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Vasospasm is a sustained abnormal contraction of vascular smoothmuscle (VSM),
which is commonly observed in the coronary and cerebral arteries. This abnormal
VSM contraction leads to reduced blood flow to tissues or organs, ultimately
causing severe diseases such as myocardial infarction and cerebral infarction.
Studies have demonstrated that oxidative stress and
sphingosylphosphorylcholine (SPC)-induced Rho-kinase signaling pathways
are related to this abnormal contraction. Flavonoids, a class of natural
compounds, are found in various plants, fruits, vegetables, and traditional
Chinese medicines. They have anti-inflammatory, antioxidative, and
anticarcinogenic properties. Recent studies have shown that some flavonoids
strongly inhibit the abnormal contraction of VSM. This review explores the
potential of flavonoids as candidate drugs for the treatment and prevention of
vasospasm through oxidative stress and the SPC-induced Rho-kinase signaling
pathway. Nevertheless, more extensive studies are required to fully elucidate the
mechanism by which flavonoids exert their anti-vasospastic effects and explore
their potential benefits as adjunctive therapy for critical cardiovascular and
cerebrovascular diseases.
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1 Introduction

Vasospasm, such as coronary vasospasm and cerebral vasospasm, is the abnormal
contraction of vascular smooth muscle (VSM) leading to blood vessel narrowing. This
narrowing reduces blood flow, resulting in serious cardiovascular and cerebrovascular
diseases, such as myocardial infarction, angina, and cerebral infarction (Hung et al., 2014;
Slavich and Patel, 2016; Maruhashi and Higashi, 2021; Sinha et al., 2022). The underlying
pathophysiology of vasospasm involves multiple factors, including endothelial dysfunction,
autonomic nervous system imbalances, vascular smooth muscle hypercontractility, and
activated signaling pathway of vasoactive mediators (Kolias et al., 2009; Matta et al., 2020).
Although the pathogenesis of vasospasm has not been fully elucidated, endothelial
dysfunction and increased VSM contractility are considered to be the main underlying
mechanisms (Kusama et al., 2011; Franczyk et al., 2022). Oxidative stress plays an important
role in vasospasm by promoting endothelial dysfunction, activating vasoconstrictors such as
endothelin-1 (ET-1), and impairing the nitric oxide (NO) vasodilator system (Ruef et al.,
2001; Higashi et al., 2009; Higashi, 2022). Sphingosylphosphorylcholine (SPC) is an active
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sphingolipid that induces the Rho-kinase signaling pathway
involved in abnormal contraction of VSM (Todoroki-Ikeda et al.,
2000; Shirao et al., 2002). So far, there is no effective treatment for
vasospasm. Therefore, understanding the underlying mechanism of
vasospasm and finding new therapeutic strategies are crucial for
treating vasospasm-associated diseases.

Recent studies have found that natural compounds with
antioxidant properties can reduce oxidative stress and improve
vascular function (Mukherjee et al., 2024). Among them,
flavonoids, widely distributed in plants and traditional Chinese
medicine herbs, have shown promise in protecting against
oxidative damage, restoring vascular homeostasis, and preventing
vasospasm (Xu et al., 2022; Li R. L. et al., 2023). Some evidence
suggests that flavonoids reduce the risk of cardiovascular diseases
and have cardiovascular protective effects (Erdman et al., 2007;
Horakova, 2011). Quercetin, kaempferol, and catechins can relax the
smooth muscle of the coronary artery, thereby reducing the
incidence of coronary vasospasm (Xu et al., 2015; Mangels and
Mohler, 2017; Dagher et al., 2021). Flavonoids have also been found
to improve endothelial function and reduce mortality of
cardiovascular diseases (Perez-Vizcaino et al., 2006; Yamagata
and Yamori, 2020). In addition, they contribute to regulate
cholesterol levels, lower blood pressure, and reduce the risk of
thrombosis (Ciumarnean et al., 2020; Kozlowska and Szostak-
Wegierek, 2022). A recent study showed that flavonoids
effectively prevent brain damage caused by intracerebral
hemorrhage and subarachnoid hemorrhage (SAH) by inhibiting
inflammation and oxidative stress (Dong et al., 2024). Furthermore,
hesperetin and tangeretin significantly inhibit SPC-induced
abnormal contraction (Li et al., 2022; Lu et al., 2022).

In recent years, there has been an increasing interest in how
oxidative stress affects vascular function. At the same time,
antioxidants have been widely used as adjuvant therapy for a variety
of clinical diseases. A deeper understanding of the mechanisms
regulating abnormal vascular contraction is essential for further
revealing the pathophysiology of cardiovascular and cerebrovascular
diseases. This review comprehensively explores the mechanism of
action of oxidative stress and SPC in vasospasm and summarizes
the research progress on the regulation of vascular tension by
natural flavonoids. This article aims to promote in-depth research in
this field and provide effective intervention strategies for improving and
preventing coronary artery spasm and cerebral vasospasm.

2 Roles of oxidative stress and SPC
in vasospasm

2.1 Role of oxidative stress in vasospasm

Oxidative stress is a state of imbalance between the generation
and accumulation of reactive oxygen species (ROS) and the
clearance of these ROS in cells and tissues (Vona et al., 2021).
Under pathological conditions, such as brain injury and SAH,
oxidative stress impairs endothelial function and increases the
production of ROS during hemoglobin degradation,
mitochondrial dysfunction, and disrupted antioxidant systems
(Ayer and Zhang, 2008; Hao et al., 2022). These processes result
in vasoconstriction, increased vascular resistance, and a propensity

for vasospasm. Studies have demonstrated that oxidative stress
contributes to cerebral vasospasm after SAH (Macdonald and
Weir, 1994; Kim et al., 2002; Wu F. et al., 2021; Hao et al.,
2022). Increased levels of superoxide anions in the cerebrospinal
fluid following SAH have been reported to be associated with
cerebral vasospasm (Fumoto et al., 2019). In animal models of
SAH, accumulating evidence has shown that free radical
scavengers, such as iron chelators, ebselen, U74006F, and
inhibitors of free radical-generating enzymes attenuate cerebral
vasospasm (Matsui and Asano, 1994; Watanabe et al., 1997;
Horky et al., 1998; Handa et al., 2000; Zheng et al., 2005). Maeda
Y et al. demonstrated that oxidative stress significantly impairs
bradykinin-induced, endothelium-dependent relaxation in bovine
middle cerebral arteries. (Maeda et al., 2004). In addition, oxidative
stress contributes to smooth muscle cell proliferation and
hypertrophy, as well as endothelial cell apoptosis (Satoh et al.,
2010). Research is ongoing to further elucidate how oxidative
stress affects cerebral vasoconstrictor responses and contributes
to the development of vasospasm.

2.2 Oxidative stress-related signaling
pathways in vasospasm

Oxidative stress activates multiple molecular pathways that
regulate vascular tone, playing a crucial role in the development
of vasospasm. The production of ROS during oxidative stress
damages endothelial cells, leading to endothelial dysfunction and
impairing the endothelium’s ability to produce vasodilators such as
NO (Shaito et al., 2022), which contributes to vasoconstriction and
the development of vasospasm. Additionally, ROS enhance the
expression of ET-1, and elevated ET-1 levels are closely
associated with vasospasm (Saitoh et al., 2009). ROS also activate
NF-κB, which triggers the expression of pro-inflammatory cytokines
and adhesion molecules, further exacerbating endothelial
dysfunction and vascular constriction (Scioli et al., 2020).
Increased oxidative stress can also activate the RhoA/Rho-kinase
signaling pathway (de Souza et al., 2016), a key factor in the
pathophysiology of cerebral vasospasm after SAH (Naraoka et al.,
2013). This activation, along with mechanical stress and hypotonic
conditions, influences paxillin phosphorylation and RhoA
translocation (Lopez-Colome et al., 2017). Accumulating studies
have emphasized Fyn expression is upregulated and activated by
oxidative stress (Gao et al., 2009; Giannoni and Chiarugi, 2014;
Matsushima et al., 2016). Additionally, ROS activate the mitogen-
activated protein kinase (MAPK) pathway, leading to the
phosphorylation of proteins that promote vasoconstriction and
inflammation (Higashi, 2022). These findings demonstrate that
oxidative stress triggers various molecular pathways and activates
vasoconstriction-related proteins, which play an important role in
the onset and progression of vasospasm (Figure 1).

Additionally, increasing evidence indicates that mitochondrial
dysfunction–induced oxidative stress may play a critical role in the
development of vasospasm (Jacobsen et al., 2014; Zhang et al., 2022).
Mitochondria are essential for cellular energy metabolism and redox
homeostasis, and mitochondrial dysfunction can lead to oxidative
stress, impaired bioenergetics, and vascular dysregulation (Zong
et al., 2024). Mitochondria are the main source of ROS, mainly
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produced in complexes I and III of the electron transport chain
(Angelova and Abramov, 2018; Zhao R. Z. et al., 2019). Under
pathological conditions, impaired mitochondrial dynamics lead to
elevated mitochondrial ROS, which in turn reduces the
bioavailability of NO by reacting with it to form peroxynitrite
(Prajapat et al., 2024), ultimately causing impaired endothelium-
dependent vasodilation and contributing to the occurrence of
vasospasm. Increased mitochondrial ROS and calcium overload
in cerebral arteries of SAH patients suggest that they may
aggravate delayed cerebral vasospasm (Zhang et al., 2022). In
addition, oxidative stress induced by mitochondrial dysfunction
leads to reduced ATP synthesis (Bhatti et al., 2017), which in
turn affects the sarcoplasmic or endoplasmic reticulum Ca2+-
ATPase (SERCA) pump’s ability to actively transport Ca2+ from
the cytosol into the lumen of the sarcoplasmic reticulum and
endoplasmic reticulum (Wu et al., 2001), a process that is critical
for maintaining low cytoplasmic calcium levels and promoting
muscle relaxation, thereby impairing vascular tone regulation and
possibly inducing vasospasm.

2.3 The role of SPC in vasospasm

Sphingosylphosphorylcholine (SPC) is a naturally occurring
bioactive sphingolipid in blood plasma that has emerged as an

important modulator of cardiovascular functions (Ge et al., 2018).
Under physical conditions, circulating SPC levels are about 50 nM in
plasma and 130 nM in serum (Liliom et al., 2001). SPC acts both as
an extracellular first messenger via G protein-coupled receptors
(such as S1P1–3 and GPR12) (Meyer zu Heringdorf and Jakobs,
2007; Ge et al., 2018) and as an intracellular second messenger by
directly regulating the ryanodine receptor in cardiomyocytes
(Uehara et al., 1999; Yasukochi et al., 2003). In the heart, SPC
regulates Na+ and Ca2+ currents (Yasui and Palade, 1996) and
protects cardiomyocytes against ischemia/reperfusion-induced
apoptosis and inflammation through autophagy mediated by the
lipid raft/PTEN/Akt/mTOR pathway (Yue et al., 2015). In vascular
endothelial cells, SPC at low concentrations (≤10 μM) exhibits anti-
apoptotic and anti-inflammatory effects (Ge et al., 2011), whereas at
higher concentrations (≥10 μM), it may induce oxidative stress and
inflammation (Jeon et al., 2007). In vascular smooth muscle cells,
SPC promotes cell migration (Boguslawski et al., 2002; Zhang et al.,
2021) and Ca2+ sensitization through the Src/Rho-kinase pathway
(Nakao et al., 2002), contributing to vascular remodeling and
vasospasm. Furthermore, SPC induces the differentiation of
mesenchymal stem cells into smooth muscle-like cells (Jeon
et al., 2006), suggesting a potential role in vascular repair. In
summary, SPC exerts multifaceted effects on the cardiovascular
system. In this review, we focus on the role of SPC in the abnormal
contraction of vascular smooth muscle.

FIGURE 1
Oxidative stress-induced signaling pathways involved in vasospasm. Oxidative stress damages endothelial cell function and increases the expression
of endothelin-1 (ET-1) by increasing the generation of reactive oxygen species (ROS), while inhibiting the vasodilator factor NO, increasing
vasoconstriction and weakening vasodilation. In addition, ROS activate key signaling pathways of vascular smooth muscle cells, including NF-κB, Rho-
kinase, and MAPK, leading to inflammation and vascular dysfunction, playing a key role in development of vasospasm.
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Under normal physiological conditions, VSM contraction plays
a crucial role in maintaining blood pressure, blood flow, and
vascular tone. This contraction is dependent on Ca2+ (Somlyo
and Somlyo, 1994) and can be triggered by mechanical, electrical,
or chemical stimuli through the Ca2+/calmodulin (CaM)-myosin
light chain kinase (MLCK) signaling pathway (Kamm and Stull,
1985). When vascular smooth muscle cells are stimulated, the
intracellular Ca2+ concentration increases, binding to CaM to
form a Ca2+/CaM complex. This complex induces a
conformational change in MLCK, thereby activating it (Kemp
and Pearson, 1991). Activated MLCK then phosphorylates
myosin light chain (MLC), promoting the formation of actin-
myosin crossbridges, leading to muscle contraction (Kamm and
Stull, 1985). However, the Ca2+-independent mechanism has also
been reported to contribute to VSM contraction. The pathways
involved including RhoA-Rho-kinase (Kureishi et al., 1997; Mizuno
et al., 2008), protein kinase C (Walsh et al., 1996; Dimopoulos et al.,
2007), MAPK signaling (Cain et al., 2002), and ROS (Jin et al., 2004).
These signals ultimately phosphorylate myosin phosphatase
targeting subunit 1 (MYPT1), a subunit of myosin light chain
phosphatase (MLCP), reducing MLCP activity and preventing the
dephosphorylation of MLC (Alvarez-Santos et al., 2020). As a result,
MLC remains in a sustaining phosphorylated state, promoting actin-
myosin crossbridge formation and muscle contraction, independent
of calcium ion (Webb, 2003; Hirano, 2007). Vasospasm is
considered a pathological condition characterized by sustained
vascular hyperresponsiveness or Ca2+-sensitization of VSM
contraction (Tanaka et al., 1998; Dimopoulos et al., 2007). SPC
has been identified as a key bioactive lipid mediator that activates
Rho-kinase and plays a central role in vasospasm. A study by
Kurokawa T et al. showed that SPC concentration is significantly
elevated in the cerebrospinal fluid of patients with cerebral
vasospasm (Kurokawa et al., 2009). Additionally, injecting SPC
into the cisterna magna of the cerebellum and medulla oblongata
induces significant and prolonged vasospasm in the canine basilar
artery (Shirao et al., 2008). Furthermore, SPC has been shown to
induce smooth muscle contraction in various vascular tissues,
including the cerebral and coronary arteries, as well as human
coronary artery smooth muscle cells (Shirao et al., 2002; Zhang
et al., 2017; Li et al., 2022; Lu et al., 2022; Zhang et al., 2024).

2.4 The SPC-induced signaling pathway
involved in vasospasm

Early studies have demonstrated that the Rho-kinase pathway is
significantly activated in cerebral arterial smooth muscle during
cerebral vasospasm, a severe complication following SAH (Sato M.
et al., 2000; Wang et al., 2014; Hu et al., 2023). This finding suggests
that Rho-kinase plays a crucial role in the pathogenesis of
vasospasm, contributing to sustained smooth muscle contraction.
Shirao S et al. reported that SPC activates Rho-kinase, leading to
Ca2+-independent contraction in bovine cerebral artery VSM strips
(Shirao et al., 2002). A specific Rho-kinase inhibitor, Y27632, along
with a dominant-negative Rho-kinase construct, effectively
abolished the abnormal contraction of VSM strips induced by
SPC (Shirao et al., 2002). Furthermore, SPC stimulation also
triggers the translocation of Rho-kinase from the cytoplasm to

the cell membrane in VSM cells (Zhang et al., 2017; Li et al.,
2022; Lu et al., 2022). These results suggest that Rho-kinase is a
downstreammolecule in the SPC-induced signaling pathway, which
is involved in abnormal contraction.

Fyn is a member of the Src family of non-receptor tyrosine
kinases, which plays an important role in cellular signaling,
including cell growth, differentiation, and motility (Peng and Fu,
2023). Fyn is also involved in several pathways that regulate smooth
muscle contraction, and recent studies have highlighted its role in
mediating SPC-induced abnormal contraction in vascular smooth
muscle cells (VSMCs). Inhibition of Fyn activity using specific Fyn
inhibitors decreased the contraction of VSM strips exposed to SPC,
highlighting the importance of Fyn in mediating SPC-induced VSM
contraction (Nakao et al., 2002; Lu et al., 2022). Further study found
that specific Fyn inhibitors such as PP1 and EPA blocked the
activation and translocation of Rho-kinase (Nakao et al., 2002).
These findings collectively suggest that Fyn and Rho-kinase play a
critical role in mediating abnormal contraction of VSM
induced by SPC.

Paxillin, a scaffolding protein located at focal adhesion, recruits
various signaling molecules including Fyn and FAK, playing an
important role in cytoskeletal reorganization (Singh et al., 2019;
Zhang et al., 2021; Zhang et al., 2023). Several studies have shown
that paxillin regulates the Ca2+-dependent contraction in tracheal
smooth muscle and cardiac contractility (Hirth et al., 2016; Zhang
W. et al., 2016). Recent study reported that paxillin is a binding
molecule of the active Fyn (Zhang et al., 2021). Paxillin deletion
attenuates the SPC-induced contraction of VSM, suggesting that
paxillin is involved in the SPC-induced abnormal contraction of
VSM (Zhang et al., 2024). In addition, the activity of Rho-kinase but
not Fyn is inhibited in paxillin deleted cells and tissues (Zhang et al.,
2024), indicating that paxillin involves in the SPC-induced
abnormal contraction as a signaling molecule between Fyn and
Rho-kinase.

In addition, SPC increases ROS generation by activating PLC,
PKC1, and Src-dependent NADPH oxidase 1 (NOX1), thereby
enhancing Ca2+ entry through L-type channels and strongly
enhancing vascular reactivity (Shaifta et al., 2015). Jin L et al.
demonstrated that ROS-induced vascular contraction is mediated
through the activation of the Rho/Rho-kinase pathway, as evidenced
by the increased translocation of Rho to the membrane and
phosphorylation of MYPT1, both of which were inhibited by the
Rho-kinase inhibitor Y-27632 (Jin et al., 2004). SPC induces
apoptosis of endothelial cells through ROS-mediated activation of
ERK, causing endothelial dysfunction (Jeon et al., 2007). These
studies suggest that SPC could impact vascular contraction
activity through ROS-mediated pathways. The signaling pathways
induced by SPC are summarized as shown in Figure 2.

3 Anti-vasospasm effect of flavonoids

Flavonoids are compounds extracted from many fruits,
vegetables, and traditional Chinese herbal medicines. The basic
backbone, classification, and chemical structures of representative
flavonoids are shown in Figure 3. These compounds exhibit a variety
of beneficial biological activities for human health, specially anti-
inflammatory and antioxidant effects (Maleki et al., 2019; Cho et al.,
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2020), as well as antimicrobial and antiviral properties (Badshah
et al., 2021; Cascaes et al., 2021). They have also the potential to
reduce the risk of chronic diseases such as cancer (Busch et al., 2015),
cardiovascular diseases (Ponzo et al., 2015; Ciumarnean et al., 2020),
and neurodegenerative diseases (Devi et al., 2021). Here, we will
discuss the potential anti-vasospasm effects of flavonoids through
virous mechanisms.

3.1 Anti-vasospasm effect of flavonoids by
inhibiting the SPC-induced pathway

In recent years, researchers have shown growing interest in the
potential of flavonoids to inhibit abnormal contraction of VSM. To
date, hesperetin and tangeretin have been found to exert significant
inhibitory effects on abnormal contraction induced by SPC (Li et al.,
2022; Lu et al., 2022). In addition, we discuss the anti-vasospastic
effects of several other flavonoids, potentially through the
attenuation of oxidative stress.

3.1.1 Hesperetin
Hesperetin (the structure is shown in Figure 3), a metabolite of

hesperidin, has shown promising potential in improving
cardiovascular health. Animal studies have demonstrated that
hesperetin can improve endothelial function (Liu et al., 2008),
reduce inflammation (Wu J. et al., 2021), and exert antioxidant

effects (Li et al., 2021). Furthermore, hesperetin has been found to
reduce the hepatic triacylglycerol (TG) accumulation induced by 1%
orotic acid (Cha et al., 2001). These findings suggest that hesperetin
exerts a protective effect against cardiovascular diseases by reducing
risk factors such as hypertension and dyslipidemia.

In our recent study, we observed that hesperetin effectively
inhibits the abnormal contraction induced by SPC in coronary
artery smooth muscle (Lu et al., 2022). Hesperetin (30 μM)
markedly suppressed SPC-induced contraction, resulting in a
79.4% ± 7.4% inhibition, with an IC50 value of 13.94 μM (Lu
et al., 2022). Furthermore, pretreatment with hesperetin exhibited a
significant protective effect, with an inhibition rate of 80.3% ± 6.6%
in response to SPC-induced contraction (Lu et al., 2022).
Additionally, hesperetin was found to inhibit the translocation of
Fyn and Rho-kinase from the cytoplasm to the membrane, and to
attenuate SPC-induced phosphorylation of both Fyn and MLC (Lu
et al., 2022). Collectively, these findings suggest that hesperetin has
promising potential as a therapeutic agent for the prevention and
treatment of vasospasm.

3.1.2 Tangeretin
Tangeretin (the structure is shown in Figure 3), a natural

compound found in citrus plants, shows promising therapeutic
effects in cardiovascular diseases. Studies indicate that tangeretin
exhibits anti-inflammatory (Funaro et al., 2016; Lee et al., 2016; Li
et al., 2019), antioxidant (Lee et al., 2016; Li et al., 2019), and

FIGURE 2
SPC-induced signaling pathways involved in vasospasm. SPC-mediated signaling pathway involves Fyn, a Src family kinase, which promotes Rho-
kinase activation by interacting with paxillin. In addition, SPC can activate NADPH oxidase (NOX) through PLC and PKC, increasing ROS generation, which
activates the Rho-kinase. The activated Rho-kinase phosphorylates myosin light chain phosphatase (MLCP) to inactivate it, and myosin light chain (MLC)
remains in a highly phosphorylated state, leading to vasospasm.
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endothelial protective effects (Wu et al., 2019), which are crucial for
preventing and treating cardiovascular diseases. Tangeretin has also
been found to inhibit platelet activation, aggregation, and preventing
thrombosis (Vaiyapuri et al., 2013). Additionally, tangeretin has
been found to have lipid-lowering effects, reduce serum cholesterol
levels and inhibit the expression of genes involved in lipid
metabolism (Chen et al., 2021). Shiroorkar PN et al. found that
tangeretin is a novel cardioprotective therapeutic agent for the
treatment of sepsis-induced myocardial dysfunction (Shiroorkar
et al., 2020).

A recent study by Li et al. showed that both pretreatment and
posttreatment at the optimal concentration, tangeretin exhibited a
remarkable inhibitory effect on the SPC-induced contraction,
indicating its protective potential against cardiovascular diseases
(Li et al., 2022). At the concentration of 2.5 μM, tangeretin effectively
inhibited the SPC-induced contraction by 85.4% ± 8.23%, while only
showing a slightly inhibitory effect (1.53% ± 2.57% inhibition) on
the high K+-induced Ca2+-dependent contraction (Li et al., 2022). In
addition, pretreatment with tangeretin exhibited a marked
inhibitory effect on the SPC-induced abnormal contraction, with
an inhibition rate of 72.51% ± 10.04%, while showing an inhibition
rate of 31.89% ± 9.74% for 40 mM K+-induced Ca2+-dependent
contraction (Li et al., 2022). These results suggest that tangeretin
may be a potential compound for the treatment and/or prevention of
vasospasm. The underlying mechanism of tangeretin’s action

appears to be similar to that of hesperetin. In cultured VSM cells,
tangeretin reduced MLC phosphorylation by inhibiting SPC-
induced activation of Fyn and Rho-kinase, as well as their
translocation from the cytoplasm to the membrane, thereby
inhibiting SPC-induced abnormal contraction (Li et al., 2022).

Although inhibitory effects of hesperetin and tangeretin on SPC-
induced abnormal contraction have been demonstrated in isolated
tissues and smooth muscle cells, they have not yet been investigated
in an animal model of vasospasm. Future in-depth studies exploring
these flavonoids in this context will be crucial for advancing
preclinical trials.

3.1.3 Genistein
Genistein (the structure is shown in Figure 3), a natural

isoflavone primarily found in soy products, has been extensively
studied for its cardiovascular protective effects (Fukutake et al., 1996;
Jafari et al., 2023). With its vasodilatory (Walker et al., 2001), anti-
inflammatory (Goh et al., 2022), and antioxidant (Kerry and Abbey,
1998) properties, genistein has emerged as a promising candidate for
the prevention and treatment of vasospasm, attracting growing
interest in recent years.

As a well-known protein tyrosine kinase inhibitor, genistein
significantly inhibits smooth muscle contraction, suggesting that
protein tyrosine kinase plays a crucial role in regulating Ca2+

sensitivity of smooth muscle (Steusloff et al., 1995). Src family

FIGURE 3
The basic backbone structure of flavonoids and representative compounds of their category.
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protein tyrosine kinases have been implicated in SPC-induced
abnormal vasoconstriction (Nakao et al., 2002). It is reasonable
to hypothesize that genistein may mitigate SPC-induced abnormal
vascular contraction by inhibiting the activity of Src family protein
tyrosine kinases. Genistein decreases RhoA activation, inhibits
vascular contraction induced by U46619 and KCl, and reduces
phosphorylation of MLC and MYPT1 (Thr855), suggesting that
genistein may contribute to vascular relaxation and blood pressure
regulation by targeting the RhoA/Rho-kinase pathway (Seok et al.,
2008). Additionally, genistein’s key mechanisms of action is the
enhancement of endothelial nitric oxide synthase (eNOS) activity,
leading to increased NO production (Liu et al., 2004; Si et al., 2012).
This, in turn, may help alleviate vasospasm and improve
endothelial function.

Preclinical studies have demonstrated genistein’s vasodilatory
effects in animal vascular tissues (Sato A. et al., 2000; Sun et al.,
2015). Moreover, epidemiological research suggests that individuals
with a diet rich in genistein-containing foods have a lower incidence
of vasospastic disorders (Squadrito et al., 2003; Cruz et al., 2008).
However, clinical trials specifically evaluating genistein’s efficacy in
vasospasm management remain limited, underscoring the need for
further investigation.

3.1.4 Delphinidin
Delphinidin (the structure is shown in Figure 3) is the major

anthocyanidin found in various berries and other colored fruits and
possesses potent antioxidant properties (Yun et al., 2009). Studies
have shown that SPC-induced NADPH oxidase (NOX) enzyme-
mediated ROS generation (Shaifta et al., 2015) followed by ROS-
promoted Rho-kinase activation (Jin et al., 2004; MacKay et al.,
2017) may play a key role in SPC-induced vasospasm. The NOX
enzyme family is a major source of ROS in various cell types
(Lambeth, 2007; Zhang J. et al., 2016; Cipriano et al., 2023). A
study by Lim TG et al. identified that NOX as the molecular target of
delphinidin in suppressing UVB-induced MMP-1 expression in
human dermal fibroblasts (Lim et al., 2013). They further found
that delphinidin inhibits NOX activity, reduces ROS production,
and prevents p47 (phox) translocation, thereby downregulating
MKK4-JNK1/2, MKK3/6-p38, and MEK-ERK1/2 signaling
pathways (Lim et al., 2013), indicating that delphinidin effectively
inhibits NOX-dependent ROS generation, making it a promising
candidate for therapeutic intervention in vasospasm. Delphinidin
has been demonstrated to reduce ROS generation through the
AMPK/NOX/MAPK signaling pathway (Chen et al., 2020). In
addition, delphinidin has been demonstrated to inhibit the
PDGFAB-induced release of VEGF in vascular smooth muscle
cells by scavenging ROS and blocking p38MAPK and JNK
pathway activation (Oak et al., 2006). These studies make
delphinidin a promising candidate for therapeutic intervention
in vasospasm.

3.2 Anti-vasospasm effect of flavonoids by
inhibiting oxidative stress

Studies have shown that in order to counteract the harmful
effects of oxidative stress caused by ROS, certain antioxidant
enzymes play a key role in the scavenging of ROS, including

superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GPx) (Jomova et al., 2024). SOD not only scavenges
superoxide anion radicals, thereby preventing the formation of more
damaging peroxynitrite, but also maintains the physiologically
required level of NO (Fukai and Ushio-Fukai, 2011). Flavonoids
have significant antioxidant activity, which can not only effectively
scavenge ROS, but also inhibit the activity of NADPH oxidase (Luo
et al., 2019), thereby reducing the production of ROS. In addition,
flavonoids can also induce the activation of nuclear factor 2-related
factor 2 (Nrf2) (Suraweera et al., 2020) and promote mitochondrial
biogenesis (Omidian et al., 2020), thereby improving oxidative stress
caused by mitochondrial dysfunction. Here, we discuss the
antioxidant effects of several representative flavonoids.

3.2.1 Tangeretin
Tangeretin, a polymethoxylated flavone, exhibits antioxidant

biological activities. Wu et al. investigated the protective effects of
tangeretin against oxygen-glucose deprivation (OGD)-induced
injury in human brain microvascular endothelial cells. The
results showed that tangeretin increased the SOD activity while
decreasing ROS and malondialdehyde (MDA) levels (Wu et al.,
2019). These effects were mediated through the suppression of the
neuroinflammatory JNK signaling pathway (Wu et al., 2019). In
another recent study, researchers induced brain neurotoxicity in
BALB/c mice using cisplatin and investigated the potential
protective effects of tangeretin. They found that ROS and MDA
levels were significantly increased in cisplatin-treated brain tissue,
while treatment with tangeretin reduced these levels (Cicek et al.,
2024), suggesting that tangeretin has a beneficial antioxidant effect.
Additionally, tangeretin activates the Nrf2 pathway (Lv et al., 2023;
Peng et al., 2024), thereby enhancing the body’s endogenous
antioxidant defenses and alleviating oxidative stress. Tangeretin is
also reported to enhance mitochondrial biogenesis via activating the
AMPK-PGC1-α pathway (Kou et al., 2018).

3.2.2 Quercetin
Quercetin (the structure is shown in Figure 3), a flavonoid found

in onions, apples, berries, and tea, has been extensively studied for its
antioxidant and vasodilatory properties. It has been shown to
effectively reduce oxidative stress by scavenging ROS and
inhibiting NADPH oxidase (Zhang et al., 2020), a key enzyme
responsible for ROS production in VSMCs (Drummond et al.,
2011). Several studies have shown that activation of NADPH
oxidase is involved in the development of coronary artery spasm
and cerebral vasospasm (Kim et al., 2002; Murase et al., 2004; Saitoh
et al., 2015). Quercetin mitigates vascular endothelial dysfunction in
atherosclerotic mice by inhibiting the activity of myeloperoxidase
and NADPH oxidase (Li J. X. et al., 2023). Furthermore, dietary
quercetin has been shown to enhance NO levels and reduce ET-1
concentrations, potentially improving endothelial function (Loke
et al., 2008). Quercetin can prevent ET-1-induced upregulation of
NADPH oxidase and uncoupling of eNOS, thereby improving
endothelial dysfunction (Romero et al., 2009). Several studies
have also shown that quercetin can reduce oxidative stress
response and alleviate brain damage following experimental
subarachnoid hemorrhage (Dong et al., 2014; Gul et al., 2020;
Jiao et al., 2023). Additionally, quercetin can also modulate
mitochondrial biogenesis in various cell types (Rayamajhi et al.,
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2013; Li et al., 2016; Koshinaka et al., 2020). These reports suggest
that quercetin has the potential to prevent cerebral vasospasm after
subarachnoid hemorrhage.

3.2.3 Kaempferol
Kaempferol, another flavonoid found in a variety of fruits and

vegetables, has similar properties to quercetin in modulating
oxidative stress and improving endothelial function (Alrumaihi
et al., 2024). Recent studies highlight the link between vascular
pathology, oxidative stress, and inflammation (Siti et al., 2015;
Steven et al., 2019; Higashi, 2022). Kaempferol acts as a direct
scavenger of ROS, reducing oxidative stress, showing great potential
in the treatment of many diseases (Yao et al., 2020; Hussain et al.,
2024; Yao et al., 2024). Yao et al. found that in a mouse model of
vascular injury, kaempferol inhibited TNF-α and IL-6 expression
and activated the Nrf2/HO-1 pathway, thereby reducing oxidative
stress and inflammation and providing a protective effect on the
vascular endothelium (Yao et al., 2020). A recent review summarized
that kaempferol prevented neurological dysfunction in experimental
models of ischemia-reperfusion and 3-nitropropionic acid-induced
brain injury by inhibiting mitochondrial dysfunction, suggesting its
potential use in both the prevention and post-injury treatment of
brain injury (Lopez-Sanchez et al., 2024). Studies in isolated arteries
have shown that kaempferol induces vasorelaxation (Xu et al., 2006;
Yoon et al., 2024), which can counteract the effects of vasospasm,
particularly in conditions like coronary artery spasm. Kaempferol is
also reported to alleviate mitochondrial damage by reducing
mitochondrial ROS production (Han et al., 2021; Lee et al., 2023).

3.2.4 Apigenin
Apigenin, a flavone found in parsley, chamomile, and celery, has

been reported to possess various cardioprotective effects, including

modulating oxidative stress pathways involved in vasospasm
(Allemailem et al., 2024). Apigenin reduces ROS levels and
inhibits the activation of pro-inflammatory pathways, which are
often triggered by oxidative stress in vascular tissues (Clayton et al.,
2021). Apigenin induces vasodilation by promoting NO production
and improving eNOS activity (Jin et al., 2009; Chen et al., 2010).
Apigenin supplementation restores endothelial-dependent dilation,
increases NO availability, reduces oxidative stress, and improves
antioxidant enzyme expression in aged mice (Clayton et al., 2021).
Zhang et al. investigated the effects of apigenin on early brain injury
following SAH in rats. Apigenin administration significantly reduces
brain edema, blood-brain barrier disruption, neurological deficits,
and cell apoptosis by inhibiting the TLR4/NF-κB signaling pathway
and upregulating tight junction proteins, suggesting its potential as a
therapeutic for SAH-induced brain injury (Zhang et al., 2015).
Another study by Han et al. demonstrated that apigenin
treatment alleviated neurological deficits, brain edema, blood-
brain barrier permeability, and cell apoptosis by reducing
oxidative stress markers (ROS, MDA, myeloperoxidase (MPO))
and enhancing antioxidant activity (SOD, glutathione (GSH)),
suggesting its potential as a therapeutic for SAH through its anti-
oxidative effects (Han et al., 2017). By reducing oxidative stress and
inflammation, apigenin can help maintain vascular homeostasis and
prevent the excessive constriction of blood vessels associated with
vasospasm. Furthermore, in a rat SAH model, apigenin decreased
brain swelling, cell death, and neurological damage by blocking the
TLR4/NF-κB pathway, which drives inflammation (Zhang et al.,
2015), supporting its potential as a therapeutic agent for preventing
cerebral vasospasm.

Figure 4 shows the effects of flavonoids on oxidative stress and
SPC-induced signaling pathways and their effects on vasospasm. In
summary, flavonoids have shown great potential in preventing and

FIGURE 4
Schematic diagram of flavonoids preventing and treating vasospasm by regulating oxidative stress and SPC-induced signaling pathways.
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treating vasospasm by alleviating oxidative stress, improving
endothelial function, and inhibiting vascular smooth muscle
contraction. Although existing studies have provided valuable
experimental evidence for the use of flavonoids in vasospasm,
their effects need to be further verified in preclinical studies. So
far, there are few clinical trials that directly evaluate the effects of
flavonoids on vasospasm. Although flavonoids are known for their
powerful antioxidant and anti-inflammatory properties, their
therapeutic effects are limited by low bioavailability, including
low solubility, instability, rapid metabolism, and poor intestinal
absorption (Thilakarathna and Rupasinghe, 2013). To overcome
these challenges, several strategies have been explored, including
nanocarriers, structural modifications, and advanced drug delivery
systems (Nagula and Wairkar, 2019; Zhao J. et al., 2019). The
pharmacokinetic properties, dose dependence, and long-term
safety of flavonoids need to be further studied. Therefore, future
studies should focus on exploring the effects of flavonoids in animal
models and using drug delivery systems to improve their
bioavailability. It is expected that clinical trials will be conducted
in the near future to evaluate the effects of flavonoids on vasospasm.
In addition, the synergistic effects of flavonoids combined with other
drugs are also worthy of further study.

4 Conclusions and future perspectives

Vasospasm is an abnormal contraction of VSM, commonly
occurring in coronary and cerebral arteries, which reduces blood
flow and can lead to serious conditions such as myocardial and
cerebral infarctions. Studies have suggested that oxidative stress
and the SPC-induced signaling pathway are involved in this
contraction. Flavonoids, natural compounds found in plants
and traditional Chinese medicines, have shown efficacy in
reducing oxidative stress and inhibiting SPC-induced
pathways, indicating that they have great potential in the
treatment of cardiovascular and cerebrovascular diseases
associated with vasospasm. Despite the promising results of
preclinical studies on these flavonoids have been demonstrated
in vitro, additional research is required to examine their effects in
vivo. Clinical studies are needed to validate and develop these
active flavonoids for the treatment of vasospasm-
associated diseases.
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