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Introduction: Chinese medicine formulas (CMF) are an important aspect of
traditional Chinese medicine (TCM) and are formulated based on strict
compatibility proportions guided by TCM theory. Due to the complex
chemical constituents of TCM and the diversity of evaluation indicators for a
certain disease, the research strategy on how to obtain the optimal combination
of these crude extracts, homologous compounds or even the specific
compounds mixture becomes the key step in the study of compatibility
proportion research. Therefore, in this research, the “Eczema mixture” (EM)
which includes six kinds of Chinese medicinal materials for the treatment of
atopic dermatitis was cited as an example to illustrate the proposed compatibility
optimization strategy.

Methods: Ultra-performance liquid chromatography-quadrupole/time-of-flight
(UPLC-Q/TOF) technology was used to analyze the chemical components in the
EM formula, and a total of 136 chemical compounds were identified. 76 formulas
with different compatibility ratios were generated with the simplex centroid
mixture design (SCMD). Two defined objective functions, the maximum of the
anti-inflammatory and anti-allergic activity were used to evaluate the bioactivities
of all the formulas. The 6-n-2 three-layers of back-propagation artificial neural
network (BP-ANN) was employed to model the two defined objective functions.
With the predictive models, the Pareto front was determined by a variant of non-
dominated sorting genetic algorithm II(VNSGAII) to provide the optimal
prescription set.

Results: The 6-n-2 three-layers of artificial neural networks demonstrated a
satisfactory fitting effect for the nonlinear activity relationship. In the EM formula,
Huangbai and Kushen were identified as the main botanical drugs with anti-
inflammatory and anti-allergic roles. The results were consistent with the clinical
application of the 113 prescriptions involving 230 botanical drugs for the
treatment of AD from the ‘Dictionary of Traditional Chinese Medicine
Prescription’.
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Conclusion: The proposed SCMD-ANN-VNSGAII is a powerful approach that may
facilitate future compatibility optimization of homologous compounds or specific
component mixtures.
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1 Introduction

For a long history, Chinese medicine formula (CMF) has been
used to treat various diseases under the guidance of traditional
Chinese medicine (TCM) theory. Recent advancements in basic
research have made significant progress in identifying active
chemical components of TCM used in clinical practice
(Mukhopadhyay et al., 2023; Krishna et al., 2024). However, the
identification and testing of those active ingredients are just the
beginning, and there is increasing focus on the synergistic
relationship between herbal medicines for disease treatment (Xu
et al., 2021; Hou et al., 2024; Lin et al., 2024).

In this research, the ‘Eczema mixture’, a formula consisting of
six botanical drugs (Phellodendri Chinensis Cortex (Huangbai),
Sophorae Flavescentis Radix (Kushen), Honeysuckle Buds
(Jinyinhua), Sanguisorbae Radix (Diyu), Glycyrrhizae Radix Et
Rhizoma (Gancao) and Schizonepetae Herba (Jingjie)) from the
book ‘Trauma Science of Traditional Chinese Medicine’, was
used to optimize and identify the best compatible formula for
treating atopic dermatitis (AD) (Group, 1980). AD is a common
recurrent allergic and inflammatory skin disease characterized by
severe itching and erythema, significantly impacting the quality of
life for 30% of children and 10% of adults. As usual, the anti-
inflammatory and anti-allergic activities of herbal extracts were used
together to evaluate the effects of AD treatment (Park et al., 2020;
Min et al., 2021).

For prescription optimization, the choice of optimization
methods is crucial. Previous reports have compared several
commonly used optimization methods, including the ‘Feedback
System Control’, ‘Orthogonal Design’, ‘Uniform Design’,
‘Baseline Isometric Regulation Design’, and ‘Experimental
Design (ED) - Nonlinear Modeling (NM) - Multi-objective
Optimization (MO) trigeminy method’ (Luan et al., 2020).
Among these methods, the ‘ED-NM-MO trigeminy method’
has shown no obvious shortcomings except for its complicated

calculation process. This method has been previously used for the
optimization of Ginseng Radix et Rhizoma - Aconiti Lateralis
Radix Praeparata herbal pair against heart failure (Li et al., 2023)
and Astragali Radix - Angelicae Sinensis Radix herbal pair on
proliferation of vascular smooth muscle cells (Chen et al., 2023).
The ED-NM-MO method is very suitable for the investigation of
medicinal properties and can be used to optimize the dosage and
ratio of CMF. Meanwhile, it is also a flexible integrated strategy
that involves three steps, and there are many different ways to
approach each of these steps. However, the NM stage of the ED-
NM-MO trigeminy method generally used the partial least
squares (PLSR) algorithm which was not ideal in fitting some
complex nonlinear relationships. And the MO stage generally
used the simple addition of multiple single target values, leading
to a diminished objectivity in multi-objective optimization
scenarios. Consequently, it is urgent to update this strategy by
incorporating recently introduced innovative fitting and
optimization techniques to enhance its capabilities.

In this research, the ED stage of the aforementioned trigeminy
method employed SCMD which belongs to the category of mixture
design. A key feature of SCMD is its ability to ensure that each
formulated mixture maintains a constant total amount. After the ED
process, a total of 76 prescriptions with different ratios of botanical
drugs were obtained. The anti-inflammatory and anti-allergic
activities of these 76 prescriptions were tested. In the NM stage
of the ED-NM-MO trigeminy method, a three-layer BP-ANNmodel
was applied to build the non-linear fitting model of different herb
combinations and two bioactivities. BP-ANN is a common
mathematical tool used for association analysis of TCM formulas.
It is suitable for solving nonlinear and nonparametric problems and
can approximate any continuous function with desired accuracy
(Tang et al., 2022). To build an ideal model, the number of nodes in
the hidden layer, the methods of weights and bias values updating,
and the learning rate were screened using the TensorFlow platform.
Furthermore, another twomachine learning algorithms, the random
forest regression (RF) and support vector regression (SVR) were
compared with BP-ANN in the NM stage of the ED-NM-MO
trigeminy method.

Since two bioactivities were used to evaluate the EM formulas, a
suitable multi-objective optimization was needed. Here, VNSGAII,
as one of the most effective multi-objective genetic algorithms was
introduced, which can supply many Pareto optimal solutions for
researchers to help them ‘have their cake and eat it’. In the Pareto
front solution plane, each point represents a formula with a specific
composition. Researchers can select the appropriate point
(including the extreme points or the knee point) from them
according to clinical requirements.

In this research, the ED-NM-MO trigeminy method was
followed, incorporating several updates to different stages of the

Abbreviations: CMF, Chinese medicine formula; TCM, traditional Chinese
medicine; EM, Eczema mixture; UPLC-Q/TOF, Ultra-performance liquid
chromatography-quadrupole/time-of-flight; SCMD, simplex centroid
mixture design; BP-ANN, Back-Propagation artificial neural network;
VNSGAII, a variant of non-dominated sorting genetic algorithm II; MTT, 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; DMSO,
dimethyl sulfoxide; DXM, Dexamethasone; Huangbai, Phellodendri
Chinensis Cortex; Diyu, Sanguisorbae Radix; Kushen, Sophorae
Flavescentis Radix; Gancao, Glycyrrhizae Radix Et Rhizoma; Jinyinhua,
Honeysuckle Buds; Jingjie, Schizonepetae Herba; AD, atopic dermatitis;
NO, nitric oxide; LPS, lipopolysaccharide; PMA, Phorbol 12-myristate 13-
acetate; ED-NM-MO trigeminy method, Experimental Design - Nonlinear
Modeling - Multi-objective Optimization trigeminy method; ReLU, rectified
linear unit; DMEM, Dulbecco’s modified Eagle’s medium; FBS, Fetal
bovine serum.
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methodology. The methodological innovation lies in our pioneering
implementation of the TensorFlow platform to optimize an artificial
neural network (ANN) model for modeling the complex
relationship between traditional Chinese medicine (TCM)
compound ratios and bioactivity. By leveraging the platform’s
hyperparameter search performance through an exhaustive search
across all possible parameter combinations, we identified optimal
values for critical model parameters including: the number of
hidden layer nodes, learning rate, dropout rate, and parameter
update strategies, to achieve model optimization. Indeed, based
on our research,the integration of artificial neural networks
(ANN) with hyperparameter search demonstrated superior
performance compared to conventional machine learning
algorithms such as Random Forest and Support Vector
Regression (SVR), particularly in handling complex nonlinear
relationships inherent in TCM formulation-activity modeling.
Meanwhile, the proposed SCMD-ANN-VNSGAII methodology
not only updated the trigeminy strategy but also provided
credible results for the compatibility optimization of the EM
formula. This methodology has the potential to pave the way for
future compatibility optimization of homologous compounds or
specific component mixtures.

2 Materials and methods

2.1 Chemicals and reagents

Dulbecco’s modified Eagle’s medium (DMEM) was
purchased from Gibco BRL (Grand Island, NY,
United States). Fetal bovine serum (FBS) was obtained from
Biowest (Kansas City, MO, United States). 3-(4,5-
Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT), LPS, p-nitropheny-N-acetyl-β-D-glucosaminide, PMA
and A23187 were supplied by Sigma-Aldrich (St. Louis, MO,
United States). Rat basophilic leukemia (RBL-2H3, ATCC® CRL-
2256) and murine macrophage (RAW264.7, ATCC® TIB-71)
cells were procured from the American Type Culture
Collection (ATCC).

Six kinds of Chinese medicinal materials (Huangbai, Diyu,
Kushen, Gancao, Jinyinhua and Jingjie) were purchased from
AnGuo herb markets in China. All of these samples were
identified by Professor Junping Wang from Shenyang Medical
College. And voucher specimens of the above six botanical drugs
were deposited in the Specimen Museum of the School of
Traditional Chinese Medicine, Shenyang Medical University.

2.2 Simplex centroid mixture design

The SCMD was applied to define the optimum mixture
proportion of these six selected Chinese medicinal
components. Supplementary Table S1 presents a matrix design
consisting of 76 experimental points. These six independent
variables in the mixture design, which were Huangbai, Diyu,
Kushen, Gancao, Jinyinhua and Jingjie, were studied at 9 levels: 0,
1/12 × 50, 1/6 × 50, 1/5 × 50, 1/4 × 50, 1/3 × 50, 1/2 × 50, 7/12 ×
50 and 1 × 50. These two dependent variables were anti-

inflammatory and anti-allergic effects. All the mixtures in the
matrix must have the same final weight of 50 mg. The differences
between prescriptions were in the proportion of medicinal
materials. Due to the large number of experiments, the blocks
were set as 3 and 6 augment designs were introduced. The
experiment design was performed using Design Expert
11 software (Version 11.0.4.0, Stat-Ease Inc., 2021 East
Hennepin Ave., Suite 480 Minneapolis, MN 55413).

2.3 Sample preparation

In this study, six kinds of Chinese medicinal materials were
finely pulverized and filtered through a 100-mesh sieve to obtain
a uniform particle size. The mixtures in the prescriptions, each
weighing 50 mg, were extracted with 5 mL of a methanol-water
(5:5, v/v) solution. The extraction process was carried out using
an ultrasonic extraction apparatus operating at a frequency of
40 kHz and a power of 500 W. The extraction was performed for
30 min at room temperature. After the extraction, the samples
were centrifuged at 12,000 rpm for 10 min. The supernatant was
volatilized and freeze-dried to obtain the dry powder.

2.4 UPLC/Q-TOF-MS analysis

For the sample analysis, aWaters Acquity UPLC system (Waters
Co., Milford, MA, United States) was used. The ionized samples
were prepared using a Waters Q-TOF Premier Mass Spectrometer
with an electrospray ionization system (Water MS Technologies,
Manchester, UK). Data acquisition was performed using MassLynx
V4.1 software (Waters Co., United States). A Waters ACQUITY
UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 μm) was used for
the separation of compounds at 25 °C. The mobile phase consisted of
acetonitrile (A) and water with 1% formic acid (B) at a flow rate of
0.4 mL min-1. Gradient elution was completed as follows: 0–5 min,
98%–98% (v/v) A; 5–9 min, 98%–92% (v/v) A; 9–12 min, 92%–92%
(v/v) A; 12–15 min, 92%–90% (v/v) A; 15–40 min, 90%–40% (v/v)
A; 40–42 min, 40%–20% (v/v) A; 42–45 min, 20%–98% (v/v) A;
45–48 min, 98%–98% (v/v) A.

2.5 Cell viability assay

Cell viability was assessed using the MTT assay, as described in
reference (Boonyong et al., 2023). RAW264.7 and RBL-2H3 cells
were seeded into 96-well plates at a density of 104 cells per well for
12 h before treatment. The cells were then incubated with various
concentrations of single medicinal materials from EM (0.2–2 mg/
mL for RBL-2H3; 0.1–0.7 mg/mL for RAW264.7) for 24 h. After the
incubation period, the cells were incubated with 5 mg/mL MTT for
an additional 4 h at 37°C. The supernatant was then discarded, and
100 μL of dimethyl sulfoxide (DMSO) was added to dissolve the
formazan crystals formed by viable cells. The absorbance of the
solution was measured at 490 nm using a microplate reader. The cell
viability was calculated by the following formula: Cell viability =
(OD490 of Sample - OD490 of Blank)/(OD490 of Control–OD490 of
Blank)*100%.
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2.5.1 Anti-inflammatory activity analysis via nitric
oxide determination in RAW264.7 cells

RAW264.7 cells were seeded into 96-well plates at a density of
3╳105 cells per well for 12 h before treatment. The cells were
pretreated with different proportions of EM formulas (total
0.3 mg/mL) for 2 h. Subsequently, the cells were treated with
LPS at a concentration of 1 μg/mL, along with the
76 prescriptions for 24 h. The supernatant was mixed with Griess
reagent in a 96-well plate for 10 min. The absorbance of the solution
was then measured at 530 nm using a microplate reader. The
amount of NO produced was determined by comparing the
absorbance to a sodium nitrite (NaNO2) standard curve. The
anti-inflammatory activity inhibition ratio was calculated by the
following formula: Anti-inflammatory activity inhibition ratio = (1-
(OD530 of Sample - OD530 of Blank)/(OD530 of Model - OD530 of
Blank))*100%.

2.5.2 Anti-allergic activity analysis via
degranulation assay in RBL-2H3 cells

The release of β-hexosaminidase from activated RBL-2H3 cells
was measured as an indicator of degranulation as described
elsewhere (Zeng et al., 2016). Briefly, RBL-2H3 cells were seeded
into 96-well plates at a density of 3╳105 cells per well for 12 h before
treatment. The cells were pretreated with different proportions of
EM formulas (total 1 mg/mL) for 2 h. Subsequently, the cells were
stimulated with 50 nM PMA plus 1 μM A23187. After 5 h of
stimulation, the supernatants (50 μL) were incubated with a
substrate buffer (3.3 mM p-nitropheny-N-acetyl-β-D-
glucosaminide, pH 4.5) in 96-well plates at 37°C for 1 h. The
reaction was terminated using 100 μL stop solution (0.1 M
sodium carbonate (Na2CO3)/sodium bicarbonate (NaHCO3),
pH 10.2) and the absorbance was measured at 407 nm using a
microplate reader. The anti-allergic activity inhibition ratio was
calculated by the following formula: Anti-allergic activity inhibition
ratio = (1-(OD407 of Sample - OD407 of Blank)/(OD407 of Model -
OD407 of Blank))*100%.

2.6 Artificial neural network

The ANN model consisted of an input layer, a hidden layer and
an output layer. The input layer had six nodes, representing the six
types of Chinese medicinal materials. The outputs were the anti-
inflammatory activity/anti-allergic activity inhibition ratio. The
transfer function from the input layer to the hidden layer was
Rectified Linear Unit (ReLU), while the transfer function from
the hidden layer to the output layer was a sigmoid function. A
DropOut strategy was implemented between the input layer and the
hidden layer to improve the model’s performance. For training,
validation, and testing the model, a total of 76 runs were conducted.
Among these, 56 samples were used as the training set, 10 samples as
the validation set, and the remaining 10 samples as the test set. To
optimize the performance of the ANN model, various parameters
were tested through trial and error analysis. These parameters
included the number of nodes in the hidden layer (ranging from
5 to 60), the methods of weights and bias values updating (adam,
sgd, rmsprop), the dropout ratio (ranging from 0.2 to 0.8), and the
learning rate (0.001, 0.002, 0.005, 0.01). In the three-layer artificial

neural network with m neurons in the hidden layer and n input
variables, output ŷ can be calculated as:

ŷ � f ∑m
j�1
wj · g ∑n

i�1
wjixi + wj0

⎛⎝ ⎞⎠ + w0
⎡⎢⎢⎣ ⎤⎥⎥⎦

Where wj: the weight that connects the jth neuron of hidden
layer and neuron of the output layer,wji: the weight that connects the
ith input variable and jth neuron of the hidden layer, xi: the ith input
variable, wj0: the bias of the jth neuron of the hidden layer, w0: bias
related to the output neuron, g: the transfer functions for the hidden
layer, and f: transfer functions for the output layer. The artificial
neural network uses a group of random numbers to begin to train
the network. The training process should be back propagation in
such a way that the following function would be minimized:

E � 1
K
∑K
k�1

yk − ŷk( )2
The methodology of “early stopping by cross-validation” was

applied to prevent overfitting with the 10 validation samples.
The artificial neural network was built using TensorFlow

2.0 under Python 3.7. And TensorBoard was utilized to display
the most suitable network parameters among the
21,840 candidate models.

2.7 Random forest regression (RF)

RF is an ensemble learning method that contains a large number
of decision trees. In this study, the TreeBagger function in Matlab
2019b (Mathworks, Natick, MA, United States) with regression
mode was used to grow the trees with the training data. Here, we
operated the RF with the following parameters: ntree (number of
trees to grow, or n_estimators) was set as 50;
NumPredictorsToSample (number of predictor randomly sampled
as candidates at each split, or max_depth) was set as 2; MinLeafSize
(Minimum number of observations per tree leaf) was set as 5;
InBagFraction (Fraction of observations that are randomly
selected with replacement for each bootstrap replica) was set as
85% and data were sampled for each decision tree with replacement.

2.8 Support vector regression (SVR)

The principle of SVR is based on the structural risk
minimization, which minimizes an upper bound of the
generalization error. The basic idea of SVR is to map the input
variables into a high dimensional feature space where they are
linearly correlated with the output variable. To solve the curse of
dimensionality, the kernel function (KF) is introduced and realize
the nonlinear transformation. In this study, fitrsvm function in
Matlab 2019b was used to realize the SVR algorithm. Bayesian
optimization algorithm was used to screen the eligible parameters
for fitrsvm. The parameters available for selection for kernel function
included ‘Gaussian’ (Radial Basis Function (RBF) kernel), ‘linear
SVR’, ‘Quadratic SVR’ and ‘Cubic SVR’. And another two crucial
parameters, BoxConstraint (penalty coeffient (C)) and KernelScale
were explored within a log-scaled range spanning from 10−3 to 103 to

Frontiers in Pharmacology frontiersin.org04

He et al. 10.3389/fphar.2025.1593783

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1593783


identify the most suitable configurations. The last parameter epsilon
(ε) value was searched among positive values log-scaled in the range
[0.001,100] × iqr (Y)/1.349, where Y is the response variable.

2.9 Non-dominated sorting
genetic algorithm

In this research, the Non-dominated sorting genetic algorithm
adopted a variant of NSGAII called VNSGAII. The VNSGAII
algorithm is an evolutionary algorithm whose basic components
are the chromosome structure, fitness functions, genetic operators
and the VNSGAII process.

The objective of the research was to screen the best prescriptions
consisting of 6 different proportions of medicinal materials. The
candidate chromosome structure was designed as a double precision
vector of n dimensions, where n was the number of medicinal materials
in the prescription. In this study, n was equal to 6, represented as {x1, x2,
x3, x4, x5, x6}. The constraints were that the sum of the vector should be
50 mg, and each element should be between 0 and 50 mg.

The goodness of each chromosome is quantified by the fitness
functions. In this paper, the built ANN models were selected as the
fitness functions. The predicted values of the anti-inflammatory
activity/anti-allergic activity inhibition ratio, obtained from the
ANN models, were used to evaluate the performance of each
prescription.

Genetic operators provided the basic search mechanism of
VNSGAII. Based on existing solutions in the population, new
solutions are created with three basic types of operators:
selection, crossover and mutation. The selection operator was
performed before crossover and mutation, using the tournament
algorithm with a size of 2 to choose parents for the next-generation
based on their scaled values from the fitness functions. Crossover
produced two new individuals based on two parents, while mutation
modified one individual to produce a new solution. In this research,
80% of the population was used for crossover by the scatter function,
and 5% of the population was used for mutation by
uniform function.

The VNSGAII process consisted of the following phases:
Phase 1—Initialization: the initial population included

100 chromosomes constrained by prescription design experiment
restrictions as described in section Simplex centroid mixture design.

Phase 2—Produce offspring:

a. Select 100 parents P(t) for the next-generation using the
tournament algorithm on the current population.

b. Children are created from the selected parents bymutation and
crossover to create 100 offspring Q(t).

Phase 3—Produce parents:

a. Merge P(t) and Q(t) into one matrix T(t), to guarantee elitism (a
mechanism, which ensures that all the best chromosomes are
passed to the next-generation). Compute the rank and
crowding distance for all individuals in T(t), and sort it into
different fronts of descending domination rank according to
the fast non-dominated sorting method. The theory of the fast
non-dominated sorting method is illustrated as follows:

Function F = fast_non_dominated_sort (T(t)):

For each p in T(t):
Set Sp � φ, np � 0
For each q in T(t):
If (p dominates# q) then

Sp � Sp ∪ q{ }// add q into the dominating solution set of p (Sp)
Else if (q dominates p) then np = np + one.

If (np = 0) then.
prank = 1, F1 = F1 ∪ {p}//no solutions dominate p, F1 is

the first rank in T(t)

end
Set i = 1
While Fi≠φ//stop criterion
SetQ � φ
For each p in Fi:
For each q in Sp:
nq � nq – 1
if (nq � 0) then // no solutions dominate

q in sets other than F1 ~ Fi−1{ }

qrank = i + 1, Q = Q ∪ {q}
Set i � i + 1
SetFi � Q //Fi is the ith rank inT(t)

End fast_non_dominated_sort.

# In the Pareto-optimal solutions z*, some solutions x(p)

dominate other x(q), and it means: For ∀ i∈{1,2}, if fi (x(p)) ≤ fi
(x(q)), then x(p) dominates x(q)

b. Trim the T(t) to 100 individuals by retaining the appropriate
number of individuals in each rank. A pre-defined geometric
distribution sets the number of individuals in each front. The
geometric distribution function can be illustrated as the
formula: ni = r × ni-1, where ni is the maximum number of
allowed individuals in the ith front and r (<1) is the
reduction rate.

Phase 4—Stop criterion:
The stop criterion in Phase 4 is based on the maximum number

of generations. If this criterion is not satisfied, the process goes back
to Phase 2(b) and continues.

All the parameters of VNSGAII were listed in Table 1. The
VNSGAII algorithmwas implemented usingMATLAB 2019b under
Windows 10 operating system.

2.10 Study on drug combination rules based
on the Apriori algorithm

In this research, a total of 113 prescriptions involving
230 botanical drugs for the treatment of AD were retrieved from
the ‘Dictionary of Traditional Chinese Medicine Prescription’ to
build the network of the drug combination (Peng, 1993). TheApriori
algorithm was employed to explore the rule within the prescriptions.
The support degree and confidence level are important parameters
in the Apriori algorithm. The support degree represents the
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probability that two TCMs, A and B, appear together in a
prescription. It indicates the frequency of the occurrence of the
combination of A and B in the dataset. The confidence level, on the
other hand, represents the probability of the appearance of TCM B
in a prescription given that TCM A is already present in the same
prescription. These two indicators reflect the drug compatibility
tendency in statistics (Hu et al., 2023). In this research, a support
threshold of above 5% and a confidence threshold of above 50%were
set. MATLAB 2019b was used to implement the Apriori algorithm
and Cytoscape 3.8 was used to visually process the network.

3 Results

3.1 Chemomics profiling of the EM
prescription

To clarify the chemical composition of the EM prescription,
the TIC chromatograms in both negative and positive modes of
UPLC/Q-TOF/MS were obtained in Figures 1A,B. These
chromatograms provided a visual representation of the
compounds present in the EM prescription and their
respective retention times. In total, 136 compounds were
identified by comparing the retention times, m/z of the
characteristic molecular and fragment ions. The detailed
information about these identified compounds can be found in
Supplementary Table S2. Among these compounds, alkaloids
were found to be the main constituents derived from
Huangbai and Kushen. The molecular weight distribution of
these alkaloids ranged from 200 to 450 and they were the
main pharmacodynamic compounds in the EM prescription
(Figure 1C). The main structures of these alkaloids were
categorized into different types, including quinolizidine-type,
protoberberine-type, Apophis-type, and benzyl isoquinoline-
type alkaloids. These structural classifications provided
insights into the chemical diversity and complexity of the
alkaloids present in the EM prescription (Figure 1D). Overall,
the information presented in Figure 1 and Supplementary Table

S2 shed light on the chemical composition of the EM
prescription, specifically highlighting the presence of alkaloids
derived from Huangbai and Kushen, their molecular weight
distribution, and the main structural types of these alkaloids.

3.2 Back-propagation artificial neural
network model

The schematic diagram of the proposed SCMD-ANN-VNSGAII
methodology was presented in Figure 2. In the proposed
methodology, BP-ANN was used to establish the relationship
between the prescription ratio and the bioactivity. In the input
layer, the data contained 76 rows and 6 columns where each row
represented a prescription. The SCMD was used to design different
prescriptions which were listed in Supplementary Table S1 and the
total weight of each prescription was 50 mg. Their anti-
inflammatory and anti-allergic bioactivities were acquired to
build the ANN model. Briefly, RBL-2H3 cells were pretreated
with different proportions of EM formulas (the concentration
was 1 mg/mL), and RAW264.7 cells were pretreated with
different proportions of EM formulas (the concentration was
0.3 mg/mL). No cytotoxic effects were detected at these
concentrations (Supplementary Figure S1). Among these 76 runs,
56 samples were randomly selected as the calibration set to train the
BP-ANN network, 10 samples were randomly selected as the
validation set to monitor the training process to avoid overfitting
and the remaining 10 samples were randomly selected as the test set.
As for why to build the three layers of the BP-ANN Model (6-n-2),
in our opinion, the input layer contained the six botanical drugs
from the EM prescription. The hidden layer represented the main
chemical compounds from the prescription, and the number of
nodes was screened from 5 to 60 with the help of TensorBoard tools.
The output layer contained the anti-inflammatory activity and the
anti-allergic activity. In addition, to establish a robust artificial
neural network model, the DropOut strategy and ReLU transfer
function were introduced. The key idea of DropOut strategy is to
randomly drop units (along with their connections) from the neural
network during training. The dropout strategy was introduced
during the input layer and hidden layer as shown in Figure 2.
From the chemical sense, not all the components from the botanical
drugs contributed to the bioactivities. It has been proven that the
dropout strategy significantly reduces overfitting and gives major
improvements over other regularization methods (Zhang and Xu,
2024). At the same times, the ReLU transfer function was executed
after the DropOut strategy. The output of the ReLU neuron was a
piecewise linear function which has been successfully applied to
regression, classification and function approximation (Liang and
Xu, 2021). The output of the ReLU function is max{0,wTx + b}, in
which w and b are the weight and bias parameters, respectively.
From the chemical sense, the nodes in the hidden layer were all
positive which represented the concentration of the chemical
components. Finally, the Sigmoid transfer function was used to
simulate the half-inhibition rate of anti-inflammatory and ant-
allergic activity whose values w ere both limited between
0% and 100%.

Except for the BP-ANN framework, some parameters in the
model were also optimized during training. These parameters

TABLE 1 VNSGAII parameters for the optimization.

VNSGAII Parameters

Fitness function ANN

Decision variables 6

Population size 100

Selection method Tournament (size = 2)

Mutation functions Adaptive feasible

Mutation rate 0.05

Crossover function Intermediate, ratio = 1.0

Crossover fraction 0.8

Distance measure function distancecrowding

Pareto front population fraction 0.35

Number of iterations 100–200
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included the dropout rate between the input layer and hidden
layer, the number of nodes in the hidden layer, the gradient descent
algorithms and the learning rate. A total of 21,840 parameter
combinations were screened simultaneously, and the results were
visualized using TensorBoard, as shown in Figures 3A,B. The green
line in Figure 3A represented the most optimal parameter
combination of the anti-inflammatory activity. Under the
optimal parameters, the regression coefficient of the true value
and predicted value of anti-inflammatory activity in the calibration
was 71.84%. The validation set was used to avoid overfitting during
training which also reached the value of 68.5%. The test set was
used to evaluate the robustness of the model which also reached the
value of 77.51% (Figure 3C). Furthermore, a good fitting effect was
observed in the simulation of the anti-allergic activity, as shown in
Figure 3D. At the same times, two another machine learning
algorithms, SVR and RF, were benchmarked against the BP-
ANN algorithm. After the hyperparameter tuning process for
SVR, these two activities both selected the linear kernel
function with the corresponding kernel scale values 0.0026 and
0.0012. The last parameter epsilon (ε) values were 0.9530 and
0.0322 respectively. For selection of the RF parameters for these

two activities, we set ntree (number of trees to grow, or n_
estimators) as 50 and NumPredictorsToSample (number of
predictor randomly sampled as candidates at each split, or
max_depth) as 2 based on our experience. As shown in Table 2
and Figure 4 and Supplementary Figures S2, 3), the BP-ANN
algorithm exhibited lower RMSEP and higher Rtest values
compared to RF and SVR in the anti-inflammatory and anti-
allergic activity. Nonetheless, it was worth noting that RF
possessed the capability to assess variable importance, which
could offer valuable insights into the relative significance of
input features (Supplementary Figures S2C,D). Regarding the
rationale for selecting a linear kernel over a Gaussian kernel in
SVR, potential factors may be associated with the following two
aspects: 1. Linear kernels demonstrate superior generalization
performance in high-dimensional pharmacological datasets (n
(56) ≫ p (6) scenario). 2. The reduced VC dimension of linear
kernels (d = p + 1) effectively controls model complexity for TCM
formula data.

Finally, these results collectively demonstrated the feasibility of
the BP-ANN algorithm in the SCMD-ANN-VNSGAII methodology
for building nonlinear relationships between bioactivities.

FIGURE 1
Chemomics profiling of EM prescription. TIC chromatogram in negative ESI mode (A) and positive ESI mode (B); Molecular weight distribution for
the identified compounds (C); the main structure types in the EM prescription (D).
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3.3 VNSGAII optimization process

After establishing the BP-ANN model, VNSGAII shared the
same seeds to begin the evolutionary algorithm for searching the
best compatibility ratio of the EM prescription on anti-
inflammatory and anti-allergic activity. This process was
illustrated in Figure 2. Under the most suitable compatibility
ratio, the bioactivity of the EM prescription would show excellent
inhibition rates for both anti-inflammatory and anti-allergic activity.
In Figure 5A, after 10 iterations, the VNSGAII algorithm
successfully identified the optimal prescription, as evidenced by
the gradual decrease and eventual convergence of the average
distance between generations towards zero. This indicated that
the algorithm effectively navigated the search space to locate the
most suitable solution. Themost suitable prescription consisted only
of Huangbai herb,which resulted in an inhibition rate of 59.1% for
anti-inflammatory activity and 100% for anti-allergic activity as
shown in Figure 5B. This result suggested that Huangbai was the
monarch medicine in the EM prescription and processed the
function of removing damp heat, quenching fire, and
counteracting toxicity (Ai et al., 2023). Some other similar
prescriptions to cure AD almost included Huangbai (Zheng
et al., 2021; Liu et al., 2022).

To identify the ministerial drug in the EM prescription, a
limitation was set where the content of all botanical drugs should
be less than 30 mg among the prescription with a total content of
50 mg. Under this restriction, the VNSGAII algorithm began to
search for the best compatibility ratio of the EM prescription. After
undergoing approximately 40 iterations, the VNSGAII algorithm
converged upon the most suitable prescriptions, evident from the
minimal fluctuations observed in the average distance metric across
successive generations, as depicted in Figure 5C. The first rank of the
Pareto plane after the VNSGAII algorithm was displayed in

Figure 5D. Among these prescriptions, the anti-allergic inhibition
rate ranged from 98.9% to 99.25% and the anti-inflammatory
inhibition rate ranged from 35.8% to 40.2%. Although these
bioactivities of the prescriptions with limitations were not as
good as the single herb for the anti-inflammatory inhibition rate,
and the inhibition rate decreased from 59.1% to 40.2%, it was
important to note that the biological activity of TCM to cure AD
was not only limited to the anti-allergic and anti-inflammatory
functions. Some other activities, such as, T lymphocyte suppression
activity and antibacterial activity may also be involved in the EM
prescription. Restricting the prescription was beneficial for
discovering potential active compatible ingredients.

3.4 Validation experiment

To verify the credibility of the SCMD-ANN-VNSGAII
methodology, the 100 individuals obtained at the last iteration
under the 30 mg content limitation were ranked into seven ranks
with a geometric distribution, as shown in Figure 6A. The
bioactivities of prescriptions in the first rank were better than
those in other ranks. The best prescription with the highest anti-
inflammatory activity consisted of 28 mg Huangbai and 18 mg
Kushen in the total content of 50 mg prescription. The best
prescription with the highest anti-allergic activity consisted of
30 mg Huangbai, 7.8 mg Kushen and some other small-weight of
botanical drugs. These results reminded us that Huangbai and
Kushen in the EM prescription were the most important
botanical drugs to exert anti-AD activity.

A total of 113 prescriptions involving 230 TCMs for the
treatment of AD were retrieved from the ‘Dictionary of
Traditional Chinese Medicine Prescription’ to build the network
of the drug combination. The network of association rules of

FIGURE 2
The schematic diagram of the proposed SCMD-ANN-VNSGAII methodology.
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prescriptions to treat AD was shown in Figure 6B. The TCM
interconnection network consisted of nodes and edges, where
nodes represented different botanical drugs, the size of nodes
represented the frequency of herb occurrence in all prescriptions.
The edge connecting two botanical drugs represented that both of

them appeared in the same prescription. Figure 6B showed that
Huangbai and Kushen were often used in combination to treat AD,
which was consistent with the results obtained from the SCMD-
ANN-VNSGAII methodology. Furthermore, in Figure 7A, the IC50

values and maximum effect in the anti-inflammatory activity of

TABLE 2 The comparison of the different machine learning algorithms in the NM stage of the ED-NM-MO trigeminy method.

Algorithm Parameters Rcal RMSEP Rtest

Anti Ia Anti Aa Anti I Anti A Anti I Anti A Anti I Anti A

BP-ANN Structure:6–55–1 Structure:6–60–1 0.72 0.85 10.55 18.78 0.78 0.75

RF Trees = 50, InBagFraction = 85%
NumPredictorsToSample = 2

0.79 0.86 12.09 22.09 0.62 0.67

SVR Kernal function = ‘Linear’ 0.65 0.69 11.57 24.81 0.65 0.61

aanti-inflammatory activity (Anti I); ant-allergic activity (Anti A).

FIGURE 3
The TensorBoard view of different parameter combinations of BP-ANN for the anti-inflammatory activity (A); the anti-allergic activity (B); the scatter
plot of model predicted vs. observed values of anti-inflammatory activity (C); the anti-allergic activity (D).
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FIGURE 5
The change of average distance in each generation and the Pareto front obtained by VNSGAII at different restrictive conditions (A,B) without
restrictions; (C,D) no single herb higher than 30 mg in the 50 mg prescription.

FIGURE 4
The residual plots of the anti-inflammatory activity (A) and the anti-allergic activity (B) in the test set.
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Huangbai and Kushen were obtained. Huangbai showed a higher
maximum effect (Emax) than Kushen, but Kushen exhibited lower
IC50 values. In Figure 7B, for the anti-allergic activity of Huangbai
and Kushen, Huangbai showed higher Emax and lower IC50 values
than Kushen. These results further confirmed that Huangbai was
superior to Kushen in both anti-inflammatory and anti-allergic
activity. Huangbai was used more frequently and more widely
than Kushen in the medicinal frequency to cure AD.

4 Discussion

The combination of multiple botanical drugs in Traditional
Chinese Medicine (TCM) is believed to elicit therapeutic effects
through their interactions. However, the principle of combining
specific herbal combinations is still unclear. In this study, the
SCMD-ANN-VNSGAII methodology was proposed to search for

the optimal compatibility ratio of an herbal combination known as
EM. In fact, besides the TCM research, Western medicines for
complex diseases also require the development of combination drug
therapies. For example, combination therapies are used to treat drug
resistance in cancer or infectious diseases, as well as to enhance the
therapeutic effects of conditions like hypertension and diabetes
(Güvenç Paltun et al., 2021). In Western medicines, two
commonly used gold standards for quantifying synergy between
drug combinations are Loewe additivity and Bliss independence.
Loewe additivity is based on the assumption that the two inhibitors
act through a similar mechanism while Bliss independence assumes
independent mechanisms (Nguyen et al., 2024). However, these
methods are only applicable to combinations of two drugs, and
predicting synergies among multiple drugs remains a major
challenge. In the present study of drug combinations, there are
two main methods: the network-based approach and the
construction of the machine learning model for prediction (Jafari

FIGURE 7
The comparison of Huangbai and Kushen in the anti-inflammatory activity (A) and anti-allergic activity (B) with the IC50 values and the maximum
effect Emax.

FIGURE 6
The Pareto front obtained by VNSGAII in themaximumnumber of generations at the restrictive condition of no single herb above 30mg. (A) And the
network of association rules of prescriptions to treat AD with the support above 5% and confidence above 50% (B).
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et al., 2020; Wang et al., 2021). The SCMD-ANN-VNSGAII
methodology proposed in this study falls under the machine
learning model prediction method. Unlike other machine
learning methods, this methodology does not require any
information about chemical structures, signaling pathways, or
genomic codes, as do the DeepSynergy, BestComboScore,
ComboFM and Deep Tensor Factorization methods. Because all
of these methods are based on Deep Learning methods and large-
scale public databases, such as the NCI-60 human tumor cell line
panel or research data from O’Neil et al., and they are not suitable to
study the compatibility of CMF(Julkunen et al., 2020; Zhang et al.,
2021). Due to the limited availability of publicly accessible biological
activity data on TCM, more researchers tended to choose network-
based methods rather than machine learning strategies to study
CMF combinations (Wang et al., 2021; Niu et al., 2023).

In this study, we adopted the ‘ED-NM-MO trigeminy method’
which was a kind of rare machine learning strategy in CMF research.
In the first part of the trigeminy method, we established a
homemade database using SCMD, which included anti-
inflammatory and anti-allergic biological activity data commonly
used to evaluate the efficacy of AD treatment. Screening new drug
combinations requires substantial efforts since considering all
possible combinations between drugs is infeasible and expensive.
Therefore, a compromise to obtain an acceptable model with the
lowest number of experiments is needed. In the ED part, the optimal
chemometric tool was employed to allocate the n experiments across
the working space in a manner that maximized the informational
yield for the given number of experiments. SCMD, which is a
mixture design, was used to ensure that all mixtures in the
matrix had the same final weight, with the differences between
prescriptions being the proportion of medicinal materials. SCMD
has been widely used in food and pharmaceutical research (Azhar
and Munaim, 2021; M’Hir et al., 2023). Finally, the 76 rows ×
6 columns homemade database was obtained with the
corresponding anti-inflammatory and anti-allergic biological
activity data. Then, Choosing the appropriate machine learning
method was crucial. Considering the nonlinearity of biological
activity, some linear algorithms such as multiple linear regression
and partial least squares algorithms were excluded. At the same
times, for the small-scale dataset, some Deep Learning algorithms
including convolution neural networks, recurrent neural networks
and deep belief networks were also excluded to avoid overfitting
results, although the accuracy of Deep Learning algorithm, in all
cases, is better than traditional machine learning methods. As for
other traditional machine learning methods, such as support vector
machine, ANN, Bayesian, decision tree and random forest methods,
there is no clear leader in the biomedical problems (Tsigelny, 2019).
Theoretically, a three-layer ANNs can approximate any function.
Additionally, the BP-ANN model has been successfully applied in
various medical applications. Notably, it has been successfully
employed to forecast the blood concentration of
monohydroxycarbazepine in epilepsy patients, enhancing
treatment precision (Xu et al., 2024). Additionally, the model
demonstrated remarkable accuracy in predicting the blood
concentration of tacrolimus shortly after liver transplantation,
leveraging mutation patterns or genomic profiles for more
personalized and timely medical interventions (Du et al., 2024).
Therefore, in this study, the ANN algorithm was adopted to build

the relationship of the different formula ratios and the bioactivities.
The schematic diagram of the proposed SCMD-ANN-VNSGAII
methodology was illustrated in Figure 2. The detailed architecture of
BP-ANN was determined through an exhaustive hyperparameter
selection process, facilitated by the utilization of TensorBoard,
ensuring optimal performance and efficiency. As the training
algorithm, standard back-propagation was used. The optimal
neural network architecture was searched for using the criteria of
the highest regression coefficient R. The number of nodes in the
hidden layer, the types of optimizer and the learning rate were
trained for at least 100 epochs. It was found that a large number of
units in the hidden layer, a smaller learning rate and the inclusion of
the dropout regularization and ReLU transfer function were
essential for achieving high-performing networks. One possible
explanation for this is that the nodes in the hidden layer may
represent the biological activity contribution of different compounds
from different botanical drugs. These nodes in the hidden layer are
similar to the defining of the pharmacophore. The Dropout
regularization and ReLU transfer function help filter out non-
pharmacologically active components. To assess the stability of
the BP-ANN model, 10 samples were randomly selected as the
test set. The regression coefficients R for the anti-inflammatory and
anti-allergic activities of the test group reached 77.51% and 74.94%,
respectively. These results are comparable to other artificial
intelligence methods used in combination drug therapy, which
also achieve a similar level of confidence in correct predictions
between 0.7 and 0.9 (Tsigelny, 2019). At the same times, two another
machine learning algorithms, SVR and RF, were benchmarked
against the BP-ANN algorithm. The BP-ANN algorithm
exhibited lower RMSEP and higher Rtest values compared to RF
and SVR in the anti-inflammatory and anti-allergic activity. After
building the BP-ANN model, the focus shifted to finding the most
ideal prescription for treating AD. In this study, two commonly used
indicators to evaluate the efficacy of AD treatment, anti-
inflammatory and anti-allergic biological activity were obtained.
VNSGAII as a multi-objective optimization is an appropriate way to
analyze the system when two or more objectives have equal
importance and might conflict with each other. Compared to
single-objective optimization, VNSGAII provides more objective
results. VNSGAII is also an evolutionary algorithm, and each
objective function is calculated separately and compared so that
eventually all the non-dominated solutions are found and form the
Pareto frontier. Accordingly, decision-makers can acquire the most
suitable formula by considering all objectives and their trade-offs. In
this study, it was rare that the Pareto plane only contained one point.
This meant that in the treatment of AD, Huangbai not only had the
strongest anti-inflammatory activity but also had the strongest anti-
allergic activity. This result reminded us that the biological activities
of TCM to cure AD were not only limited to the anti-allergic and
anti-inflammatory functions. Some other activities, such as, T
lymphocyte suppression activity and antibacterial activity may
also be involved in the EM prescription. When the content of
Huangbai in the total weight of 50 mg was limited to below
30 mg, Kushen, as the secondary important herb, exhibited
supplemental anti-inflammatory and anti-allergic activities
against Huangbai. The anti-inflammatory tests between Huangbai
and Kushen also demonstrated that the Emax of Huangbai was
greater than that of Kushen. There was no significant difference
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in the anti-allergic test between Huangbai and Kushen. Another
validation experiment established a network consisting of
230 botanical drugs based on 113 prescriptions for treating AD
through data mining in the ‘Dictionary of Traditional Chinese
Medicine Prescription’. The herbal combination network
indicated that Huangbai and Kushen were the core herb pairs for
treating AD, and Huangbai was used more frequently than Kushen.
It was worth noting that the RF algorithm provided the scores of
feature importance, and Huangbai and Kushen were more import
predictors for RF regression (Supplementary Figures S2C,D). These
findings are consistent with the results obtained from the model
used in this study. In further experiments, the SCMD-ANN-
VNSGAII can be used to study the compatibility optimization at
the level of homologous compounds among the Huangbai and
Kushen, for example, the different alkaloid components among
these two kinds of botanical drugs. Overall, these findings suggest
that Huangbai and Kushen are promising herb pairs for treating AD,
and further research can be conducted to optimize their
compatibility and explore the specific compounds responsible for
their therapeutic effects.

5 Conclusion

This research provided amethodology to study the compatibility
optimization strategy of the EM prescription which included six
kinds of Chinese medicinal materials. The methodology involved
using SCMD to generate a dataset of formulas with a constant total
amount of 50mg. A three-layer BP-ANN algorithmwas then used to
predict the nonlinear bioactivity relationship, with the introduction
of dropout strategy and ReLU transfer function to improve the
model’s performance. Finally, the VNSGAII algorithm, as one of the
most effective multi-objective genetic algorithms, which could
supply many Pareto optimal solutions for researchers to help
them “have their cake and eat it”, was used to search for the best
compatibility ratio of the EM prescription on both anti-
inflammatory and anti-allergic activity. As a result, Huangbai and
Kushen were the main bioactive botanical drugs among these six
botanical drugs which was in accordance with the drug combination
rule based on the Apriori algorithm. In addition, the IC50 and Emax

values of these two botanical drugs were acquired, and Huangbai
was superior to Kushen in both the anti-inflammatory and anti-
allergic activity. In conclusion, the proposed SCMD-ANN-
VNSGAII as a powerful methodology has been proven to be
successful in studying the compatibility of crude extracts, and
this methodology may pave the way for future compatibility
optimization of homologous compounds or specific
component mixtures.
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