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Background: The redox system plays a pivotal role in autoimmune diseases and
cancer, with oxidative stress and antioxidant adaptations driving pathological
processes. Age/autoimmunity-associated B cells (ABCs), characterized by elevated
ROS levels, are implicated in autoimmune disorders such as systemic lupus
erythematosus (SLE). However, the mechanisms linking ROS to ABC differentiation
remain unclear. Glutaredoxin 2 (Grx2), a key oxidoreductase, regulates redox
homeostasis, but its role in autoimmune B cell biology is underexplored.
Methods: Using wild-type and Grx2-knockout mice, we examined ROS levels and
ABC differentiation. In vitro, ABC differentiation was induced with IL-21 and TLR7
agonist, and the effect of the antioxidant N-Acetyl-L-Cysteine (NAC) was
assessed. The SLE-prone ShipAB model crossed with Grx2—/— mice was used
to evaluate autoimmune pathology.

Results: ABCs exhibited higher ROS levels than follicular B cells, and NAC reduced
ABC differentiation rate by 50%, demonstrating ROS dependency. Grx2
deficiency amplified ROS levels and ABC proportions in aged mice, correlating
with accelerated autoimmunity. In ShipAB mice, Grx2 deletion exacerbated ABC
differentiation, CD4+ T cell activation, and anti-dsDNA autoantibody titers.
Conclusions: Grx2 acts as a redox checkpoint that limits ABC-driven
autoimmunity by modulating ROS. The Grx2—-ROS axis represents a potential
therapeutic target for SLE and related chronic inflammatory diseases.

KEYWORDS

Glutaredoxin2, reactive oxygen species (ROS), redox homeostasis, antioxidant,
resistant diseases

1 Introduction

The redox system has emerged as a critical pharmacological target in resistant diseases,
particularly in oncology and autoimmunity, where oxidative stress and antioxidant
adaptations drive pathological processes (Muri and Kopf, 2021; Jena et al, 2023;
Halliwell, 2024). In recent years, an increasing number of studies have found that
individuals in an autoimmune state are more likely to develop cancer, further
suggesting that there may be a common pathological basis between autoimmunity and
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cancer development (Yang et al., 2025; Zhan et al., 2025; Han et al.,
2021). Oxidative stress and related chronic inflammation may
constitute an important component of this pathological basis
(Elkoshi, 2022; Urbonaviciute et al., 2019; Mittal et al., 2013).

Age/autoimmunity-associated B cells (ABC) were first reported in
2011 (Hao et al,, 2011; Rubtsov et al.,, 2011). These studies found a
significant accumulation of a non-conventional B cell subset in aged
female mice, characterized by CD11c"Tbet". These cells accumulate with
age, and appeared earlier in mice prone to autoimmunity, hence were
named age/autoimmunity-associated B cells (ABC). Subsequent research
revealed that ABC also significantly appears in viral infections and
chronic inflammatory diseases represented by autoimmune diseases,
including systemic lupus erythematosus (SLE), rheumatoid arthritis,
Sjogren’s syndrome and multiple sclerosis, playing an important role
(Cancro, 2020; Xie et al., 2025; Dai et al., 2024). The elevated levels of
ABC in patients with these autoimmune diseases suggest their
involvement in the pathogenesis of these conditions. Notably, ABCs
harbor autoreactive antibody specificities and correlate with poor clinical
responses, positioning them as therapeutic targets.

Endogenous ROS and the antioxidant system have been shown
to participate in the proliferation and differentiation of B cells by
maintaining a state of continuous activation (Zhang W. et al., 2019;
Martinis et al., 2025). B cell receptor (BCR) and Toll-like receptor
(TLR) stimulation can activate membrane-associated NADPH
oxidase, leading to elevated ROS levels within B lymphocytes
(Capasso et al., 2010; Bertolotti et al, 2016). ROS can further
activate protein tyrosine kinases and inhibit protein tyrosine
phosphatases, keeping B lymphocyte signaling in a state of
continuous activation, thereby enhancing the strength and
duration of B cell signals through positive feedback (Reth, 2002;
Singh et al, 2005; Bertolotti and Sitia, 2018). The degree and
duration of signal activation determine the differentiation of B
lymphocytes into different subsets (Casola, 2007; Wheeler and
Defranco, 2012). However, it is still unknown how ROS affects
the differentiation of ABC and the underlying mechanisms involved.

Glutaredoxin 2 (Grx2), a thiol-disulfide oxidoreductase, is a key
component of cellular antioxidant defense. By catalyzing glutathione-
dependent protein deglutathionylation, Grx2 maintains redox
homeostasis and protects against oxidative damage (Ogata et al,
2021; Zhang et al.,, 2014; Lillig, Berndt, and Holmgren, 2008). While
Grx2’s roles in cancer, cardiac pathology and neurodegeneration are
documented (Gellert et al., 2020; Kanaan et al., 2018; Lepka et al., 2017),
its function in autoimmune regulation, particularly in B cell biology,
remains unclear. Our previous work demonstrated that Grx2 loss in the
cancerous HeLa cells reduces antioxidant capacity and viability (Zhang
et al,, 2014), suggesting its potential regulatory role in ROS-sensitive
immune cells. Intriguingly, Grx2 deficiency exacerbates age-associated
pathologies linked to oxidative stress (Lapenna, 2023), raising the
possibility that Grx2 may restrain ABC differentiation by
modulating ROS in autoimmune contexts.

To investigate this hypothesis, we employed the Grx2-knockout
mouse model, and the ShipAB mouse model, a B cell-specific Src
homology 2-containing inositol 5-phosphatase 1 (SHIP-1) knockout
strain that develops spontaneous SLE-like autoimmunity (O’Neill
et al, 2011; Zhang H. et al., 2019). Here, we report that compared
to follicular B cells, ABCs exhibit elevated ROS levels, which are
essential for their differentiation. Grx2 deficiency further amplifies
ROS production and ABC differentiation, aggravating T cell
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activation and autoantibody titers. These findings establish Grx2 as
a novel redox checkpoint controlling ABC-driven autoimmunity and
propose therapeutic targeting of the Grx2-ROS axis in SLE and related
chronic inflammation based resistant diseases.

2 Materials and methods

2.1 Animals

Grx2 knockout mice were generated by the Central Institute for
Experimental Medicine and Life Science (CIEM, https://www.ciea.or.
jp), Kawasaki, Japan, by targeted deletion of the exons 1c, la and 2 of
Glrx2 (Grx2 coding) gene (Supplementary Figure S1). ShipAB mice
were generously provided by Professor Jeffrey Ravetch at Rockefeller
University in New York, United States. Grx2—/—, ShipAB mice were
generated by crossing ShipAB mice with Grx2—/— mice. C57BL/6 wild
type mice and MRL/lpr mice were purchased from Shanghai
Lingchang Biotechnology Co., Ltd. All animals were kept in the
animal facility of Shanghai Jiaotong University School of Medicine
(SJTUSM) Department of Laboratory Animal Science in specific
pathogen-free (SPF) conditions, with experiments conducted using
age- and sex-matched mice to ensure experimental consistency. All
experiments were approved and conducted in compliance with
institutional guidelines and had been approved by the SJTUSM
Institutional Animal Care and Use Committee (IACUC).

2.2 Flow cytometry

Flow cytometry analyses were performed using BD
FACSymphony™ A3 (BD Biosciences) or BD LSRFortessa™ X-20
analyzer (BD Biosciences). Cells were stained with anti-mouse/human
B220 (RA3-6B2), anti-mouse CD19 (1D3), anti-mouse CD11c (N418)
for ABC cell analysis, with anti-mouse CD4 (RM4-5), anti-mouse CD44
(IM7), anti-mouse CD62L (MEL-14) for Tgy cell and naive T cell
analysis. For ROS level detection, cells were incubated with 2,7-
dichlorofluorescein diacetate (H2DCFDA) (abcam Cat#ab113851) for
30 min at 37 °C before subjected to flow cytometry analysis. All antibodies
were purchased from BD Biosciences, Biolegend or Thermo Fisher.

2.3 B cell sorting

Mouse splenic follicular (FO) B cells were magnetically (MACS)
sorted. Splenocytes were incubated with biotinylated anti-CD43
(2.5 pg/mL), anti-CD11c (2 pg/mL) and anti-GL7 (2 pg/mL) in
MACS buffer (PBS, pH 7.2, 0.5% BSA, 2 mM EDTA) for 25 min,
washed with MACS buffer, then incubated with anti-biotin
microbeads (Miltenyi) for 20 min, followed by another washing
with MACS buffer. Cells were then loaded on the LS column
(Miltenyi), and the flow-through was collected as FO B cells.

2.4 In vitro induction of ABC differentiation
MACS-sorted FO B cells were cultured in RPMI1640 media

(HyClone) containing 10% FBS (Gibco), 5 mg/mL sodium pyruvate
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(Gibco), 100 U/mL penicillin (Gibco), 0.1 mg/mL streptomycin
(Gibco), 1X NEAA (Gibco), 1 pg/mL CL097 (Invivogen) and 25 ng/
mL IL-21(Peprotech) in the presence or absence of 5 mM N-Acetyl-
L-Cysteine (NAC) (Beyotime) for 48 h before
cytometry analysis.

flow

2.5 ELISA for Grx2 and anti-dsDNA
autoantibody detection

The enzyme-linked immunosorbent assay (ELISA) for Grx2 was
performed following a standardized sandwich protocol. Briefly, 96-
well plates were coated with 2 ug/mL anti-mouse Grx2 (IMCO) in
PBS, pH7.0 and incubated overnight at 4 °C. After washing with
PBST (PBS containing 0.05% Tween-20), the plates were blocked
with 1% BSA in PBS for 2 h. Serial dilutions of standard Grx2 protein
and spleen homogenates were added to the wells and incubated for
2 h at 4 °C, followed by three PBST washes. Biotinylated anti-mouse
Grx2 were added and incubated for 1 h at 4 °C, followed by four
washes and standard horseradish peroxidase (HRP)-conjugated
streptavidin incubation, washing, and TMB substrate reaction.
Absorbance was measured at 650 nm using a microplate reader.
Anti-dsDNA IgG antibodies were detected by ELISA kit (QUANTA
Lite, 708510).

2.6 Protein glutathionylation
status detection

Fresh mouse spleens were ground in pre-cooled PBS and passed
through a 70-um cell strainer to obtain splenocytes. The splenocytes
were then lysed on ice for 30 min using RIPA lysis buffer containing
10 mM iodoacetamide (IAM).
determined using a BCA assay kit. A total of 30 pg protein per

Protein concentration was
sample was loaded onto a non-reducing 10% Bis-Tris SDS-PAGE gel
and separated by electrophoresis. The separated proteins were
subsequently transferred onto a nitrocellulose membrane (Pall
Corporation, United States). The membrane was blocked with
5% non-fat milk for 1 h at room temperature, followed by
overnight incubation at 4 °C with gentle shaking in primary
antibodies  (anti-GSH,  1:2000  dilution, ~Abcam PLC,
United Kingdom; anti-actin, 1:5000, Proteintech Inc., China).
Subsequently, the membrane was incubated with an HRP-
conjugated secondary antibody (1:1000 dilution, Beyotime
Biotechnology, China) for 1 h at room temperature. Immune
complexes were visualized using Immobilon Western HRP
substrate (WBKLS500, Millipore, United States), and images were
captured with a chemiluminescence imaging system (Bio-Rad
Corporation, United States). Grayscale values of the bands were

quantified with VisionWorks (Analytik Jena, Germany).

2.7 Statistical analysis

Statistical analyses were performed using GraphPad 9.0, and
data were expressed as mean = SEM. Ordinary one-way ANOVA
was used in Figure 1, and unpaired t-test was used in Figures 2-4. A
p-value <0.05 was considered significant (*p < 0.05, **p < 0.01).
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3 Results

3.1 ABCs have higher ROS levels compared
to follicular B cells and depend on ROS for
effective differentiation

ABCs are primarily generated from naive follicular B cells
(Cancro, 2020). Thus, we first measured and compared the ROS
levels in ABCs and naive FO B cells from wild type mice. Flow
cytometric analysis revealed that in the spleens of 6-month-old wild
type mice, the ROS levels in ABC were significantly higher than
those in FO B cells and other non-B cells (Figure 1). These results
suggest that elevated ROS levels are a characteristic feature
distinguishing ABC from resting naive FO B cells. However, it is
not yet known if the elevated ROS plays a promoting or inhibitory
role in the differentiation of FO B cells into ABC.

To explore the role of ROS in the differentiation of FO B cells
into ABC, we utilized an in vitro system for inducing ABC
differentiation from Naradikian et al.’s and our previous studies
(Naradikian et al., 2016; Zhang H. et al., 2019). Purified splenic FO
B cells were cultured in the presence of IL-21 and CL097 (a TLR7/
8 agonist), which primed these B cells to express CD1lc and
differentiate into ABC. The antioxidant N-Acetyl-L-Cysteine
(NAC) was also included in the culture system in a part of the
samples to reduce the ROS levels in these cells. As shown in Figure 2,
NAC treatment decreased the proportion of follicular B cells
differentiating into ABC by approximately 50%. These results
suggest that the differentiation of follicular naive B cells into
ABC requires physiological levels of ROS.

3.2 Aged Grx2 knockout mice have
increased ABC differentiation

In our previous research, we found that Grx2 has important
antioxidant functions, shown by the diminished antioxidant
capacity and cell viability of cervical cancer HeLa cells with
reduced Grx2 expression (Zhang et al, 2014). To investigate the
role of Grx2 and its antioxidant effect in the differentiation process
of ABC, we applied Grx2 knockout mice. As shown in
Supplementary Figure S1, exons lc, la, which contain the start
codon for Grx2, and exon 2, were deleted, preventing the expression
of the Grx2 protein. We identified the Grx2 knockout at the DNA
level using PCR (Supplementary Figure S2). Additionally, we
measured the expression levels of Grx2 in the spleen tissue of the
mice using ELISA, it was found that the Grx2 levels in heterozygous
Grx2 + mice were reduced by 50% compared to wild type (WT)
while Grx2—/-
Grx2 expression, confirming the knockout of Grx2 at the protein

mice, homozygous mice completely lost
level (Supplementary Figure S3). Grx2—/— mice and age- and sex-
matched WT C57BL6/] mice were kept until they were 18 months
old. Using flow cytometry, we assessed the levels of ABC cell
differentiation and ROS levels in the spleens of these mice. We
found that the ROS levels in ABCs from Grx2-/- mice were
significantly higher than those in ABCs from WT mice (Figures
3A,B). As Grx2 plays a critical role in protein de/glutathionylation,
effect of Grx2 knockout

glutathionylation (PSSG) levels in the splenocytes of these mice.

we examined the on protein
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ROS levels in splenic B cell and non-B cell subsets of WT mice. (A) Representative histogram flow cytometry plot showing fluorescence signal

intensity of ROS in follicular B cells (solid line), ABC (shaded), and non-B cells (dashed) from spleens of 6-month-old female wild type C57BL/6J mice. (B)
Bar graph of ROS levels in the cell subsets (n = 2). FO, follicular B cells; non-B, non-B cells; MFI, mean fluorescence intensity; DCF, oxidized product of the
ROS dye 2,7-dichlorofluorescein diacetate (H2DCFDA), ROS indicator. Data are represented as mean + SEM. Ordinary one-way ANOVA was used in

panel B **p < 0.01.
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NAC inhibits the in vitro differentiation of ABCs. (A) Representative flow cytometry plot showing the percentage of ABC cells among FO B cells MACS

isolated from wild type C57BL/6J mice and cultured for 48 hin the absence (u.t.) or presence (induced) of IL-21 and CLO97. -NAC, culture in the absence
of NAC; +NAC, in the presence of 5 mM NAC. (B) Bar graph of the ABC percentage of the cell cultures in panel (A) experiment (n = 2). Data are represented
as mean + SEM. Unpaired t-test was used in panel B *p < 0.05.

As shown in Figures 3C,D, the PSSG level significantly increased in
the Grx2—/- mice. Additionally, the proportion of ABC in total
B cells in Grx2—/— mice was significantly greater than that in WT
mice (Figures 3E,F). These results suggest that Grx2 may inhibit the
differentiation of ABC by controlling and reducing ROS levels, and
maintaining redox homeostasis.
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3.3 Grx2 knockout in the ShipAB lupus
model aggravates ABC differentiation and
exacerbates lupus disease activity

To further validate the above effects of Grx2, we crossed
Grx2 knockout mice with a B cell intrinsic systemic lupus
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FIGURE 3

Aged Grx2 knockout mice have increased ABC differentiation. (A) Representative flow cytometry histogram plot showing ROS levels in splenic ABCs
of 18-month-old female WT (solid line) and Grx2-/- (shaded) mice; (B) Bar graph of data from the panel A experiment (n = 3). (C) Protein glutathionylation
level evaluated by Western blot after separation with non-reducing SDS-PAGE. Western blot of Actin was used as loading control. (D) Bar graph of PSSG
levels represented by ratio of grayscale values of PSSG versus loading control for each sample in the panel C experiment, and the WT mean value was
set as 100% (n = 3). (E,F) Representative flow cytometry profile (E) and bar graph (F) showing the percentage of ABC among splenic B lineage
(B220*CD19%) cells of the aged WT and Grx2—/- mice (n = 3). Data are represented as mean + SEM. Unpaired t-test was used in panel B, D and F. *p < 0.05,

**p < 0.01.

erythematosus (SLE) model (ShipAB) to obtain Grx2—-/-,
ShipAB mice. We then examined the SLE disease levels in these
mice compared to age- and sex-matched ShipAB mice. As shown
in Figures 4A,B, the level of ABC differentiation in Grx2—/-,
ShipAB mice was significantly higher than that in ShipAB
mice. Grx2—/—, ShipAB mice also exhibited higher activation
levels of CD4" T cells, as shown by a greater proportion of
effector/memory CD4" T cells (CD4* Tgy) compared to ShipAB
mice (Figures 4C,D), while the proportion of naive CD4" T cells
was lower than that in ShipAB mice (Figures 4C,E). We used
ELISA to measure the levels of anti-dsDNA autoantibodies
in the serum of these mice and found that the levels were
elevated in Grx2—/-, ShipAB mice compared to ShipAB mice
(Figure 4F). These results further indicate that Grx2 can control
ROS levels through its antioxidant activity, maintaining redox
homeostasis, thereby reducing ABC differentiation, decreasing
T cell activation, lowering autoantibody production, and
modulating the progression of SLE.

Frontiers in Pharmacology

3.4 Human SLE patients exhibit lower
GLRX2 expression

To explore the clinical relevance of the findings in this study, we
performed analysis of a publicly available SLE dataset, the
GSE65391 dataset (n = 923 SLE patients vs. 48 healthy controls).
The analysis revealed significantly lower GLRX2 gene expression in
SLE patients (p = 0.00814), as shown in Figure 5. This clinical
correlation provides compelling support for our findings in the
mouse lupus (ShipAB) model.

4 Discussion

This study establishes a pivotal role for Grx2 in restraining ABC
differentiation by modulating ROS homeostasis. Using Grx2—/—and
ShipAB mouse models, we demonstrated that ABCs exhibit elevated
ROS levels compared to follicular B cells, a feature critical for their
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FIGURE 5

Analysis of the GSE65391 dataset. GLRX2 expression levels (log2-
transformed normalized values) were compared between SLE patients
(n = 923) and healthy controls (n = 48) from the GSE65391 dataset.
Expression values represent the mean of three probes (ILMN_
1680727, ILMN_2258268, ILMN_1737912). Statistical analysis was
performed using a linear model approach with empirical Bayes
moderation (limma package), followed by Welch's t-test

(**p = 0.00814).

differentiation. Grx2 deficiency exacerbated ROS accumulation,
amplified ABC differentiation, and
autoimmunity. These findings

aggravated ~ SLE-like
position Grx2 as a redox
checkpoint that curbs ABC-driven autoimmunity, highlighting its
therapeutic potential in ROS-dependent inflammatory diseases.
Our work bridges redox biology and autoimmune pathogenesis
by elucidating how Grx2 regulates ABC differentiation through ROS
modulation. The elevated ROS levels in ABCs align with prior
studies showing that oxidative stress drives B cell hyperactivity
via protein tyrosine kinase activation and phosphatase inhibition
(Bertolotti and Sitia, 2018; Takano, Sada, and Yamamura, 2002). We
speculate that Grx2, working as a thiol-disulfide oxidoreductase,
ROS induced B cell

deglutathionylating redox-sensitive targets, thereby maintaining

counteracts  this overactivation by
cellular antioxidant homeostasis. This mechanism mirrors Grx2’s
role in mitigating age-related pathologies, such as cancer incidence
(Brzozowa-Zasada et al., 2024), cataract formation (Wu et al., 2014),
or neurodegeneration (Wen et al., 2020), where Grx2’s deficiency
accelerates oxidative damage or cell remodeling that may result in
abnormal activation or carcinogenesis. Our findings extend Grx2’s
protective function to autoimmune regulation, suggesting a
conserved antioxidant defense axis across diverse pathologies.
Our findings on Grx2-regulated ABC differentiation are
strongly supported by clinical observations in SLE patients.
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Faustini et al. reported that ABCs (characterized as
IgD"CD27 CD11c*CD21™ or T-bet"CDI11c" subsets) demonstrate
significant peripheral expansion that decrease post-rituximab
treatment (Faustini et al, 2022). Jenks et al. identified a
pathogenic DN2 subset (CD11c¢*CXCR5 CD21") linked to anti-
Smith/RNP antibodies, driven by TLR7 activation - a pathway
consistent with our mouse model (Jenks et al., 2018). Tissue
infiltration is evidenced by Arazi et al. through single-cell RNA-
seq showing ABC enrichment in lupus nephritis kidneys, where
these cells express antigen-presentation genes (HLA-DR, CD86),
mirroring our findings of ABC-mediated T cell activation (Arazi
et al,, 2019). The GSE65391 dataset (Banchereau et al., 2016)
demonstrates significantly reduced GLRX2 expression in SLE
patients compared to healthy controls (p = 0.00814), establishing
clinical relevance for our investigation of Grx2-mediated redox
regulation. This finding aligns with well-characterized redox
imbalances in SLE, where mitochondrial dysfunction drives
ROS  production 2002) and
compromised antioxidant defenses are observed (Perl, 2013).

excessive (Gergely et al,
Importantly, Henning et al. (Henning et al, 2025) provided
direct clinical evidence linking ABC accumulation to oxidative
stress through positive correlations between ABC frequency and
myeloperoxidase-DNA  complexes, thereby bridging our
mechanistic findings with human SLE pathology. These clinical
observations collectively underscore the potential of targeting the
Grx2-ROS axis in SLE. The conserved nature of ABCs across species
and their redox-sensitive differentiation suggest novel therapeutic
strategies could emerge from further exploration of this pathway.

While Grx2 promotes cancer cell survival under oxidative stress,
its deficiency in this study exacerbates autoimmune pathology,
context-dependent roles in redox regulation.
activated ABCs or
transformed cancer cells, Grx2 can similarly provide antioxidant

suggesting
Specifically, for already  malignantly
protection, especially in cell types sensitive to oxidative stress or
when using anti-cancer drugs that induce oxidative stress. In these
cases, Grx2 may instead promote disease progression, as suggested
in previous studies (Lillig et al., 2004; Zhang et al., 2014; Gellert et al.,
2020). Based on this information and the results of our study, we
speculate that ABCs have a lower sensitivity to oxidative stress
induced by endogenous ROS. Therefore, the mild increase in ROS
leads to

caused by excessive

differentiation of ABCs without increasing their mortality. This is

Grx2 deficiency primarily

also consistent with reports that follicular B cells have more potent
antioxidant capacities compared to T lymphocytes (Muri et al.,
2019). We will further validate this hypothesis in future studies to
clarify the effects of ROS of different sources on the differentiation,
proliferation, and survival of ABCs.

Our findings indicate that Grx2 plays a critical role in regulating
ABC differentiation
deglutathionylation) activity. While the exact molecular pathways

through its antioxidant (specifically
remain to be fully elucidated, and identifying the key target

protein(s) that undergo specific glutathionylation upon
Grx2 deletion in these cells is an important direction for future
research, several redox-sensitive signaling pathways emerge as likely
mediators of this process based on existing literature. The NF-«kB
pathway represents a prime candidate, as it is known to be regulated
by glutathionylation status (Dalle-Donne et al., 2009). Studies have

shown that NF-kB activation in B cells is highly sensitive to oxidative
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stress, with glutathionylation of key cysteine residues in IKKP
inhibiting its activity (Reynaert et al., 2004). This is particularly
relevant given NF-kB’s established role in B cell differentiation
and survival (De Silva and Klein, 2015). STAT3 signaling also
emerges as a potential mechanistic link between Grx2 and ABC
differentiation. As demonstrated by Ding et al., STAT3 signaling
is crucial for promoting B cell survival and differentiation
(Ding et al., 2016). The STAT3 pathway is known to be redox-
regulated,  with cysteines
modulating its phosphorylation and nuclear translocation

glutathionylation — of  critical
(Butturini et al., 2014). The mTOR pathway represents another
redox-sensitive regulator of B cell fate. Franchina et al. has
proved that glutathione-dependent redox control modulates
mTORCI activation and metabolic reprogramming in follicular
B cells, highlighting subset-specific redox sensitivity in B cell
immunity via mTOR signaling (Franchina et al., 2022). Given
that Grx2 maintains cellular redox homeostasis, its deficiency
could lead to mTOR pathway dysregulation through persistent
oxidation of regulatory cysteine residues in mTOR complex
components. The deficiency of Grx2 in ABC differentiation may
therefore reflect its position as a regulator of multiple intersecting
pathways that collectively govern B cell fate decisions. Future
studies employing cell-specific knockout models will be needed
to precisely delineate the relative contributions of these pathways
to the Grx2-ABC axis.

While our study demonstrates that Grx2 deficiency elevates
ROS levels and enhances ABC differentiation, we acknowledge the
potential for compensatory upregulation of other antioxidant
systems (e.g., glutathione peroxidase/glutathione reductase or
thioredoxin pathways) to partially compensate for Grx2 loss to
maintain redox homeostasis. Such compensatory mechanisms
represent a well-established feature of redox biology, where
antioxidant systems often exhibit functional redundancy to
protect against oxidative stress (Muri et al, 2019; Halliwell,
2024). Notably, Grx2 exhibits cross-talk with the thioredoxin
system, as it can reduce both Trxl and Trx2 to protect cells
from oxidative stress-induced apoptosis (Zhang et al., 2014).
However, our data in this study indirectly imply that these
compensatory mechanisms are insufficient to fully normalize
ROS levels or ABC differentiation in Grx2-deficient mice,
implying cell-type-specific dependencies on Grx2 for redox
homeostasis. However, it remains a hypothesis pending direct
experimental validation. Specifically, our study does not provide
functional data on the activity of the Trx or other compensatory
systems, which is essential to unequivocally confirm their inability
to compensate in this setting. Thus, a key future direction will be
to directly quantify the activity and adaptive response of other
redox systems in this model, which will definitively test the
compensatory hypothesis proposed here.

In summary, Grx2 is identified as a critical restrainer of ABC
differentiation and autoimmune progression by tempering ROS-
driven B cell activation. This study not only advances our
understanding of redox regulation in autoimmunity but also
provides a new pathway for developing targeted therapies aimed
at mitigating diseases where oxidative stress fuels pathology, from
SLE to age-related disorders.
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