
• anti-oxidative stress

PPAR/eNOS Miao et al. (2024)

Rh2 • improves cardiac fibrosis PPARγ/STAT3 Lo et al. (2017)

Fc • promote endothelial cell autophagy Liu et al. (2019a)

Fc • anti-apoptosis
• anti-inflammation
• promote proliferation

PPARγ Liu et al. (2018)

Re • anti-angiopathy P38MAPK/ERK1/JNK Shi et al. (2016)

Notoginsenoside R1 (NR1) • promote viability inhibition
• anti-apoptosis
• enhance tube formation ability
• inhibit oxidative stress and inflammatory

Mir-147a and MyD88/TRAF6/NF-κB Li and Huang (2021)

NR1 • anti-apoptosis miR-21 and PI3K/AKT Liu et al. (2019b)

(Continued on following page)
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TABLE 1 (Continued) Detailed information on the kinds of beneficial ginsenoside properties in the treatment of type 2 diabetes and its complications with
different systems.

Ginsenoside Mechanism Signal path or receptor References

Korean Red Ginseng (KRG) • antihyperglycemic and antioxidative effects Hossain et al. (2020)

Digestive system

Rb1 • modulate specific gut microbes and related
metabolites

Wang et al. (2023)

Rb1 • enhance liver glycogen production 15-PGDM Liang et al. (2023)

Rb1 • anti-inflammation
• anti-apoptosis

Akt/FOXO1 Su et al. (2022a)

Rb1 • increase insulin sensitivity 11β-HSD1 Song et al. (2017)

Rb1 • stimulate GLP-1 secretion in enteroendocrine L cells GLP-1

Rb1 • stimulate glucose uptake GLUT1/GLUT4 Shang et al. (2008)

Rb1 • attenuate insulin resistance Xiong et al. (2010)

Rb2 • attenuate insulin resistance
• reduces fat mass
• improve insulin sensitivity

AKT Dai et al. (2018)

Rb2 • inhibit gluconeogenesis ER/AMPK Lee et al. (2011a)

Rb3 • improve oral glucose tolerance
• repaire injured pancreas tissues

Bu et al. (2012)

Rg1 • improve islet injury and tissue inflammation
• raise serum insulin, and tissue autophagy marker

Zong et al. (2023)

Rg1 • anti-apoptosis AMPK/mTOR Chen et al. (2023)

Rg1 • increase the proportions of bacteria Peng et al. (2022)

Rg1 • anti-inflammation
• anti-pyroptosis
• anti-oxidative stress

NLRP3 and Keap1/Nrf2/HO-1 Gao et al. (2020)

Rg1 • increase the uptake of glucose
• decrease the output of glucose

AKT/GSK3β Fan et al. (2019a)

Rg1 • anti-inflammation Fan et al. (2019b)

Rg1 • inhibit hepatic gluconeogenesis AKT Liu et al. (2017)

Rg1 • suppress hepatic glucose production LKB1/AMPK/FoxO1 Kim et al. (2010)

Rg1 • inhibit obesity
• improve insulin resistance and glucose intolerance

AMPK Li et al. (2018)

Rg1+Rb1 • anti-apoptosis Fas Chen et al. (2012)

Rb1+Rg1 • enhance secretion and viability PKA Park et al. (2008a)

Rk1 • anti-apoptosis IGF-1R Vong et al. (2024)

Rg2 • inhibit hepatic glucose production SHP/GSK3β/AMP Yuan et al. (2012)

Rg3 • hyperglycemia
• insulin resistance therapy

Han et al. (2024)

Rg3 • anti-apoptosis
• increase proliferation

INS-1/ERK/p38 MAPK Kim et al. (2016)

Rg3 • stimulate GLP-1 secretion in enteroendocrine L cells GLP-1 Kim et al. (2015)

Rg3 • anti-apoptosis Kim et al. (2014)

Rg3 • enhance glucose-stimulated insulin secretion AMPK Park et al. (2008b)

Rg3+Re • stimulate glucose uptake IRS-1/PI3K Lee et al. (2011b)

(Continued on following page)
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TABLE 1 (Continued) Detailed information on the kinds of beneficial ginsenoside properties in the treatment of type 2 diabetes and its complications with
different systems.

Ginsenoside Mechanism Signal path or receptor References

Rg5 • attenuate hepatic glucagon response HIF-1α Xiao et al. (2017)

Rg5 • improve insulin resistance
• improve mitochondrial biogenesis

Sirt1/PGC-1α Zhu et al. (2021)

Rg5 • reverse gut microbiota dysbiosis and diabetes-
associated metabolic disorders

Wei et al. (2020)

Rd • increase the diversity of gut microbiota, increased the
abundance of beneficial bacteria

Wang et al. (2023)

Rd • anti-apoptosis Kaviani et al. (2019)

Re • increase insulin resistance AMPK Quan et al. (2012)

Rh2 • anti-apoptosis AKT/Foxo1/PDX-1 Wang et al. (2012)

Rh4 • improves pancreatic β-cells dysfunction
• anti-oxidative stress

Nrf2 Liu et al. (2021)

Rk3 • mediate hepatic gluconeogenesis and lipid
accumulation

AMPK/AKT Liu et al. (2019c)

F4 • enhance insulin sensitivity
• alleviate endoplasmic reticulum (ER) stress

IRE-1/TRAF2/JNK Zhao et al. (2023)

CK • inhibit the macrophage activation PPAR γ/NF-κB Xu et al. (2022)

CK • modulate the abundance of L-cells TGR5/YAP Tian et al. (2022b)

CK • remodel gut microbiota and bile acid metabolism TGR5 Tian et al. (2022a)

CK • anti-inflammation RhoA/ROCKs/YAP Tian et al. (2021)

CK • suppress hepatic gluconeogenesis AMPK Wei et al. (2015)

CK • increase insulin resistance PI3K/AKT Jiang et al. (2014)

CK • anti-apoptosis AMPK/JNK Guan et al. (2014)

CK • enhance insulin secretion GLUT2 Gu et al. (2013)

CK • suppress the hepatic gluconeogenesis Li et al. (2012)

CK • attenuate glucose intolerance and hepatic steatosis AMPK Hwang et al. (2018)

CK • anti-apoptosis SAPK/JNK Kim et al. (2009a)

T19 • lower the levels of blood glucose and lipid
• alleviate insulin resistance
• improve histological pathology of liver and pancreas

AMPK/PI3K Xu et al. (2020)

NR1 • alleviate apoptosis and dysfunction miR-29a Chen et al. (2019)

Red Ginseng • improve lipid deposition Huang et al. (2022)

Malonyl Ginsenoside (MGR) • improve glucose and lipid metabolism and insulin
resistance

IRS1/PI3K/AKT and MAPK Wang et al. (2022b)

Nervous system

Rb1 • anti-inflammation Nrf2/NLRP3 Zhai et al. (2018)

Rb1 • improve glucose metabolism
• ameliorate depression-like behavior

Zhang et al. (2021b)

Rb1 • improve cognitive ability
• improve glucose tolerance

Cdk5/p35-NMDAR-IDE Yang et al. (2020)

Rb1 • protect neurons GSK3β/CHOP Liu et al. (2014)

Rb1 • anti-oxidative stress and activation of the
mitochondrial apoptosis

Li et al. (2017)

(Continued on following page)

Frontiers in Pharmacology frontiersin.org05

Liu et al. 10.3389/fphar.2025.1593780

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1593780


TABLE 1 (Continued) Detailed information on the kinds of beneficial ginsenoside properties in the treatment of type 2 diabetes and its complications with
different systems.

Ginsenoside Mechanism Signal path or receptor References

Rb1 • anti-oxidative stress
• anti-apoptosis

Xue et al. (2012)

Rg1 • improve synaptic dysfunction
• improve memory impairment and neuronal injury

PLC-CN-NFAT1 Dong et al. (2023)

Rg3 • prevent degeneration of neurons
• exert the antioxidant effect

Liu et al. (2015)

Re • ameliorate brain insulin resistance and cognitive
dysfunction

JNK Kim et al. (2017)

Re • anti-inflammation Liu et al. (2012)

NR1 • neuroprotective and neurotrophic function miR-503 Wang et al. (2019b)

CK • inhibit brain oxidative/nitrosative damage Tian et al. (2018)

CK • ameliorate glucose tolerance, insulin sensitivity, and
dyslipidemia

• suppress oxidative stress and inflammatory response

ER/NLRP3 Li et al. (2020)

Muscles

Rg1 • promote glucose uptake GLUT4 Lee et al. (2012)

Rg3 • promote myoblastic differentiation
• protect mitochondrial function

AMPK/Smad Wang et al. (2024a)

Rg3 • improve insulin signaling and glucose uptake IRS-1/GLUT4 Kim et al. (2009b)

Rc • stimulate glucose uptake AMPK Lee et al. (2010)

CK • anti-apoptosis
• anti-inflammation
• anti-oxidative stress
• lower metalloproteinase (MMP)

PPARγ Cho et al. (2024)

CK • induce mitophagy DRP1/PINK1 Li et al. (2023)

Diabetic retinopathy

Rb1 • anti-oxidative stress Nrf2 Dong et al. (2019)

Rb1 • anti-oxidative stress NAD/PARP/SIRT Fan et al. (2019c)

Rg1 • prevent synaptic neurodegeneration IRS-1/Akt/GSK3β Ying et al. (2019)

Rg1 • inhibits mesenchymal activation and fibrosis miR-2113/RP11-982M15.8/Zeb1 Xue et al. (2018)

Rg1 • inhibite cell proliferation, cell cycle progression,
angiogenesis, and the production of inflammatory
cytokines and growth factors

TLR4/NF-κB Xue et al. (2023)

Rg3 • prevent neovascularization Sun and Zhou (2010)

Re • anti-apoptosis
• anti-oxidative stress

PI3K/AKT and HIF-1α/VEGF Xie et al. (2020)

Re • anti-oxidant stress
• anti-hyperlipidemic

Cho et al. (2006)

NR1 • improve retinal vascular degeneration
• improve retinal thickness
• improve retinal function

PINK1 Zhou et al. (2019)

NR1 • modulate the intracellular redox state Fan et al. (2017)

Panax notoginseng saponins (PNS) • anti-inflammation NF-κB Wang et al. (2024b)

Lung

Rb1 • anti-oxidative damage and inflammatory infiltration Su et al. (2022b)

(Continued on following page)
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2.1 Cardiovascular system

DM is an important risk factor for cardiovascular diseases. Long-
term hyperglycemia leads to vascular endothelial damage through
oxidative stress, inflammatory response and metabolic disorders, and
accelerates the process of atherosclerosis. Coronary atherosclerotic heart
disease is often complicated in diabetic patients, which is manifested as

angina pectoris and myocardial infarction. At the same time,
myocardial microangiopathy can lead to diabetic cardiomyopathy,
leading to ventricular remodeling and heart failure.

2.1.1 Endothelial cell dysfunction
Under high glucose conditions, the polyol pathway is activated,

and advanced glycation end products accumulate, ultimately

TABLE 1 (Continued) Detailed information on the kinds of beneficial ginsenoside properties in the treatment of type 2 diabetes and its complications with
different systems.

Ginsenoside Mechanism Signal path or receptor References

Rg3 • anti-inflammation PI3K/MAPK Wang et al. (2019a)

Urinary system

Rb1 • inhibit aldose reductase activity AR He et al. (2022)

Rg1 • improve lipid deposition, fibrosis, and ROS
production

NOX4-MAPK Ji et al. (2023)

Rg1 • ameliorate renal lipid accumulation, pathological
damage, and glomerular fibrosis

TRPC6/NFAT2 Han et al. (2023)

Rg3 • induce mesangial cells proliferation
• anti-apoptosis

miR-216a-5p/MAPK Chen et al. (2024)

Rg3 • reduce inflammation and fibrosis PPARγ Sui et al. (2023)

Rg3 • improve anti-oxidative activity
• reduce renal inflammation

MAPK/NF-κB Li et al. (2021)

Rg3 • anti-inflammation Zhou et al. (2020)

Rg3 • anti-oxidative stress Kang et al. (2010)

Rg5 • anti-inflammation
• anti-oxidative stress

NLRP3/MAPK Zhu et al. (2020)

Rd • antioxidative and antiapoptotic activities Jung et al. (2021)

Rh1 • anti-inflammation
• anti-apoptosis

AMPK/PI3K/AKT Su et al. (2021)

NR1 • anti-inflammation
• anti-apoptosis

PI3K/AKT/NF-κB Huang et al. (2016)

NR1 • inhibit apoptosis and renal fibrosis
• anti-oxidative stress

Nrf2/HO-1 Zhang et al. (2019)

CK • anti-inflammation NLRP3/NF-κB/p38 Song et al. (2018)

CK • inhibit microbially produced imidazole propionate TLR4 Chen et al. (2022)

CK • enhance antioxidant capacity Shao et al. (2015)

Notoginsenoside Fc • endothelial cells pyroptosis
• mitochondrial dysfunction

HMGCS2 Shen et al. (2024)

PNS • anti-inflammation
• anti-oxidative stress

SIRT1 Du et al. (2016)

Wound healing

Rb1 • stimulate the wound-healing activity of fibroblasts Namgoong et al. (2019)

Rg1 • promote cell proliferation, migration and
angiogenesis

• anti-apoptosis

miR-489-3p/SIRT1 and PI3K/AKT/eNOS Huang et al. (2021)

Rg1 • promote angiogenesis miR-23a/IRF-1 Cai et al. (2019)

Rg5 • fuel the efferocytosis of dendritic cells NF-κB Xia et al. (2023)

PPD • stimulate angiogenesis PI3K/Akt/mTOR and Raf/MEK/ERK Zhang et al. (2017)
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triggering an oxidative stress response that damages vascular
endothelial cells—an initiating and central factor in diabetes-
associated vascular disease (Yang and Liu, 2022).

In response, numerous scholars have systematically investigated
this critical mechanism. Findings indicate that Rb1 enhances arterial
flexibility, aortic compliance, and endothelium-dependent
vasodilation by inhibiting the transforming growth factor-β1
(TGFβ1)/Smad2/3 pathway (Zhang J. H. et al., 2021), reducing
oxidative stress (Park et al., 2023), and preventing endothelial-
mesenchymal transition (EndMT), apoptosis, and mitochondrial
damage (Wang D. S. et al., 2022). Additionally, Rk1 activates the
peroxisome proliferator-activated receptor (PPAR)/endothelial
nitric oxide synthase (eNOS) pathway, which alleviates
endothelial dysfunction and suppresses oxidative stress in
diabetic vascular tissue (Miao et al., 2024). Rg1 protects against
vascular endothelial dysfunction (VED) by inhibiting the calpain-1/
reactive oxygen species (ROS)/protein kinase C-β (PKC-β) axis,
thereby mitigating mitochondrial dysfunction and oxidative stress
(Lu et al., 2023). At concentrations of 10–40 μM,
NR1 downregulates the MyD88/tumor necrosis factor receptor-
associated factor 6 (TRAF6)/nuclear factor kappa-B (NF-κB)
pathway by upregulating miR-147a, which suppresses oxidative
stress, inflammation, and apoptosis while enhancing tube
formation (Li and Huang, 2021). Furthermore, a study on
Korean Red Ginseng (KRG) demonstrated improved cardiac
function in diabetic rats by normalizing ejection fraction,
fractional shortening, and vascular reactivity, although the study
was limited to animal models and did not extend to cell-level
mechanistic analysis (Hossain et al., 2020).

2.1.2 Diabetic cardiomyopathy (DCM)
Diabetic cardiomyopathy (DCM) is a distinct form of

cardiomyopathy in patients with DM that is not attributable to
hypertensive heart disease, coronary atherosclerosis, or other cardiac
conditions. It results in pathological abnormalities, including
cardiomyocyte apoptosis, left ventricular dysfunction, cardiac
remodeling, inflammation, oxidative reactions, and myocardial
metabolic disorders (Zhao et al., 2022). Feng et al. (2024)
demonstrated that Rb1 improves myocardial injury in diabetic
rats by reducing cardiomyocyte apoptosis and mitigating
oxidative damage, although the specific mechanisms were not
explored. Recent studies have expanded on this, indicating that
Rb1 can not only lower lipid levels through adipocytokine-mediated
pathways (Zhang et al., 2022) but also modulate the adenosine 5′-
monophosphate-activated protein kinase (AMPK)/nuclear factor
erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1)
signaling pathway (Bingbing et al., 2023). Furthermore, Rb1 has
been shown to alleviate hyperglycemia/hyperlipidemia-induced
ventricular diastolic dysfunction, metabolic disorders, oxidative
stress, cardiomyocyte apoptosis, and fibrosis by inhibiting
mitochondrial damage (Ji et al., 2024). Zhang et al. (2023)
highlighted the therapeutic potential of Rg3 in DCM, noting that
Rg3 counteracts lipid accumulation-induced dysfunction in cardiac
tissue by enhancing adiponectin secretion and signaling. In addition,
Lu et al. (Zhen et al., 2024) found that RG1 promotes mesenchymal
stem cells (MSCs) to secrete exosomes, which reduce myocardial
fibrosis and inflammation by activating the NOTCH signaling
pathway to induce macrophage M2 polarization.

These findings underscore that ginsenosides not only enhance
cardiovascular function by improving endothelial cell function but
also restore myocardial function by addressing pathological
alterations in cardiomyocytes, as illustrated in Figure 2. Future
directions for research include developing a wider range of
ginsenosides, investigating their molecular mechanisms, and
exploring combined applications with polymer materials.

2.2 Digestive system

Diabetes digestive diseases are mainly caused by autonomic
neuropathy and microcirculation disorders caused by long-term
hyperglycemia, which can involve the gastrointestinal tract, liver and
pancreas. We mainly describe different kinds of ginsenosides in the
treatment of diabetes and its complications from these three aspects.

2.2.1 Diabetic liver disease
Diabetic patients experience impaired glucose metabolism,

disrupting the regulatory balance between the liver and pancreas,
which in turn diminishes the liver’s capacity to manage blood
glucose levels. Hyperglycemia triggers hepatocyte inflammation
through mechanisms such as mitochondrial oxidative stress,
endoplasmic reticulum (ER) stress, and reduced lysosomal
autophagy, causing substantial hepatocyte damage and subsequent
liver function decline (Lange et al., 2022). Rh1 not only inhibits
elevations in triglyceride (TG), total cholesterol (TC), and low-
density lipoprotein cholesterol (LDL-C) levels but also enhances the
secretion of G6Pase and phosphoenolpyruvate carboxykinase (PEPCK)
in the gluconeogenesis pathway. Histological analyses further indicate
that Rh1 mitigates liver tissue apoptosis and suppresses inflammatory
mediators, includingNF-κB andNOD-like receptor protein 3 (NLRP3),
providing initial evidence of Rh1’s protective role against liver damage
in T2DM (Su H. et al., 2022). Additionally, Zhu et al. (2021) reported
that Rg5 improves liver injury and hepatocyte apoptosis via the insulin
receptor substrate-1 (IRS-1)/phosphatidylinositide 3-kinase (PI3K)/
protein kinase B (AKT) pathway, alleviates hepatic oxidative stress
and inflammation, and promotesmitochondrial biosynthesis in T2DM.
Thus, Rg1 and Rg5 show promise as natural interventions for T2DM.
Further studies suggest that Rb1 has a strong affinity for 15-PGDH and
may enhance hepatic glycogen synthesis through a 15-PGDH-
dependent mechanism, offering new insights into Rb1’s positive
effects on T2DM (Liang et al., 2023).

Inadequate glycemic control in diabetes increases insulin levels,
stimulates fat synthesis, inhibits lipolysis, and impairs the
transformation of lipids into lipoproteins, which are essential for
lipid transport from the liver. Consequently, these lipids accumulate
in hepatocytes, leading to hepatic steatosis. Enhancing lipid
metabolism in the liver is, therefore, an essential strategy for
addressing diabetic liver disease (Guo et al., 2024). Huang et al.
(2022) demonstrated that Red Ginseng significantly reduces fasting
blood glucose and TG and TC levels in T2DM rats. Both in vitro and
in vivo studies confirm its efficacy in correcting lipid metabolism
disorders and alleviating hepatic steatosis, supporting the potential
of red ginseng as a functional food for diabetes management. Panax
ginseng (PG-MGR), another natural ginseng product, also shows
promising effects by lowering fasting blood glucose (FBG), TG, TC,
and LDL-C levels, improving insulin resistance and glucose
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tolerance, and reducing liver damage by decreasing aspartate
aminotransferase (AST) and alanine aminotransferase (ALT)
expression through the activation of IRS-1/PI3K/AKT and
AMPK signaling pathways (Wang D. S. et al., 2022).

To date, research on diabetic liver complications remains
limited, focusing mainly on liver function impairment and lipid
metabolism. Future studies should aim to develop a wider variety of
ginsenosides, investigate their molecular mechanisms in greater
detail, and assess potential hepatotoxic effects.

2.2.2 Pancreatic dysfunction
Pancreatic diabetes, a type of diabetes mellitus caused by

pancreatic exocrine diseases, is most frequently associated with
chronic pancreatitis. Key pathogenic factors include islet
dysfunction, insulin insufficiency, insulin resistance, reduced
incretin hormone levels, and disruptions in intestinal flora
(Vonderau and Desai, 2022). Immune-mediated islet dysfunction
plays a critical role in the development of pancreatic diabetes, where
macrophage recruitment and activation lead to the release of
numerous inflammatory cells, contributing to pancreatic β-cell
dysfunction. Studies indicate that the early recruitment and
activation of macrophages exacerbate pancreatic cell damage
(Wagner et al., 2022). CK has been shown to dose-dependently
reduce M1-type inflammatory cytokine expression in macrophages
via the PPAR γ/NF-κB signaling pathway, effectively improving
insulin resistance and glucose tolerance (Xu et al., 2022). Similarly,
Rg1 reduces inflammation and insulin resistance, while also
activating AMPK and inhibiting mammalian target of Rapamycin
(mTOR)-mediated autophagy and apoptosis (Chen et al., 2023;
Zong et al., 2023). Additionally, Rh4 has demonstrated a
significant effect in alleviating diabetes symptoms, normalizing
glucose metabolism, and enhancing insulin secretion, primarily
through increased Nrf2 expression. Elevated pancreatic
inflammation levels decrease insulin secretion, but Rh4’s effects
include promoting Nrf2 nuclear translocation and boosting insulin
production by activating pancreatic and duodenal homeobox-1

(PDX-1) and glucose transporter-2 (GLUT2) signaling pathways.
Investigating the Nrf2 pathway offers promising potential as a
therapeutic strategy to address pancreatic β-cell dysfunction in
diabetes (Liu et al., 2021). Experimental results further indicate
that preparations with spherical structures exhibit smaller particle
sizes, enhanced penetrative ability, and an encapsulation rate as high
as 99.8%, significantly improving fasting insulin (FINS) levels and
insulin sensitivity index (ISI) (Han et al., 2024).

Glucagon-like peptide-1 (GLP-1) is a hormone released during the
intestinal digestion and absorption of nutrients, which stimulates
insulin secretion. However, in cases of pancreatic insufficiency,
nutrient absorption is compromised, leading to reduced incretin
hormone release and subsequent increases in blood glucose levels.
Rk1 has been found to activate the anti-apoptotic effects of the
PI3K/AKT/B-cell lymphoma-2 (Bcl-2) signaling pathway by directly
targeting and activating the insulin-like growth factor 1 receptor (IGF-
1R). Additionally, Rk1 reduces pancreatic weight and increases
pancreatic insulin levels, thereby protecting the pancreas from high-
fat diet (HFD)-induced diabetes (Vong et al., 2024).

In summary, substantial research has clarified the mechanisms
underlying pancreatic diabetes. Future efforts may focus on
combining various ginsenosides for diabetes treatment, aiming
for complementary effects and exploring multiple drug delivery
routes to optimize therapeutic efficacy.

2.2.3 Abnormal intestinal metabolism
L cells, a type of intestinal endocrine cell dispersed throughout

the gastrointestinal tract, secrete several critical peptide hormones,
including GLP-1, GLP-2, polypeptide YY (PYY), and gastric oxyntic
regulator. These hormones play vital roles in promoting insulin
secretion, regulating appetite, and managing blood glucose levels
and body weight. Recent studies have identified L cells as pivotal
targets for diabetes treatment, with CK emerging as the most
extensively researched agent. CK has been shown to alleviate ileal
epithelial injury and intestinal fibrosis by increasing levels of
lithocholic acid (LCA) and deoxycholic acid (DCA). Additionally,

FIGURE 2
Mechanism of multiple ginsenosides in treating cardiovascular complications of DM.
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CK promotes L-cell transformation and enhances GLP-1 release by
upregulating genes associated with L-cell differentiation (Tian et al.,
2022a). The underlying mechanisms involve pathways such as the
gut microbiota-bile acid (BA)-TGR5 pathway and the RhoA/ROCK/
YAP signaling pathway (Tian et al., 2021; Tian et al., 2022a).

The gut microbiota plays a pivotal role in the development of type
2 diabetes, exerting regulatory effects on the body’s metabolic and
inflammatory responses. Disturbances in gut microbiota are linked to
dysregulation of immune cells and elevated levels of inflammatory
cytokines, making them significant contributors to various
inflammation-mediated diseases. Rb1 has been shown to reverse
intestinal microbiota disorders in diabetic mice by increasing the
abundance of Umbellifera mites while decreasing the levels of
Aristipes, Preethylene Silkworms, Stinky bacterium, and Anaerobic
Proplasma. Furthermore, Rb1 altered the composition of free fatty
acids (FFAs) in fecal metabolites, reducing α-linolenic acid, oleic acid,
arachidonic acid, palmitic acid, and stearic acid (Zhou et al., 2023). Rd
enhanced the abundance of beneficial bacteria through the activation of
the AKT pathway, while simultaneously decreasing the abundance of
conditionally pathogenic bacteria (Wang et al., 2023). Rg1 also
contributed by increasing the proportion of Leptospira and
Clostridium leptoilea and decreasing Lactic acid bacteria (Peng et al.,
2022). These findings indicate that ginsenosidesmay function as potential
prebiotics, regulating specific gut microbes and related metabolites that
are crucial in diabetes-related metabolic disorders and insulin resistance.

These findings not only elucidate the mechanisms through
which CK affects intestinal L cells but also establish a molecular
foundation for further exploring CK as a potential therapeutic agent
for the treatment of T2DM, as illustrated in Figure 3.

2.3 Diabetic nephropathy

DR is one of the most severe complications of diabetes, while DN
represents the primary microvascular complication, primarily
characterized by diabetic glomerulosclerosis, a glomerular lesion
driven by vascular damage.

In its early stages, DN is often asymptomatic, with blood pressure
remaining normal or elevated. The incidence of this condition increases
with the duration of diabetes. Initially, kidney volume and glomerular
filtration rate (GFR) rise, leading to a state of hyperfiltration, followed by
the gradual onset of interstitial proteinuria or microalbuminuria (Jung
et al., 2021). As the disease progresses, persistent proteinuria, edema,
hypertension, and a decrease in GFR can lead to renal insufficiency and
uremia, which are significant contributors to diabetes-related mortality.

Research indicates that Fc, CK, and Rg3 can improve urine
microalbumin levels in diabetic mice through various mechanisms
(Zhou et al., 2020; Chen et al., 2022; Shen et al., 2024). CK mitigates
oxidative stress accumulation, decreases levels of pyroptosis-
associated proteins, reduces mitochondrial membrane potential
collapse, and modulates the expression of mitochondrial fission
proteins while increasing mitofusin 2 (Mfn2) expression. CK also
remodels the gut microbiota by reducing fungal content and
p-prostetones, while increasing lactobacilli levels and decreasing
serum concentrations of the histidine-derived microbial metabolite
imidazole propionate (IMP). Rg3 treatment activates Toll-like
receptor 4 (TLR4), resulting in improved renal histology,
significantly reduced apoptosis of renal tubular epithelial cells,

and lower fasting blood glucose, creatinine, total cholesterol, and
triglyceride levels, as well as reduced expression of inflammatory
factors compared to the diabetic group.

Glomerulosclerosis and the hyperperfusion of residual nephron
glomeruli in chronic kidney disease are critical factors contributing
to further nephron loss. LDL can induce increased apoptosis of
mesangial glomerular cells, exacerbating kidney tissue damage.
Therefore, alleviating apoptosis is a crucial strategy for treating
DN. Chen et al. (2024) reported that Rg3 targets miR-216a-5p,
activates the MAPK pathway, inhibits apoptosis, and alleviates
kidney damage in diabetic mice. Similarly, Su et al. (2021) found
that Rh1 yields comparable effects, with molecular mechanism
studies demonstrating that its benefits are linked to apoptosis
inhibition via the AMPK/PI3K/AKT signaling pathway.
Additionally, He et al. (2022) identified that Rb1 significantly
reduces diabetes-induced glomerular injury, podocyte apoptosis,
and mitochondrial damage—such as glomerular hypertrophy and
mesangial stromal dilation—while decreasing the expression of
apoptotic proteins.

Additionally, research demonstrates that ginsenosides exert
significant effects primarily by reducing oxidative stress,
inflammation, and pathological changes in renal histology, with
Rg series ginsenosides being particularly notable. For instance, cell
experiments have shown that Rg1 effectively lowers urine protein,
serum creatinine, urea nitrogen, blood lipid levels, and renal lipid
volume in T2DM mice. Pathological analyses indicate that
Rg1 treatment alleviates renal damage and glomerular fibrosis
(Han et al., 2023; Ji et al., 2023). This therapeutic effect is
mediated through the transient receptor potential cation channel
6 (TRPC6)/nuclear factor of activated T Cells (NFAT2) and
NADPH oxidase 4 (NOX4)-MAPK signaling pathways.

Rg3 also contributes positively by upregulating PPARγ activity,
thereby reducing inflammatory and fibrosis biomarkers (Sui et al.,
2023). Concurrently, it enhances insulin (INS) levels, improves
blood lipid profiles, mitigates oxidative stress, and restores renal
function via MAPK and NF-κB signaling pathways (Li et al., 2021),
leading to improved renal histopathological outcomes. Rg5 further
protects against kidney injury in diabetic mice by inhibiting
oxidative stress and the activation of the NLRP3 inflammasome,
suggesting its potential as a compound for preventing or managing
diabetic kidney injury (Zhu et al., 2020), as illustrated in Figure 4.

DN is a chronic, progressive condition where clinical symptoms
often manifest late, and once persistent proteinuria occurs, renal
function deteriorates irreversibly and progressively. Currently, most
studies focus on a limited number of common ginsenosides. Future
research should explore the therapeutic effects of ginsenosides from
other varieties, aiming to enhance their impact on kidney lesions and
experimenting with various drug delivery methods to improve
therapeutic efficacy.

2.4 Diabetic neuropathy

Diabetic neuropathy is one of the most prevalent chronic
complications of diabetes, impacting both central and peripheral
nerves, with distal sensory neuropathy being the most common,
accounting for over 50% of all diabetic neuropathies (Mittal
et al., 2025).
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Currently, there is a lack of published studies on the therapeutic
effects of ginsenosides specifically for diabetic peripheral
neuropathy. This study aims to explore the effects of three
ginsenosides on diabetic central neuropathy through assessments
of memory impairment, depression-like behaviors, and cognitive
abilities in mice. Dong et al. (2023) demonstrated that Rg1 reduces
levels of ROS, inositol triphosphate (IP3), and diacylglycerol (DAG),
effectively reversing Ca2+ overload. This is achieved by
downregulating the expression of p-PLC, TRPC6, and
NFAT1 nuclear translocation, which alleviates amyloid-beta (Aβ)
deposition and enhances postsynaptic density-95 (PSD-95)
expression in T2DM mice. Additionally, Li et al. (2020) reported
that CK treatment significantly improved behavioral impairments in
mice, as CK not only lowered fasting blood glucose levels but also
enhanced lipid metabolism, glucose tolerance, insulin sensitivity,
and dyslipidemia. It further reduced oxidative stress and inhibited
inflammatory responses in the hippocampus, alleviating ER stress
and suppressing the NLRP3 inflammasome pathway. In addressing
cognitive decline associated with diabetes, a 2020 study found that
Rb1 improved memory and cognitive function in mice with
streptozotocin (STZ)-induced damage. Rb1 also mitigated STZ-
induced glucose intolerance by enhancing insulin sensitivity, with
these beneficial effects attributed to the inhibition of Cdk5/
p35 activity and the upregulation of N-methyl-D-aspartate
receptor-1 (NMDAR1) expression in the hippocampus. This

research is crucial for understanding the mechanisms by which
ginsenoside Rb1 enhances cognitive performance and its
implications for the relationship between diabetes and
Alzheimer’s disease (AD) (Yang et al., 2020). Furthermore, some
researchers have combined Rb1 with small alkali compounds to treat
diabetic neuropathy, finding that this combination improved
glucose metabolism and insulin resistance and alleviated
depression-like behaviors associated with chronic unpredictable
stress. Hematoxylin-eosin (HE) and Nissl staining in animal
experiments indicated that neurons were protected from
pathological and morphological changes. Thus, the combination
of small alkali and Rb1 may hold clinical value for treating patients
with diabetes and co-occurring depression (Zhang J. H. et al., 2021).
Currently, scholarly attention has primarily focused on diabetic
central neuropathy, while the therapeutic mechanisms of
ginsenosides are extensive. Future research should delve deeper
into the role of ginsenosides in the treatment of diabetic
peripheral neuropathy, providing a robust theoretical foundation
for their clinical application, as illustrated in Figure 5.

2.5 Diabetic retinopathy

DR is one of the most prevalent microvascular complications of
diabetes, resulting from chronic diabetes mellitus and leading to

FIGURE 3
Mechanism of multiple ginsenosides in treating digestive system-complications of DM.
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various fundus lesions, including microangiopathy, hard exudates,
cotton wool spots, neovascularization, vitreous hyperplasia, macular
edema, and even retinal detachment (Bryl et al., 2022).

Wang et al. (2024a) found that Panax notoginseng saponins
(PNS) significantly increased retinal core layer thickness and
mitigated the rise in retinal cell-free capillaries while markedly
reducing microglial activation. Furthermore, PNS inhibits the
activation of the NF-κB signaling pathway in M1 cells and
suppresses cellular inflammatory responses, thereby alleviating
DR and reducing retinal inflammation. Xue et al. (2023) also
identified considerable efficacy of Rg1, demonstrating its ability
to effectively lower levels of intracellular inflammatory cytokines
and growth factors. This suggests a potential therapeutic strategy for
DR through the upregulation of miR-216a-5p and the inhibition of
the TLR4/NF-κB signaling pathway. Additionally, the PI3K/AKT
pathway has been explored, with evidence that Re can counteract
high glucose-induced (HG) decreases in RF/6A cell viability, reduce
the apoptosis rate, and inhibit oxidation-related enzymes. This
action leads to decreased ROS production and mitigates HG-
triggered damage to RF/6A cells, providing cytoprotective effects
associated with the activation of the PI3K/Akt pathway (Xie et al.,

2020). Notably, the use of LY294002, a PI3K inhibitor, partially
reversed the effects of Re on apoptosis-related proteins, indicating
that Re may improve HG-induced retinal angiogenesis. Diabetes
mellitus typically elevates retinal oxidative stress levels, generating
large amounts of ROS via pathways such as advanced glycation end
products (AGE), the polyol pathway, the hexosamine pathway, and
the PKC pathway. This oxidative stress damages the retina, leading
to further oxidative damage and apoptosis, creating a vicious cycle
by activating additional cytokines that upregulate oxidative stress
levels. In this context, Tang et al. (Tang et al., 2022) demonstrated
through various in vitro and in vivo experiments that Rd enhances
the interaction between AMPK and silent information regulator
family protein 1 (SIRT1) by increasing nicotinamide adenine
dinucleotide (NAD)/NADH levels and facilitating liver kinase B1
(LKB1) deacetylation in endothelial cells. This mechanism
effectively reverses hyperglucose-induced activation of NADPH
oxidase 2 (NOX2), oxidative stress, mitochondrial dysfunction,
and endothelial cell apoptosis. These findings support the clinical
development of Rd as a pharmacological intervention, presenting it
as a novel potential vasoprotective agent for early DR. In summary,
ginsenosides have shown significant promise in the treatment of DR,

FIGURE 4
Mechanism of multiple ginsenosides in the treatment of diabetic renal complications.
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highlighting their potential for clinical application in the
management of this complication, as illustrated in Figure 6.

2.6 Other complications

In addition to the previously mentioned systemic and organ
complications, diabetes can lead to various other complications,
which require systematical discussion due to a lack of
comprehensive literature.

Tendinopathy, characterized by muscle cell apoptosis and
damage to the extracellular matrix, can be influenced by diabetic
conditions. CK has demonstrated efficacy in counteracting high
glucose-induced apoptosis, inflammation, and oxidative stress in
cultured cells. Specifically, CK normalizes the expression of
matrix metalloproteinases-9 (MMP-9), MMP-13, and tissue
inhibitor of metalloproteinase-1 (TIMP-1), while enhancing
the expression of PPARγ and antioxidant enzymes (Cho et al.,
2024). This results in improved mitochondrial membrane
potential, increased glucose uptake and glycogen synthesis,
and enhanced mitochondrial mass (Li et al., 2023),
highlighting CK’s therapeutic potential in hyperglycemic
tendinopathy. Additionally, in an HFD and HG diabetic
mouse model, Rg3 treatment significantly reduced triglyceride
and glucose levels in C2C12 myoblasts. It promoted myoblast
differentiation, inhibited mitochondrial dysfunction, increased
climbing distances, and mitigated muscle atrophy. These
beneficial effects are associated with the phosphorylation of
AMPK and Forkhead Box O3 (FoxO3) and the inhibition of
Smad3 phosphorylation (Wang M. et al., 2024).

Currently, only one study published in 2022 has investigated the
role of ginsenosides in treating diabetic lung tissue injury, utilizing
Rb1 (Su H. et al., 2022). The findings revealed that Rb1 treatment
not only significantly reduced the apoptosis rate of lung tissue
cells—2.23 times in the diabetic group compared to 1.73 times in
the treatment group—but also decreased oxidative damage and
inflammatory infiltration in the lungs. This was achieved by
lowering the expression of various inflammatory factors,
including interleukin-6 (IL-6), interleukin-1α (IL-1α), and tumor
necrosis factor-α (TNF-α).

Poor wound healing is a prevalent chronic complication of
diabetes, influenced by factors such as abnormal inflammation,
reduced granulation tissue content, impaired angiogenesis at the
wound site, and peripheral neuropathy. Rg1 has been shown to
enhance the proliferation, migration, and angiogenesis of human
umbilical vein endothelial cells (HUVECs) while reducing apoptosis
(Huang et al., 2021). Additionally, Rg5 inhibits the expression and
activity of SLC7A11 through physical binding, alleviating the
negative regulation of anaerobic glycolysis and promoting
erythropoiesis of dendritic cells (Xia et al., 2023). Rg1’s effects
are mediated by the downregulation of the key nucleic acid miR-
489-3p and the activation of the PI3K/AKT/eNOS signaling
pathway. Consequently, ginsenosides have potential as adjuvant
therapeutic agents to support wound healing in patients,
particularly those with diabetic foot ulcers.

Moreover, two clinical studies have explored the effects of
ginsenosides. One study found that the addition of ginseng to
drug treatment in diabetic patients improved central systolic
blood pressure and pulse wave formation, without directly
affecting endothelial function (Jovanovski et al., 2020). In another

FIGURE 5
Mechanism of multiple ginsenosides in the treatment of diabetic nervous system complications.
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study involving Rg3-KR intervention, a reduction in HbA1c levels
was observed (−0.35% ± 0.1% [-3.8 ± 1.1 mmol/mol], p = 0.02) at
12 weeks, with no adverse safety outcomes reported. These findings
suggest that ginsenosides may offer clinical benefits when
incorporated into polypharmacy and lifestyle interventions for
diabetes management (Jovanovski et al., 2021).

3 Prospects of ginsenosides in the
treatment of type 2 diabetes and its
complications

To date, numerous studies have demonstrated the significant
potential of ginsenosides in the treatment of type 2 diabetes,
elucidating various related mechanisms to some extent. However,
the application of ginsenosides as a therapeutic strategy remains
limited. Key challenges include: 1) Most research has focused on a
single variety of ginsenosides in cell or animal experiments, with
limited exploration of polypharmacy; 2) The predominant route of
administration in most studies has been oral, necessitating further
investigation of multiple delivery routes to enhance drug utilization;
3) There is a need for in-depth studies on the specific concentrations
of ginsenosides in bone and their potential toxic side effects in other
organs; and 4) With the emergence of numerous new biochemical
materials in recent years, there is an opportunity to explore the
synergistic effects of ginsenosides in combination therapies.

4 Conclusion

As research into ginsenosides for diabetes treatment expands,
this review outlines the possible mechanisms by which different
types of ginsenosides exert therapeutic effects, summarizing their
specific signaling pathways and key factor mechanisms.
Nevertheless, this therapeutic approach is still in the early stages
of clinical translation, facing numerous obstacles to clinical
application, such as the need for combination drugs,
optimization of routes of administration, bioavailability, and
integration with biochemical materials. With the growing
recognition of ginsenosides’ roles in diabetes management, they
hold considerable promise as a new therapeutic agent for diabetes
and its associated complications, positioning them as strong
candidates for future drug development.

Author contributions

YL: Writing – original draft. YJ: Writing – review and editing,
Investigation. YW: Investigation, Writing – review and editing. XC:
Writing – review and editing, Investigation. YS: Writing – review
and editing, Investigation. PH: Investigation, Writing – review and
editing. YC: Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research was
supported by Natural Science Foundation of Jilin Province
(YDZJ202301ZYTS074).

Acknowledgments

We thank Bullet Edits Limited for the linguistic editing and
proofreading of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

FIGURE 6
Mechanism of multiple ginsenosides in treatment of DR.
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